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ON STATIONARY MODES OF
NONLINEAR DIELECTRIC SLAB
STRUCTURES: A NEW
MATHEMATICAL APPROACH

R. Lupini, M.G. Messia (*)

The amplitude E(x) of stationary T.E. modes propagating in nonlinear
dielectric slab structures obey the following nonlinear ordinary differential
equation [1, 2, 3, 4]:

E"+(-B+e(x,E))E=0 (1)

where x ranges in (—e<,+o<), the prime denotes differentiation with respect to x,
B is the wave number in a direction orthogonal to x, &(x,E) is the nonlinear
permittivity, depending both on x and E. In (1) the lenghts have been non
dimensionalized with respect to the free space wavelength.

Solutions to eq. (1) representing guided waves must also satisfy the
asymptotic conditions at infinity

s Bel e)

For a single slab extending in the x-range (-a,a), the form typically taken by
e(x,BE)is [1].

(*) Dipartimento di Matematica, "Vito Volterra",
Facolta di Ingegneria - Universita di Ancona
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e(x,By=¢"2 +g,,(ED

where the indices 1,2 refer to the ranges |x | >aand | x|<a, respectively, and
€ are constants; g  ( |E | ) are non decreasing (non increasing) functions of
|E |, such that g (O) 0, representing the effect of focussing (defocussing)
nonlinear polarlzatlon of the media. At the interfaces between the media i and
2, that is at x=ta, E and E' must be continuous.

The linear case, as obtained by setting g_=0 in eq. (1), reduces to a linear
eigenvalue problem that admits solutions only for discrete values of 3, when
y=b*-¢'>0 and y= =p*-° <0. On the contrary, the nonlinear problem exhibits a
totally different class of solutions, for any B, which we shall study in the
extreme case when the corresponding linear problem has no solution, that is
when y >y >0; we shall also assume that 0<g <g,thatg 1ismonotone increasing
(focussing nonlinearity), and Y<sup g .

Qualitative properties of the solutions will be pointed out making use of
phase plane analysis of the structure of the orbits of the dynamical system
associated with (1), a technique which has been already applied to nonlinear
eigenvalue problems in bounded domains arising in population dynamics and
reaction diffusion equations [5], [6].

QUALITATIVE PROPERTIES OF THE SOLUTIONS

Let us consider the two plane dynamical systems

{u'z v
v'=(y, - g (u)u (12)

and

{u =v
V=1, uu v

where u represents E. It is clear that any solution of (1) is composed of two
pieces of orbits of (1a) issuing and entering (0,0) matched at x=*a by a piece
of orbit of (1b) in a "time" interval 2a.

We remark that by reflection symmetry of the slab structure around x=0, if
u(x) is a solution, then u(-x) and -u(-x) are solutions, therefore when in the
following we shall speak of uniqueness, it will be meant uniqueness apart from
the change of sign of u of x or of both.

Assuming that g are Lipschitz continuous, the qualitative structure of the
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orbits of system (1a) is represented in figure (1).

0

Fig. 1

Note the homoclinic loop A whose branches issuing and entering (0,0)
provide the pieces of solutions of eq. (1) for | x | >a that satisfy the asymptotic
conditions at infinity.

On the other hand, the qualitative structure of the orbits of system (1b) is
represented in figure (2), where also the homoclinic loop A, is reported. The
conditions y>y>0 and 0<g <g, garantee that the second homoclinic loop A is
inside the first one A . It is clear from the above figure that the solutions of
problem (1) (2) can be made to correspond in a one to one manner to the pieces
of periodic orbits of (1b) connecting A with itself in a 'time' interval 2a. This
can only be achieved by means of periodic orbits of (1b) outside the homoclinic
loop A, and crossing the u axis in the range (u ,u ), where (u ,0) and (u,0) are
the intersections of A and A respectively with the u axis.

Fig. 2
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We shall show that any periodic orbit, say P., through (U,0), with u;r.ﬁ«’.u1
intersects A, at a single point in the quadrant u>0, v>0. In fact we note first that
the smooth functions

Vv, (u)= j:' u(g,, —¥,,)du, by the conditionsony and g

stated above, take the form qualitatively reproduced in fig. (3). In particular
V>V except at 0=(0,0).

\ /

Fig. 3
The homoclinic loop A satisfies the equation

z

"? +V,(w)=0
while any periodic orbit P_, outside A, satisfies "7 +V,(u) =V, () >0 , with

u> u,. The intersections of P. with A are then given by
V,(u) - V,(u) = V,(v) 3)

Now,as V (u)-V (u),and V { 1) are monotone increasing for positive values
of their arguments, it follows that for any Ue (u,u) equation (3) has one
positive solution, say h(0). Moreoveritis easy tosee that h(G) <u,limh(u)=0,

u—uy

limh(u)=u,andh'(u)>0,

-3y
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Let us A} the piece of A belonging to the quadrant of the (u,v)-plane

1
corresponding to the set of signs i,j€ {+,-}; moreover let us denote by T(U1) the

period of P. and let

T(E) = -[:(E)
solutions of problem (1) (2), into three classes
S®: P_ connects A%* to AT ; thatis

— etk - =
o (u)=5T(U)+T(u)=a k=0,1,2...

du
\/2 V,(u)-V (u)) be the time needed to connect A'* totheu

2
axis along P-, being u, < U <u,. We can classify the types of matchings and of

C))

The corresponding solutions of problem (1) (2) will then be given by the
piecewise smooth curve OPUP® UP PP'UP0 where P{ denotes the k-fold

iterate of the periodic orbit P. (See Fig. 4 in the case k=0)

Mode S® is symmetric and has 2k zeros in (-a,a)

Fig. 4

A®: P. connects A" to A}'; that is
®)

oc(u) ((2k+1)/4)T(u)+T(u) a,

k=0,1,2...

(Figure 5 in the case k=0). Mode A is antisymmetric and has 2k+1 zeros

in (-a,a).
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W P; connects A} to AT thatis

Fig. 5

W (@)= (2k+1)/4)T(@=a, k=0,12.. ©)

Mode W* is neither symmetric nor antisymmetric (Figure 6 in the case

k=0).
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In order to discuss the existence and uniqueness of the above solutions, we
note that T(7) is monotone increasing in the range {u,u ), and lim 7(8) = +eo,
T—bug
limt(0) = 0. As a consequences mede S always exists and is unique.

T

On the other hand

7 du
T{a)=4 .
(I)y=4], \/Z(Vz @-V,) i monotone

increasing in (uu ), and lim T(@) = feo,
u—buy

54



Num. 3 - Agosto 1992 Ratio Math. R. Lupini e M.G. Messia

Lm T(T)der T, =4[ du
ow V2(V, @ - V,(w)

The qualitative graphs of the functions o, ¢, and w_are reported in figure

0

Fig. 7

If we denote by G, , &, and W, the u values solving equation (4) (5) and (6)

respectively, it is clear that
0,<W,<0,<...0,, <W,_, <0, <0, <W, <0 <...

whenever such solutions exist. Moreover, if one of the above solutions exists
then also the previous ones in the above list exist. In particular, for ((Zk+1)/
4)T <a<((k+1)/a)T all the modes less then S**” exist, while if (K/2)T <a<((2k-
1)/4)T , all the modes less then W* exist. Therefore W* and A® are generated
by increase of a through (k/2)T , while S* is generated by increase of a through
k/2)T.

CONCLUSIONS

The qualitative effects of the non-linear polarization of the media on the
propagation of TE modes in dielectric slab structures has been pointed out by
use of phase-plane analysis of the associated second order, ordinary differential
equation. In particular symmetric structures that do not allow for the existence
of linear bounded modes have been shown to admit a class of non-linear modes
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of three types: symmetric, antisymmetric and neither symmetric nor
antisymmetric. The analyses based on the direct numerical integration of the
equation pubblished so far [9] [10] do not seem to have pointed out this and
other important pieces of information which, on the otherhand, can be obtained
in an almost elementary way by use of the analysis presented in this paper.
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