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1. INTRODUCTION.

For v 3 0 we denote with jvg and Cop the k-th positive zeros of the Bessel

functions J,(x) of the first kind and of the general cylinder function
Co(X:7) = Cylx) =: cosy 3,,(x) - siny Y,,(x) O¢ o<

where Y,(x) is the Bessel function of the second kind.

In [2] A. Elbert and A. Laforgia introduced the notation J,,,. - Cyy Where

K=k-7/m and k-1<x<k.Whenk=k we get the zeros of the function

Jy(x). This notation has been used to prove several monotonscity, concavity,

converify properties of J,,. as a function of v for « fixed [2,3,4,5,9]. In

particular we know that for v ) 0 Joe 18 concave for x30.344.. and j2
conver for K30.7070.. (5]
We observe that the study of the properties of jvx was originated by the

paper [19] of Putterman , Kac and Uhlenbeck. They have proposed a
quantum mechanical explanation for the origin of the vortex lines produced
in superfluid Helium when its container is rotated.

JT.Lewis and M.E. Muldoon [16] have proved some monotonicity results
using the Hellmann- Feynmann theorem of quantum chemistry [8,10,11]
that here we recall

v 15

Hellmann-Feynmanno Theorem. Let's be a pseudo inner product space
with a pseudo-inner product < ., ., > . Let [ H,} be a family of symmetric
operators on an inner product space and for ve(ab) let ¥, be an

eigenvector (eigenfunction) of H,, corresponding to an eigenvalue A, .

(*) Work sponsored by Ministero dell’ Universita e della Ricerca Scientifica
e Tecnologica of Italy.



Suppose that for pe(a,b)

<vu,zyv> q(\yu,qlu:::o
as y—v and that

: H
lim ety ¥, ¥,
=Y Rg-v
exists.
Moreover we define
H lim
¢ —2 gy ¥, = g B AR VIR
v T B- v Yo¥y
Then
p aH, N
a, povall 'S0
dv CWL WD

This version of the Theorem is taken from [11} . As a consequence of the
Hellmann- Feynmann Theorem, Lewis and Muldoon {16] have proved that

Jp1/v decreases with v > 0 and that j2,,/v increases with v, (3¢ v < o0) ,
More recently C. Giordano and L.G. Rodond proved that for v>0 and
k20.7070.. there exists a value D, such that the function jzv,c/ v decreases
on (0,v,) and increases on (). Further more they showed that j2, /v is
convex on (0,v,) [91. We also recall that MEH. Ismail and M.E. Muldoon
[12] proved the stronger monotonicity result that j2,,/(v+1)is an
increasing function of v on (-1, o0) .

Further properties for j,,. and ¢, can be established by the integrai
Watson formula [22, p. S08] '

® 25t
(1.1) dd‘f:“ - chkf Ko(2c,gsinht)e  di,  k-12.
[+]

where Ky(x) is the standard modified Bessel function.

In section 2 we recall some montonicity properties recently established
by Alaforgia, M.E.Muldoon and L.Lorch and in section 3 we examine their
application to the zeros of generalized Airy functions [6,15,17].

2. MONOTONICITY RESULTS.
In [17] L.Lorch has deduced the inequality
v dey,

C.Pk dv

<1, for c¢,2v>0,
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which implies that, for k=1,2,.., 0<p<oo

v .
—_— increases for c,p 2V .
Cok '
When ¢, >v+1/4, there follows the stronger result that [£4,17]
ool
2 increases for 0 ¢ v ¢ o0
Cox

More generally A Laforgia and M.E.Muldoon in [14] have showed the
inequality

o V' ok 0¢ v <o, k=23,.
and

(2.1) (v+ak)%‘3;_“ Cepg, Ocveoo, k=23, .

where the positive number a, is defined by

-1 -i] dc
a = Cot[ “}
v -0

dv
The previous results hold also in the case k=1, but 0¢ 7 ¢17/2.

lnequality {2.1) can be employed to yield the stronger monotonicity result
v+ ag

increases for v >0 when k=273,
Cyk

If 0¢ 7 <m/2 this monotonicity holds also for k=1.

Differentiating we get

cvk(v”lk)- T T N

Cok Cyk dv

The previous resuits can be employed Lo deduce other monotonicity results
as the following ones recently found by A.Laforgia, M.E. Muldoon and
LLorch [15,17].

We recall now some of them.

If v>0 the function

A4
c .
vk increases for c,p 27V + n
Vv 4
and
2y
c
(?”5) decreases for 0<v (¢, ¢ 2V
v

The proof is based on the properties [17] of the function
14
5, - 4 {in| Sk , v>0, B0
dv pv
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in the case p~1, p=2, respectively.

The monotonicity of §,, implies that if §, } 0, then lc,, /(2v)P” increases for
0<v< b, while 8, < 0 implies that this function of v decreases for all v> p,
provided of course that ¢, 3 v+17/4.

The hypothesis that ¢, > v+17/4 is satisfied when k-2,3,.. and for any Sy
for which 0¢ r ¢17/2; in particular for Cyr= jvr
In the case k-1, ¢, - J,,, there exists a value v = v, such that

2y
(2.2) (sz_l) increases, 0<v {7V,
Vv
and
2v
(2.3) (-1-23-1) decreases, V)V,
P

M.EMuldoon has calculated some valves of [f;,,/(2v)P"” near | from which
it derives that 1.003 <v < 1.006.

If the order v is kept constant , but k or 7 varies in ¢, () it could be
convenient to use the notation introduced by A Elbert and A.Laforgia in (2).
They show that j,,, increases with k>0, for fized v.

L.Lorch in {17] extends (2.2), (2.3) by implying the existence of unique
such that

H
27 K

where V), is an increasing lunction of k>0 .
The behaviour of [c,, /(2v)F" suggests to consider the character of
ey /(2V)FP /2 (15,171

First of ail A.Laforgia and M.E.Muldoon in [15] have obtained that for some
0<vy¢ 1/2 and some k- 1,2,.., under same hypothesis, the function

[ey/(2V)PV /v decreases as v increases for 0<v¢ v,

Recently L.Lorch has established in [17] that [c,,/ (2v)F’/v decreases for
0<v< oo jf V. The proof is divided into four parts . In each
subinterval A{v{ y he has proved thai the expression

v
_1_ _d_ in __c'“ . i
2 dv 2v P
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(2.4) (v_x) increases for 0<v { v, and decreases for v ) v



is negative , using previous results in [15, 17} .

3. APPLICATION TO THE ZEROS OF GENERALIZED AIRY FUNCTIONS.
The generalized Airy functions are the solutions on 0¢ x<oo of the equation

(3.1) y'+x*y =0

where a is a positive number. The Airy functions correspond to the case
a=1.

The case o =1 arises in a fundamental way in the asymptotic solution of
certain kinds of differential equations [ 18,20,21] . A function of this kind
also occurs in work concerned with weighted averages of a function at a
jump discontinuity [1].

Equation {3.1) is connected to the Bessel equation

2
2y, a2 08,
dtz dt
by means of the transformations
(3.2) y(x) = 2¥2 y(t) t= 2vxVen

where v = [ /{a+2).

So it is possible to use many known results about monotonicity with
respect to order of zeros of Bessel functions. We denote a,,, the k-th
positive zero of a solution of (3.1).

Because of (3.2), it is clear that

2v a+ 2
Using the connection (3.3) between zeros of cylinder functions and
generalized Airy functions, it is possible to obtain results for a,, . As

Corollary to Theorem 2.1 in [14] there follows that for each k=2.3,.. a,,
decreases to 1 as aincreases, 0< a<oo, If y(0) =0 this decrease holds also

for a,; .
Muldoon's bounds for v, permit to assert (2.2) and (2.3) with

1.003<v<1.006 .

2
(3.3) Bog = (ﬁ) where 0 ¢7p -1

Consequently

8,4 increases -1.00596 < -2+ 1/ v, { <00
{(3.4)

a, decreases -2<¢ o ( -2+ 1/ vy < -1.00299
Taking into account (2.4), the result (3.4) can be extended to

I increases -2+ 1/ P, ¢ a<o0
(3.5)

Bocy decreases o < -2+ 1/ v,
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This implies that

(e +2) a,;  increases, -1.0029 < a<oo
and more generally

(o +2) 8,, increases, -2+ 1/ v, < oo
for k=12,..
In [6] A. Etbert and A. Laforgia continued the investigation about the
behaviour of Ry and they proved the [ollowing result
Theorem. For each fized k = 2,3,.. , let a,,, be the k-th positive zero of
(3.1). Then for o} 0, the function log a,, is convex .
The first important consequence of this theorem is the convexity of By +
sifice a positive log-convex function is also convex.
The proof is based on some known properties of ¢y, and the Watson's
formuia (1.1).
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