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1. INTRODUCTION

The aim of this work is to solve the inverse problem of electrocardiology
in terms of sources in a model of cardiac muscle ie o identify
intracardiac sources from surface conductor potentials.

The solution of this problem is direcdy related to the localization
of the foci of ectopic ventricular beats during surgery.

The oblique dipole layer model of the depolarization wavefront is
assumed to describe correctly the potential field at a distance from
cardiac sources [1].

A few instants after ectopic cardiac excitation the wavefront is
limited 1o a small region surrcunding the ectopic focus. In this case the
potential  field at & small distance from the wavefront can  be
approximated by a linear quadrupole centered at the ectopic focus.
Without loss of generality we studied the identification of one dipolar
source from potential data given on the cardiac muscle surface, because
multipolar sources may be represented by superposition of single dipoles.

In our model we take into account the influence of cardiac muscle
anisotropy due to fiber rotation on generated potential distributions.

The proposed method is being applied to the localization of ectopic

intracardiac foci in animal experiments in view of future clinical use.
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2. THE MATHEMATICAL FORMULATION OF THE INVERSE PROBLEM

Let £ be an insulated conductor volume consisting of the regions Q2
homogenecus,representing  blood and Ql, anisotropic, representing a portion
of the myocardium as a set of superimposed layers of parallel fibers with

fiber direction rotating from endocardium to epicardium.,(fig.1).
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In order to evaluate a dipolar source g from the knowledge of the
potential distribution u on the cardiac surface X (fig.1), we must solve

the following inverse problem :

V- (TVu) = g in

v =z on E=Elu2',2
H {1 (TVu)-n=0 on "

u = u, on 2‘.2

(T]Vu 1)-1} = (T2Vu2)4q on Zz

-V-TV is unbounded, implying that the solution g does not

depend continuously on the data z
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The problem is ill-posed

We may formulate the problem (1} in the following way:

47 =z
(2)
z = u(g)lE

where & is called transfer operator, which turns out to be

linear, continuous, injective, with unbounded inverse.

Thanks to the properties of the transfer operator, it is possible to
utilize the Tikhonov's regularization method (Tikhonov et al. 1976) 1o
stabilize the problem, so that we can approximate the solution of the
problem (2) with the solution of the following stable problem:

inf { dg-zi + A g;}
gEU

where X is called regularization parameter, geU, zeF, U and F are normed

spaces. V A>0, we call g regularized solution of the problem. So that we

find a class of regularized solutions

{ g : A>0 }
3. DISCRETIZATION AND REGULARIZATION OF THE PROBLEM

In order to find the solution, we assign some dipoles in Ql. Each dipole
is obtained as a linecar combination of three unitary dipoles, oriented
along the direction of the orthogonal axes, so we search for a linear
combination of them. Let n=3p the number of the unitary dipoles. In the
applications z is measured on a finite set of locations PK, (k=1,...5) on
the surface Z. For the potential superposition principle, the following

equations hold:

z O.:_Ui(Pk) = ZS(Pk) k=1....8

i=1
where Ui(Pk) is the potential generated by the i-th unitary dipole in
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P . We know this value by solving the forward problem
for every unitary dipole;

za(Pk) is the observed potential in Pk affected by error
related to measurements

a is the unknown i-th unitary dipole moment.

In matrix form we have:
(3) Ao = zg

where Ah:[ Ui(Pk) ]':::,: is the computed transfer matrix  with

error h: A -A|=h<ee
zg is an experimental determination of the exact potential z
such that:

|2-25|<8.

Since the problem (2) is ill-posed, the problem 4 is
ill-conditioned (C(Ah)»l). We  stabilize i by means of Tikhonov's
regularization method, so we look for the solution of the following

stable problem:

. 1
i {flaeg Tedoa

4. CRITERIA FOR THE SELECTION OF THE REGULARIZATION PARAMETER

In order to estimate the best value of A we need some information on the
solution.

Gabor and Nelson [3] gave some results on the estimation of the
"heart wvector” based on the integration of the potential over the bounding
surface I" of the isotropic and homogeneous conductor volume £. We have
extended these results to the case of inhomogeneous anisotropic media. Let
i be the vector of current density and s = V- the source strength, whose
sum over the whole body is nil; then the resultant wvector dipole moment of

such a source system is defined as
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M= JQrs dv

where r is the radius vector from an arbitrary origin and dv is the volume

element. By Ohm’s law, i = -A grad u, and from Green’s lemma we obtain
M = J.I_Fl(g,ﬁ)udl" M = L_Fy(c_s,ﬁ)udr M = J;_F (G)udl

where F_(0,9), Fy(g,ﬁ) and F {g) are related to the Q anisotropy.

Then we have information on the moment of the heart vector which is
equal to llgll2 or in discrete terms equal to IIgllz.

If U is a realization of the potential u on the surface I, it is
possible to give an estimate of Ja|® by means of ET = M: + Mj + Mi.

In order to select the regularization parameter A (Morozov 1968) we
use a criterion for the following auxiliary function r

1) = oy |

YA)

fig. 2

and consider the equation

) = ¢
If ¢ is a value assumed by the function ¥, the solution lc of the
equation is unique. This methed is equivalent to minimize luﬂ\hgt-zali2 on

the compact |o|=c.

5. MATHEMATICAL FORMULATION OF THE FORWARD PROBLEM

The forward problem consists in determining the potential u(x) in £ given

the dipolar scurce. Every dipole is simulated by twe opposite electric
charges placed at a small distance and the potential must satisfy the
following conditions: continuity of the potentiai and flux across internal
boundaries, zero flux on the boundary T.

The problem is described by the solution of the following Neumann
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problem for the Poisson’s equation (G. Di Cola et al 1990) and can be
formulated weakly as follows:
find ueV so that

afu,v) = <gv> VveV

where:
a(u,v) = J (Vv) TVu dQ <gv> = J gv dQ
Q Q
H' (vl (@)
u=u_in Qk k=12
q, electric charges
xi’, x? charge positions
£ =£‘,lqi [S(x’i)-ﬁ(x’i’)] dipolar source with JQ g dQ=0
S = diag(ol,o[.c [) 0'1,0[ are the conductivity coefficients
along a direction respectively parallel
and perpendicular to the fiber
cos(®) -sen(®) O
R = | sen(d) cos(®) 0 fiber rotation matrix
0 0 1
T, = RSR" symmetric  positive  definite  matrix  related
to the conductivity tensor in Q1
c conductivity in Qz
'1"2 = ol conductivity matrix of region 02
T= Tk in Qk k=1,2 conductivity tensor.

Thanks to the Fredholm alternative theorem, the solution u(x) of the
problem (1) exists and it is unique if:

{ u(x) dQ = 0;

Q
the solution u(x)e H(2) with Hl(Q)cH(Q)cLZ(Q) and depends continuously on

g
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6. NUMERICAL SOLUTION OF THE FORWARD PROBLEM:
THE FINITE ELEMENT METHCD

- Q=UK-= KluKzu...ulg‘
KET,

- K parallelepipeds of T,
: Q(k):{v|v ilinear on K}
f— 0 .
- Vh—{vheC (Q).vheQ(K),VKe Th}

M
- v, (x)= by Tli¢'j(x) nj(x)=vh(N,) xe QU

i=1
- Nj interior nodes of the grid

_s J 1 =y
- 0V, ¢1(Nj)_8ij_{0 iz N

The discrete problem consists in finding u € Vh such that:
a(uh,vh)z(f,vh) Y v € Vh

7. THE STUDY OF A SAMPLE PROBLEM

We made the following simulation: we divided the cubic region £ into the
equal regions Ql and Qz with anisotropy coefficients:
0=c‘=3cy=3cz and ﬁ(zz)=90

z z, corresponding to )32

We  fixed the  possible active

dipoles on three different planes

in a uniform way as shown in fig.3

and solved the forward problem for

every  unitary dipole  considered,

to construct the transfer matrix.




In order to test the method, we swudied a sample problem with data
obtained by numerical simulation of the potentials generated by a single
dipole. A noise of variance ‘I was added (o the surface data. Figures 4a
and 5a show some results obtained without regularizing the problem,
figures 4b and 5b show the correspondent regularized solutions when we
assume l:lc, which identify correctly the assigned dipole. The number of
the  observations is  determined by the realistically available  heart
surface measurements {(a few huondred).

We found the solution by means of a singular value decomposition of the

matrix Ah:UWVT (U and V orthogonal matrix, W=diag{01...o‘)) minimizing;

Flad=+ UWVTeUUTz 2 + 4 Via ?

. . T 1T 1 7 2 2
By introducing y=V o and b=U'zg: Flal)= - Wy -b +A y °,

C,

ci+sl

=l

hence: yi = and oy = Yy,

k
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