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Abstract. We give a brief survey of the latest results on the

block intersection problem for S(t,t+l,v) for t=2,3.

1. Definitions.

A t-design on v point is a pair (V,B) where V is a finice set
of size v (called the onden of the t-design) and B is a collection
of k-subsets of V (called &lacks) such that every t-subset of V is
contained in exactly X blocks of B. A t-design on v point is
called an SA(t,k,v). In the case X=1l, it is called a Steiner
system S(t,k,v}.

It is well-known that an S(2,3,v), or Pleinen tniple oayoslem
STS({v), exists if and only if v=1 or 3 (med &) and an S(3,4,v), or
Pteinen quadnuple oyoatem SQS(v), exists if and only if v=2 or 4
{med 6) [27].

k

In an S(t,k,v) (V,B), |[B| = [';] / [t

]. If (V,B) is

an STS(v) (SQS(v)) we will denote by tv - _Eiglll [ qv =

v(v-1)(v-2)
24

] the cardinality of B.

(*) Research supported by M.P.I.



A powllel class in an S(t,k,v) is a set of blocks that
between them contain every point of V exactly once. A Steiner
system is called nesaluable if one can partition its blocks into
parallel «classes. Such a partition 1is called a nescfution,
Clearly, the number of blocks in a parallel class must equal v/k,
and therefore k must divide v in any resolvable design. It is
well-known that not every design with k a divisor of v is
resolvable.

A resolvable S(2,3,v), called a Kinkman triple aystem KTS(v),
exists if and only if v=3 mod 6 [76].

Hartman [32] proved that the necessary condition for the
existence of a resolvable S(3,4,v) (i.e. v=4 or 8 (mod 12)) is
also sufficient with the possible exception of twenty-three values
of v.

Given an S(3,4,v) (V,B), if one chooses any point x€P and
deletes that point from the set P and from all blocks which
contain it then the resulting system (V(x),B(x)), where V(x)=V-{x}
and B(x)=(b"=b-{x}/beB and xeb}, will be an S(2,3,v-1). Such a
triple system is said to be denived from the quadruple system and
is called a deninved iriple ayoatem (DTS). It is easy to see that
there exists a DTS uf every possible order. However it is unknown
whether or not every triple system is a DTS. See [6,68] for
results on this topic.

A pantial system S(t,k,v) is a pair (P,C) where P is a finite
set of size n (called the order of the partial system) and C is a

collection of k-subsets of P (called &lacks) such that every
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t-subset of P is contained in ai masl one block of C.

Two partial systems (P,Cl) and (P,CZ) are said to be mutually
balanced if any given t-subset of P is contained in a block of Cl
if and only if it is contained in a block of Cz' Two mutually
balanced partial systems are disjoint if they have no block in
common.

A partial system (P,C) is maaximal if there is no partial
system (P,C’) with CcC’ .

A maximum partial asystem is a maximal partial system with a
maximum number of blocks.

A partial system with t=2 and k=3 (t=3 and k=4) is called a
pantial thiple ayatem (pantial quadnuple syotem) .

The interested reader should consult the books [1,3,81]
concerning design theory and [17,45]I for more detailed results on

Steiner systems.

2. The block intersection problem for STS and SQS.

Two Steiner systems (V,Bl) and (V,Bz) are said to intenaect
in k blocka provided |BlnBz|=k. If k=0, (V,Bi) and (V'Bz) are said
to be diajaint, and if |B1r‘le|—l they are said to be almaot
diajaint. The existence of a pair of disjoint §(2,3,v)s of every
order vz7 has been shown by Doyen in [7]. Teirlinck [80] proved
that if (Vl,Bl) and (vz'Bz) are any two 5(2,3,v)s, vz7, and if V is
any v-set, then there exist two disjoint $(2,3,v)s (V,B’l), (V,B'z)
such that (Vl,Bl)ﬂ(V,B’l) and (Vz,Bz)ﬂ(V,B’Z). Lindner [37,38]

proved that there exists for every order v=3 a pair of almost
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disjoint S(2,3,v)s. In [43] the existence of large sets of
mutually almost disjoint S(2,3,v)s is considered. A large set of

S(2,3,v)s is a set {(V,Bi)/iEI} of S$(2,3,v)s such that U B{-[ g ],
iel

the set of all 3-subsets of V.,

Etzion and Hartman have proved the existence of a pair of
disjoint S(3,4,v)s for every admissible v=8.

It is possible to consider the above results as particular
cases of the following &lack interwection pnoblem fon Pleinen
ayoatema: For every admissible v determine the set J(v) of all
integers k such that there exists a pair of S(t,t+l,v) intersec-
ting in k blocks.

For t=2 the set J(v) is completely determined [42]. More pre-
cisely, if I(v)-{O.l,...,tv-G} U {tv—a, ti-v(v~l)/6}, it is
J(y=T(v) for every =wv=1,3 (mod 6)=13, J(M=(L), J{(NN=10,1,3.7YV,
and J(9)={0,1,2,3,4,6,12}.

Many authors have studied the intersection problem for Steiner
quadruple systems. The following results are known: Let I(v) =

(0,1,2,..., q-14) u{qv-lz, q,-8.q, - Eifll%éilgl }, amil. frdl B

Then;
(1) J(6)=1, J(2%) = I(2") for every n=3 [19,12,22,51].
(2) J(10)={0,2,4,6,8,12,14,30} [35]), and
J(5:2") = I(5+2") for every n=2 [13,16,22,51].
(3) J(14)2I(14)-{48,50,52,57,58,60,62,63...,,79,83) [54]; 76,77,
79,83¢J(14) [21]; and J(7-2") = I(7-2") for every n=2 [50,51].

(4) J(v)=I(v) for every v=4,8 (mod 12) [52] (and independently
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(10]).

The proof techniques of the above results use well-known
constructions of 8(3,4,2v). Very interesting constructions for
5(3,4,v)s are known [27,29,30,31,36].

Recently a mnew construction (hextupling construction) for

S(3,4,v)s is given in [25]. Applying the hextupling construction

to the intersection problem, Colbourn and Hartman [33]: can show

ICV)-{O. (V'2)év'lh) -1} CJ(v) for v=2 (mod 12)=38 and
I(V)-{O,..', —LE;%QL— -l} cJ(v) for wv=10 (mod 12)z=46.
At last in a remarkable paper , Hartman and Yehudai [33A]

complete the determination of the sets of possible intersection
sizes for Steiner quadruple systems of all admissible orders v
except possibly v=14,16.

Let (V,Bl} and (V,Bé) be two Steiner systems such that

BlnBz-Brﬁ. If X= U b, then (x,Bl-B) and (X,Bz-B) are two
bEBl—B

disjoint and mutually balanced (DMB) partial systems. If there
does not exist a pair of DMB partial systems with k blocks, then
k@I (v).

As a consequence, many papers [11,14,15,18,22,23,24,46,47,48,49]
have studied the existence of DMB partial systems.

If JR(V) denotes the set of all integers k such that there
exists a pair of Kirkman triple systems intersecting in k blocks
then O,IEJR(v) for every admissible v23 [26,80] (see also [77])

and I(v)-{t -13, € -7, t-4)c) (v) for v=3""1 5.3 7.3"  (n=2)
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[53].

To determine JR(V) for the other wvalues of v is an open
problem.

Since it is unknown whether or not every triple system 1is a
DTS [68], the following question is of interest: Do the intersec-
tion problems for DTSs and for S(2,3,v)s have the same solution?
The answer is yes for every admissible v<15 [6] and for every
v=3,7 (mod 12) [73]; but it is an open problem for wv=1,9 (mod

12), v=21.

Given an integer k such that Oskstv let us denote by D(v,k)
the maximum number of STS(v)s that can be constructed on a v-set
in such a way that any two of them have exactly k blocks in
common, these k blocks being moreover in each of the D(v,k)
systems. In [7] Doyen posed the problem of determining D(wv,k),
Clearly D(v,k)=2 for every keJ(v). For k=0, D(v,0) denotes the
maximum number of pairwise disjoint S(2,3,v)s. Then D(v,0)<v-2.
If the equality sign holds, the v-2 Steiner triple systems form a
ange oet af diajaint S(2,3,v)s. Clearly D(7,0)=2. Many papers
have studied the parameter D(v,0) [77]. The best results on this
topic are due to Lu Jia-Xi [55] who has shown D(v,0)=v-2 for all
admissible v with the possible exception of wv=141,283,506,789,
1051,2365. However Teirlinck writes in [80A] that Lu [55A] has
completed these cases, so that D(v,0)=v-2 for all admissible v=9,

In [59,61,62,63,70,71] the following values of the parameter

ID(v,k) are determined:
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(1) If m=6 and v=9,13; or m=7 and v27; or m=8,9,11 and v=13,15;
or m=12 and v=13; D(v,tv-m)-Z.

(2) If m=6 and v213; or m=9 and vz9 v=13,15; or m=10 and v=19;
or m=11 and v29 wv»13,15; or m=12 and v=15; or m=13 and v=15; or
m=14 and v=13,15,19; D(v,tv-m)-B.

(3) If m=8 and v=9 v»13,15 or m=14 and v=21, D(v,t -m)=4.
v

(4) D(v,tv-m)£2l3m/[{l+ll+24m\/2lJ: so that D(v,tvft")-D(w,O)

for any admissible w such that v>2w+l. Therefore from [55,55A] it
follows that D(v,tv-t')-w-Z for w=9,

It is possible to define the parameter D(v,k) for Steiner qua-
druple systems. For k=0 the following results are known: D(2v,0)zv
[39], D(4v,0)23v [38], D(2:5",0)=5" [67], D(2n,0)>n where n=l
or 5 (mod 6) [69], D(2%n,0)=(2"-1)n if k=2 and there exists a set
of 3n pairwise disjoint Steiner quadruple systems of order 4n with

a certain structure [9A]. For k>0 it is proved in [20] that:

2
(1) n[v,qv - g;.z) > ; - 1 for every v=4,8 (mod 12).

(2) For every keN, k=2, let w=min(AeN/A=4k, A=2,4 (mod 6)). It
follows that D(Zw,qz'-k2(2k-1))22k-1 and D(2v.q*—k2(2k-l)32k-l,
for vaw, v=2,4 (mod 6).

n+2

(3) D(v,q -8)=D(v,q -14)=D(v,q -15)=2 for every v=2", 5.2°,

742" and n=2.

The block intersection problem can be generalized in the

following way: Determine the sets J"(v) (J"(v)) of all integers k
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such that there exists a collection of m (=2) Steiner systems
mutually intersecting in k blocks (in the same set of k blocks).
Clearly jz(v)-dz(v)-J(v) and Jm(v};jm(v)CJ(v). Let Ia(v)=
lO,l,...,tk-S]U{tv-G, tv}. The following results are proved
in [64]: J°(v)=1(v) for every wv=1,3 (mod 6) vz19, J(1)={1,7),
3°(9)=10,1,3,4,12), I°(13)=I, -(14,...,18,20) and 3*(15)=1; - (24,
.,27)}. 1 am not aware of any further results in this direction.
Let (V,Bl) and (V,Bz) be two S(t,t+l,v) such that IB1nBz|-k'
Clearly (V,Bluﬁz) is an Sz(t,t+l,v) having exactly k repeated
blocks. Therefore the solution of the intersection problem proves

the existence of Sl(t,t+l,v) (at least for certain values of v),

with repeated blocks. See [4,61,65,72,78].

3. Steiner systems Intersecting in a set with additional proper-
ties.

Let (V,Blj and (V,Bz) be two S(t,t+l,v)s intersecting in
exactly k blocks. One could require, as is done in [34], that
BlnBz contains an opportunely defined block set F and that
h=|F|+k. |

The flowen [34] or otan at a point x of a Steiner system is
the set of all blocks containing x. The {ower intersectian
problem for Steiner systems 1is the determination for each
admissible v of the set JF(v) of all integers k such that there
exists a pair of Steiner systems (V,Bl) and (V,BZ) of order v

such that |B1nB2i-|F|+k, where F is the flower of a point x€V. The

following results are proved:
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(1) Case t=2 (v=1,3 (mod 6)). Let IF(V)-{O,l,...,f;-E] U {fv-&,

£ - _(v-1)(v-3)
v 6

}. Then J° (3)=I (3)=(0}, JF{?)-IF(?)-{G,al,

JF(Q}-IF(Q)-ll,h}, and.JF(v)-IF(v) for every vzl3 [34].

(2) Case t=3 (v=2,4 (mod 6)). Let IF(V)-{O,I,...,fv-lﬁ]u{fv~12,

(v-1)(v-2)(v-4)
24

£-8, £~ } Then J"(4)=(0), J'(8)=(7),
JF(10)=(0,18), I7(16)-(16)cI (16) (16€l (16) is an open problem),
and JT(v) = I(v) for every vm4,8 (mod 12), v=20 [66,73].

We remark that the solution of the flower intersection problem
gives a solution of the block intersection problem for other
incidence structures. For example let (V,B) be a triple system and
write B=FUuA where F is the flower at the point x&eV. Let X-V-(x}
and G-({a,b | (a,b,x}eF). Then (X,G,A) is a group dinviaible design
(GDD) with group size 2 and block size 3, and (X,B-F) is a maximum
partial system (MPT) of order v=0,2 (mod 6).

In these terms the flower intersection problem becomes the
intersection problem for GDDs with group size 2 and block size 3.
Moreover we can see the same flower intersection problem as the
intersection problem for MPTs of order v=0,2 (mod 6).

These problems are completely solved in (2] and [74]

respectively. Also the flower intersection problem for MPTs of order

v=5 (mod 6) is solved in [74].

Lo Faro and Marino [54A,56] determine those pairs (k,v) v=4 or

8 (mod 12) (with some possible exception for v=20,28) for which
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there exists a pair of Steiner quadruple systems on the same v-
set, the quadruples in one system containing two particular dis-
tinct points are the same as those in the other system containing
that pair of points, and the two systems have otherwise exactly k

triples in common.

A slightly different intersection problem was posed by Micale
[58]: Determine the set Ju(v) of all integers k such that there
exists a pair of S5(3,4,v)s having exactly k pairwise disjoint
blocks in common.

Let Io(v)— { 0,1,..., [ -:— j} [l %‘ } denotes the maximum

integer =< % ], v=2 4 (mod 6). It is known [35] that JD(IO)-{D}.
In [58] it is proved that Jn(v) - —Io(v) for every v=m+2" with n>2
and m=4,5,7; J_(4)=1, J_(8)=(0,2) and {0,1,2)cJ (14)<(0,1,2,3).

In [75] it is proved that Jn(v)-lo(v) for every v=4,8 (mod

12}, wv=l6.
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