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A proof of existence of general equilibrium in the Von Neumann model of an
erpanding economy is given based on elementary results of Linear Programming.
General equilibrium is computable by solving a sequence of Linear Programs.

1. Introduction

Over the years, existence of the equilibrium in the Von Neumann model has
been proved with recourse to analytical tools differing widely in nature as well
as in complexity. The original Von Neumann proof made extensive use of game
theory. Other proofs rely on fixed point theorems such as Brouwer or Kakutani
(for a review, see Burmeister Dobell 1970, p. 207).

In 1960, Charles W. Howe exhibited a proof that did not require game
theory or fixed point theorems but used a result on linear inequalities due to
AW, Tucker. Unfortunately though, this result requires independent deriva-
tion. To the non-initiated, this derivation can appear lengthy. Murata for
instance, derives Tucker’ theorem from Farka’s Lemma through a sequence of
about 10 intermediate theorems (Murata, 1977, pp. 283-288).

Unaware, to my knowledge, of more elementary proofs, I wondered if all
this mathematical machinery is really necessary. Here I provide a proof based
solely on Linear Programming (henceforth LP). Namely, I employ the only two



notions that 1. if a primal-dual pair of LP problems have feasible solutions,
they have optimal solutions with a common value, and 2. these satisfy the
so-called complementarity slackness conditions: positive primal variables are
associated to active dual constraints and loose primal constraints are associated
to zero dual variables. The rest of the proof is elementary algebra. ‘

Besides greater simplicity, the advantage is to characterise solutions
through a constructive procedure. This feature is not usually obtained using
fixed point theorems or linear inequality results.

2. Model Description

Von Neumann economy comprises m goods and n processes. Process j is
characterised by an activity level y;. When it is operated at unit level (y; =
1) its input demands and output supplies are described by two non-negative

[ alj ] [ g ]
Ay by

Thus technology is completely specified by an input matrix A4 and an output

vectors [

matrix B, both non-negative with m rows (goods) and n columns (processes).

Each good must be demanded by at least one process so there is at least
one positive entfy in each row of A. Each process must supply at least one good,
so there is at least one positive entry in each column of B. We refer to these
two assumptions as KMT (from Kemeny Morgenstern Thompson (1956) whe
formulated them in order to relax those orig‘inally made by Von Neumann}.

Labour is treated as one amongst the m goods. It is supplied to other
processes by a ”"domestic” sector that produces it using other goods (like food,
housing, good TV, ete). So consumption is one of the rows of A and there is no
exogenous demand. Labor being paid in hatu‘re-goods, there is no wage rate
and net income is made up by profits only. These are entirely re-invested in the
form of input purchases for next period. Under these conditions an equilibrium
is sought so as to satsfy
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. Output at some period By must cover input of next period AY where
Y =(1+g)y, and g is a (balanced) growth rate. Letting a=1+g¢

aAy < By. (1}

. Revenues p' B cannot exceed production costs P’ A plus competitive profits
rp' A where r is a (uniform) interest rate. Letting § =1+ r

Bo'A > p'B. (2)

. Goods in excess of next period demand (components of (1) with strict

inequality) are worthless
p'(B—aA)yzo. (3)

. Processes'generating less than corhpetitive profits (components of (2) with
strict inequality) remain idle

P(B - pBA)y =0. (4)

. Something of value is produced in the economy g’ By > 0.

15



3. Yon Neumann Theorem

Theorem. (Von Neumann, 1987)

A solution y > 0 p > O satisfying (1-5) exists if and only if a = 3 = v where

~4 = max{ea: By - Ay >0, y>0}
7=min{f:p'B-Fp'A<0, p>0}

Proof. Necessity. Assume that y,p > 0 satisfying 1-5 exist. From (3) and (4)
it follows p' By = ap’' Ay and p' By = gp' Ay. Since p' By > 0, if a solution exists
the r.h.s. are positive and p’ Ay > 0. Hence a = 3.

Furthermore, from (1) and (2)

PBy2apAy and - p'By> —fp'Ay.

Adding each side and recalling that p'Ay > 0 it follows a < S. Thus there
exists only one common value to o and , call it . This necessarily satisfies

max{a: By —ady >0, y>0}=~y=min{:pPB—-FpA<0, p2>0}

Sufficiency. Define v = max{6 : By — §Ay > 0, y > 0}, The maximum
certainly exists, since the set of y > 0 satisfying (1) is either empty or closed
and bounded. Furthermore, 4 > 0 due to the non-negativity of 4, B,y. Now
we have to show that there exist a y > 0 and a p > 0 satisfying 1-5, for some
a, 3. Choose oo = § = ~. Letting

C=B-~44

and introducing scalars Y7,Y, > 0 and P,, P, > 0, consider the LP problem

min  [0'[1] — 1] [13;]
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C 1 -1i[y 0
[1' 0 OHK]Z[I]. ©
- 0 olly -1

Its dual is
p
max [0'|1] - 1]| P,
P,
cC 1 -1
[#|P|P][ 1 O OJ < [o'j1] - 1]. (7)
-¥Y 0 O

Rewriting (6,7) as
min ¥,-Y: Cy+("i-Y:})1>20, ly=1

max P]__Pg: p’C-I—(PI—Pg)].'SO, p,1=1

it is clear that, for any pair y,p > 0 with components adding to one, it is
always possible to choose Y, — Y, and P, — P, large enough so as to satisfy the
constraints., Since there exist feasible solutions there exist optimal solutions,
which necessarily satisfy

Y]’-.Yg =P1-P3.

We show now that ¥, — Y, = P, — P, = 0. From the dual constraints we
have P, — P, < 0. But, if it were P, — P, < O then ¥; — ¥; < 0 and from
Cy+ (Y, — Y2}1 > 0 it would follow

Cy=[B—~4jy>0

against the assumption that v is the largest value of o for which {1) has a
solution y > 0. Thus P, — P, = 0 = Y; — Y, and this shows that there exist
two non-zero vectors y > 0 and p > 0 satisfying (1) e (2). Conditions 3 and 4,
for « = 8 = ~y are the complementarity slackness conditions of LP and these
are obviously satisfied given the optimality of the pair y, p.

17



We finally prove that 5 holds. Observe first that
p'By > p'By

where p and § are vectors obtained from p and y by deleting exactly those
zero-components that are associated to'active constraints in the respective
duals (if there are any) and B is the matrix obtained from B by deleting
the corresponding rows and columns. Therefore, it is enough to prove 5 under
the assumption

p+Cy>0 y-—-C'p>0. (8)
Rearranging components if necessary, the optimal solutions can be partitioned
as ‘ :

y={nln} r={nin}
where the first components of ea.ch veyctor are gositive and the remaining com-

ponents (if there are any) are zero. Partitioning conformally A and B, we get
from (3,4) (with a =3 =) '

P'l (311 - ’TAu)yl =0.

Now, if p’ By = 0, then B,, = 0 (being positive p,,y,) and thus also 4;, =0,
and thus also
By, —v4,, =0.

From (8), if there are components p, = 0, then the constraints associated to
p; in the dual of g’ (B — 4A) < 0 must be loose, that is

(Biz —vAi2)w > 0.

But then it is false that ~ is the greatest value of a for which (1) has a solution
y > 0. Therefore p’ By > 0.

If instead there are no components p, = 0, then there must be components
y; = 0 and the proof is the same, with the roles of y and p interchanged. Q.E.D.
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4. Remarks

The proof offered is constructive. Suppose one has an LP algorithm able to
compute the optimum value v = ¥, — ¥; (as well as the solution y) of problem
(6). Regard this algorithm as a function

fiy—v.
The problem is simply to find the zero of this function. Call y, the solution of
(6) at 4 = 0. Due to the feasibility of (1) at ¥ = 0, we have »(0) < 0.

Let now 4* > 0 be a value of ~y for which B—~4 < 0 (such a value certainly
exists due to KMT assumption). Due to infeasibility of (1) at ¥ = +*, we have
v(y*) > 0. Since f is a contiuous function, it must have a zero in i0,"]. But
this zero is unique since it is the optimal value of a primal-dual LP pair. So
the problem is solvable by a simple line-search.
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1. Introduection

Over the years, existence of the equilibrium in the Von Neumann model has
been proved with recourse to analytical tools differing widely in nature as well
as in complexity. The original Von Neumann proof made extensive use of game
theory. Other proofs rely on fixed point theorems such as Brouwer or Kakutani
(for a review, see Burmeister Dobell 1970, p. 207).

In 1960, Charles W. Howe exhibited a proof that did not require game
theory or fixed point thecrems but used a result on linear inequalities due to
A W. Tucker. Unfortunately though, this result requires independent deriva-
tion. To the non-initiated, this derivation can appear lengthy. Murata for
instance, derives Tucker’ theorem from Farka’s Lemma through a sequence of
about 10 intermediate theorems (Murata, 1977, pp. 283-288).

Unaware, to my knowledge, of more elementary proofs, I wondered if all
this mathematical machinery is really necessary. Here I provide a proof based
solely on Linear Programming (henceforth LP}. Namely, I employ the only two
notions that 1. if a primaldual pair of LP problems have feasible solutions,
they have optimal solutions with a common value, and 2. these satisfy the
so-called complementarity slackness conditions: positive primal variables are
associated to active dual constraints and loose primal constraints are associated
to zero dual variables. The rest of the proof is elementary algebra.

Besides greater simplicity, the advantage is to characterise solutions
through a constructive procedure. This feature is not usually cbtained using
fixed point theorems or linear inequality results.
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2. Model Deacription

Von Neumann economy comprises m goods and n processes. Process j is
characterised by an activity level y;. When it is operated at unit level (y; =

1) its input demands and ocutput supplies are described by two non-negative

vectors
[ i ] [ blj ]
Gmj by

Thus technology is completely specified by an input matrix A and an output
matrix B, both non-negative with m rows (goods) and n columns (processes).
Each good must be demdnded by at least one process so there is at least
one positive entry in each row of A. Each process must supply at least one good,
8o there is at least one positive entry in each column of B. We refer to these
two assumptions as KMT (from Kemeny Morgenstern Thompson (1956) who
formulated them in order to relax those ariginally made by Von Neumann).
Labour is treated as one amongst the m goods. It is supplied to other
processes by a ”domestic” sector that produces it using other goods (like food,
housing, good TV, etc). So consumption is one of the rows of A and there is no
exogenous demand, Labor ‘being paid in na.ture-good;, there is no wage rate
and net income is made up by profits only. These are entirely re-invested in the
form of input purchases for next period. Under these conditions an equilibrium
is sought so as to satsfy
1. Output at some period By must cover input of next period AY where
Y = (1+ g)y, and g is a {balanced) growth rate. Letting a =1+ g

xAy < By. (1)

2. Revenues p'B cannot exceed production costs p' A plus competitive profits
rp’' A where r is a (uniform) interest rate. Letting f=1+r

BrA>pB. 2)

23



3. Goods in excess of next period demand (components of (1) with strict
inequality) are worthless

P (B~ ad)y=0. (3)

4. Procesees generating less than competitive profits {components of (2) with
strict inequality) remain idle

. ¢(B-BAy=0 {4)
5. Something of value is produced in the economy p’By > 0.
3. Yon Neumann Theorem
Theorem. (Von Neumann, 1987}
A solution y > 0 p > 0 satisfying (1-5) ezists if and only if a = § = 7 where
~ = max{c: By ~ ady 20, y20}

y=min{f:p'B—- pp'A <0, p20}

Proof. Necessity. Assume that y,p > 0 satisfying 1-5 exist. From (3) and (4)
it foliows p’By == ap' Ay and p' By = 8p' Ay. Since p'By > 0, if a solution exists
the r.h.s. are positive and p’Ay > 0. Hence a = 8.
Furthermore, from (1) and (2)
p'By > ap’Ay and —p'By 2> —pp'Ay.

Adding each side and recalling that p’Ay > 0 it follows a < B. Thus there

exists only one common value to a and 8, call it 4. This necessarily satisfies

max{a:By—ady>0, y>0}=vy=min{B:p'B-FA<0, p20}
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Sufficiency. Assume that § = a =y = max{a: By— ady >0, y2>0}.
The maximum certainly exists, since the set of y > 0 satisfying (1) is either
empty or closed and bounded. Now we have to show that there exist a y > 0
and a p > O satisfying 1-5. Letting

C=B-n4

and introducing scalars ¥7,¥; > 0 and Py, P; > 0, consider the LP problem

y
min  [0'|1] - 1] [Yl

Y;
c 1 -1 y 0
[1' 0 0][Yl]2[1]. (6)
-1 0 olly; -1
Its dual is
r
max [0']1-1]| P,
P,
c 1 -1
[p'|P1|P2][ 1 0 0 ] < [0 - 1]. (N
-1 0 0

Rewriting (6,7) as
min Y1-Y;: Cy+(1i-Ya)120, 1y=1

max P -P;: p’C+(P1—Pg)l' <0, p'1= 1

it is clear that, for any pair y,p > 0 with components adding to ome, it is
always possible to choose Y; — Y; and P; — P, large enough so as to satisfy the
constraints. Since there exist feasible solutions there exist optimal solutions,
which necessarily satisfy

Yi-Y; =P - P
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We show now that ¥; — Y2 = P, — P, = 0. From the dual constraints we
have P, — P;. < 0. But, if it Were Py — P, < 0 then Y, - Y2 <0 and from
Cy + (Y1 — Y2)1 > 0 it would follow - '

Cy=[B-~Aly>0

against the assumption that « is the largest value of o for which {1) has a
solution y > 0. Thus Py — P, = 0 = Y; — ¥; and this shows that there exist
two non-zero vectors y > 0 and p > O satisfying (1) e (2). Conditions 3 and 4,
for & = 8 = « are the complementarity slackness conditions of LP and these
are obviously satisfied given the optimality of the pair y,p.

We finally prove that 5 holds. Observe first that

o'By > ¢ By

where p and § are vectors obtained from p and y by deleting exactly those
sero-components that are associated to active constraints in the respective
duals (if there are any) and B is the matrix obtained from B by deleting
the corresponding rows and columns. Therefore, it is enough to prove 5 under
the assumption “

p+Cy>0 y—C'p>0. (8)

Rearranging components if necessary, the optimal solutions can be partitioned
as

y={nlvs}' p={pilpa}
where the first components of each vector are positive and the remaining com-
ponents (if there are any) are sero, Partitioning conformally A and B, we get
from (3,4) (with a = 8 =1)

- pi(Bu —vAn)yn = 0.

Now, if p'By = 0, then B;; = 0 (being positive py, y1) and thus also A1 =0,
and thus also
Bj; — A1 =0.
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From (8), if there are components P2 = 0, then the constraints associated to
pz in the dual of (B — v4) < 0 must be loose, that is

(Biz — yA12)y: > 0.

But then it is false that + is the greatest value of a for which (1) has a solution
¥ 2 0. Therefore p'By > 0.

If instead there are no components py = 0, then there must be components
Y2 = O and the proof is the same, with the roles of y and p interchanged. Q.E.D.

4. Remarks

The proof offered is constructive. Suppose one has an LP computer code able
to produce either an optimal solution or an infeasibility message. Consider
now the primal LP problem formulated in the proof of the theorem. Starting
at a = 0 {where a solution certainly exists) choose a non-converging increasing
sequence {ax, k=1,2,...} and use at each k the LP code. Supposeatk =m
an infeasibility message is received for the first time {clearly, m < co). Then
choose a sequence {@x, h=1,2,...} converging to &, with @; = a,,_; and
use again the code at each k. It is obvious that, proceeding in this manner,
can be approximated to any desired accuracy - and likewise the solution.

A final comment to the KMT assumption. I retained it as a homage to
the tradition but it seems that all is needed in the proof is non-negativty and
non-nullity of A and B,
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