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1. INTRODUCTION

Suppose that Caesar wants to send a message M ("Ti amo”) to Cleopatra.
Itis important that Cleopatra reccives the message without any alteration. On
the other hand, a bad guy X looks for his chance 10 alter M in his [avour. In
order to make the bad guy’s life difficult, Caesar authenticates the message
M.

For this, Caesar and Cleopatra have to agree on an authentication function
f and a secret key K. The function [ has M and K as its input, and the
authenticator (also called message authentication code) {{M,K) as its output.

Now the procedure is as follows. Caesar sends the message M along with
the authenticator A = [(M,K), Cleopatra reccives a message, say M’ and an
"authenticator” A’. She computes A = [(M"K).Onlyif A" = A’ she accepts
the received message as it stands.

What can abad guy do? He wants to delete M and toinsert another message
M ("Ti odio”). Since he does not know the secret key K, he has no method to
forge M, he can only try. But the bad guy’s chances of success are not as bad
as it may seem. Gilbert, MacWilliams and Sloane [91 have proved the following

Theorem. Suppose that any authenticator has just one message. Assume
Jurthermore that ail messages and ait keys occur with the same probability.
Denote by k the total nunber of keys. Then, in an Y authentication system, the bad
guy's chance of success is at least 1/Vk.
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An authentication system in which the bad guy’s chance is exactly 1/Vk is
called perfect. In other words, in a perfect system the chance of success for a
bad guy is as small as one can hope for. Gilbert, MacWilliams and Sloane [9]
have constructed perfect authentication systems using projective planes (cf.
sect. 2). These examples lack on the fact that there are very few messages
(compared with the number of keys).

Apart from the above example, there are many other serious instances (in
particular in the banking arca), where authentication (and data integrity) is a
necessity. So it is very important to have many good authentication systems
available which enable the user to authenticate many messages. (See for
instance [4] and [5].) The aim of this paper is to construct authentication
systems, in particular those with ‘many’ messages. Some of our schemes are
not perfect in a strong sense, but essentially perfect. By this we mean that the
bad guy’s chance of success is only O(1/¥k). Qur constructions are based on
geometric structures, in particular finite projective spaces. Definitions and
results can be found in [6] and [10].

In an other context, similar constructions can be found in [1]. Some of the
results of this paper have shortly been described in (3].

2. Perfect systems allow only few messages

Throughout this paper we shall suppose that any authenticator belongs to
only one message. Such systems are also called cartesian.

The aim of this section is to show that the example given in {8] is best
possible in the sense that it has as many messages as possible.

The example (which we shall call fundamental example) is constructed as
follows. Let P be a projective plane of order q. Fix a line | of P. Define the
authentication system A as follows:

The messages of A are the q+1 points on |,
the keys of A are the g points of P outside I,

the authenticator belonging to message M and key K is the line of P
through M and K.

It is easily shown («cf. also sect. 3) that A is a perfect system.

Consider now an arbitrary perfect authentication system A. Then the
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number k of keys of A is a square number, say k = k% for a natural number
k;, We recall the following result (see [9], p.412).

2.1 Lemma. Assume that A is a perfect authentication scheme with exactly
k=ki keys. Then

(i) Every authenticator belongs to exactly ki keys.
(ii) Every message is on exactly k1 authenticators.

(iiit) Any two authenticators which belong to distinct messages have
exdactly one key in common.

Now we are able to prove the following

2.2 Theorem. Let A be a perfect authentication systeit with k = k% keys.

Denote the number of messages by m and the mimber of authenticators by a.
Then m < ky+1 with equality if and only if A is the fundamental example.

Proof. We define the incidence structure S in the following way.

The points of 8 are the messages and the keys of A,
the lines of S are the authenticators of A and a "special line" 1.

The incidence rules are as follows. Any message is on the line 1, A
message M is on the authenticator A if there is a key K such that A is
the authenticator of M under the key K. Similarly, a key K is on the
authenticator A if there is a message M such that A authenticates M
under the key K.

Then any two lines intersect in exactly one common point. [By our general
hypothesis, any authenticator meets | uniquely. If two authenticators belong to
different messages, then, by 2.1(iii), they have exactly one key in common, If
they belong to the same message (but different keys), then they intersect in a
unique message.] In other words, S is the dual of a "linear space”. By a
fundamental theorem due to de Bruijn and Erdés [7], the number b of lines of
S is at least as big as the number v of points; equality holds if and only if S is a
projective plane.

In our situation, this reads a+1 = b v = k+m. Since a = k;*m and

k=142 it follows ky.m + 1 =<x? + m, hence

ki —1)ym= k% -1
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Therefore m < k; + 1 with equality if and only if S is a projective plane.

Remark. Recently, in [12] perfect autentication schemes have been classified
from a combinatorial point of view.

3. Geometric authentication systems

Definition. Let P = PG(d,q) be the finite projective space of dimension d and
order q. Denote by M and K sets of (certain) s- and t-dimensional subspaces,
respectively, with the property that any element of K is skew to any element of
M.

We define the geometric authentication system A = A(K,M) as
follows:

The keys of A arc the elements of K;
the messages are the elements of M;

the authenticator belonging to the key K and the message M is the
subspace < KM > generated by K and M,

So, any authenticator is a subspace of dimension s + t + 1. We always denote
by A the set of all authenticators, by k the total number of keys and by m the
number of messages.

The maximal possibie number of keys in an authenticator is computed in
the following '

3.1 Lemma. Let A be a subspace of dimension s+t+1 and let M be an
s-dimensional subspace of A. Then the number a, of i-dimensional subspaces

in A which are skew to M is g+ DE+1),

Prool. We proceed by induction on t.

If1 = 0, then P = PG(s +1,q), and a, is the number of points ocutside the
hyperplane M of A. Hence a, = ¢°+*.

Now we assume that t > 0 and that the assertion is correct for t-1.

First we compute the number b,_; of (t-1)-dimensional subspaces which are
skew to M. Since any hyperplane contains exactly a,; of them and no distinct
hyperplanes through M intersect in a (t-1)-dimensional subspace which is skew
to M, we have
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s+t+1-s-1

by = ap4(q +ot1) = a (gt +. 1)

On the other hand, fix a (t-1)-dimensional subspace W skew to M. Through
Wiherearegq® ' H D1y 4 1 subspaces of dimensiont, q°+...+ 1of which

are not skew to M. It follows
(@' +..+ 12, = agy(q'+..+ D+,

50

s+1 s+ 1)t+1
a = aggn = q( X+,

Now we define a very big class of geometric authentication systems.

Definition. Let W be a w-dimensional subspace of P = PG{d,q). Let M be a
set of s-dimensional subspaces of W and denote by K the set of all
t-dimensional subspaces of P skew to W,

Denote by A = A(d,w,;s,t;M) = A(K,M) the corresponding geometric
authentication system.

We shall compute the parameters of A and study the case when A is perfect.

32 Lemma. Let A = A(d,w,s,;;M) be the above defined authentication system.

() The number of keys of A equals

q+ b+ Bgwa Bty

k, =

6.8

2]

where 8, = q" +...+q + 1is the number of points in an r-dimensional projective
space of order q.

(b) Any authenticator contains just one message and precisely ¢+
keys.

Proof. (a) We proceed by induction on t.

Fort = 0 we get
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k, = number of points m Pnotin W = q"*1. (¢! + .. +1).

Suppose now that the assertion is true for t = 0and d = w+t +2. Consider
the incidence structure whose points are t-dimensional subspaces skew to W

and whose blocks are the (t +1)-dimensional subspaces skew to W. Double
counting yields

Kepp (@ Tt 1) = Ky (@ o+ D),

Thus, the assertion follows,
(b) follows from the definition of A and in view of 3.1.

33 Theorem. Suppose that A = A(d,w,s,t:M) is & perfect authentication system.
Then any iwo elements of M are disjoint. Moreover, w = 25+ 1 and
d = w+it+1l = 25+t+2

Proof. Let M and M be two elements of M intersecting each other in a
subspace of dimension i z -1.

The bad guy knows M and the corresponding valid authenticator A, which
is a (s +t-+1)-dimensional subspace through M. In order to obtain the valid
authenticator for M he has to try all (s + t+ 1)-dimensional subspaces which
are generated by M’ and a t-dimensional subspace T of A skew to M. The

number of these subspaces can be computed using 3.1 as
q(s+l)(t+1)‘,q(i+l)(:+1) = q(s-i)(H-l)_

If A is perfect, then, by definition
k, = XD,
On the other hand, by 3.2 we have
kt = q(‘ +l)(w+ 1) . f,

where f = 1is the number of t-dimensional subspaces in a (d-w-1)-dimensional
space. Therefore,

GEDEHD o qE+DOHD o ((E+DWHD,
S0

2(s-)(t+1) = (t+ 1) {w+1),
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or
22z wHl = 2s-i+1,

since <MM > isa subspace of W,
It follows that i < -1, s0i = -1, which means that M and M are skew.
Morcover,

2As+1) = 2s-i) 2 wH1=25+1+1,

andsow = 25+ 1.
Finally, from

q2{s +1(t+1) _ q2(5-i)(t +H1) _ q(t +1)(25+2) f

it follows that [ = 1. This means that the number of t-dimensional subspaces
in a (d-w-1)-dimensional space equals 1, which implies t = d-w-1.

Remark. A particular important-case of the above theorem is obtained when
s = 0. We get the following example. The messages are the points on a line |
in a (t +2)-dimensional projective space and the keys are the t-dimensional
subspaces skew to 1. If t = 0, we obtain again the fundamental example.

Another example of a geométric authentication system is obtained as
follows.

Definition. Let P be a d-dimensional finite projective space of order q and fix
a hyperplane H of P. We define the geometric authentication system
Ay = A (t,d) as follows:

The messages are the t-dimensional subspaces of H (t < d-1),
the keys are the points of P-H.
3.4 Theorem. The authentication system A\ (t,d) is essentially perfect if and only

if d=2+2;itisperfectifand onlyif d = 2,t = 0,

Proof. In any case, the number of keys is k = q°. Assume that the bad guy
wants to forge an authenticated message. For this, we may assume that he has
a valid authenticator A (which is a (t + 1)-dimensional subspace of P), which
intersects H in the message M. He wants to substitute M by the message M,
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which is also a t-dimensional subspace of H. Since almost all t-dimensional
subspaces of H are skew to M, we may assume for the moment that M and M~
are disjoint.

In the worst case, the bad guy is clever. He observes that he has not to check
all keys, but only those which are points of A-H. Since there are only q' *1such
points, his chance of success is at least 1/(g' ).

If our system is essentially perfect, we have therefore

oY) = o(ug' Y,

thatisd = 2t+2.

Suppose now d = 2+2 > 2, Then there are messages M~ # M which
intersect M in a subspace W of dimension i = 0. Then any hypothetical (but
reasonable) authenticator A” of M intersects A in a subspace of dimension
i+1, the bad guy’s chance of success is

g > /gt

So, the system is essentially perfect, not perfect in the strong sense.

Remark. The system A(0,2) is exactly the fundamental example.

4. Partial spreads

Throughout this section, we denote by P = PG(d,q) the finile projective
space of dimension d and order g. A partial t-spread of Pis aset S of mutually
skew (-dimensional subspaces of P. A t-spread of P is a partial t-spread S with
the property that every point of P lics on (precisely) one clement of S. It is well
known that P has a t-spread if and only if t+1 divides d + 1. Any t-spread in
PG(2t+1,q) has qH'1 +1 elements; a partial t-spread S of PG{2t + 1,q) has
deficiencyd = q' *1 +1- | S| . The set of points of P not covered by the partial
t-spread S is denoted by D(S).

4.1 Theorem. Let S be a partiai t-spread of P = PG(2t + 1,q) with | S| = 2.
Define the authentication system A = A(S) as follows:

The messages are the elements of S;
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the keys are the points in D(8);

the authenticator for the message M under the key K is the (t + 1)-di-
mensional subspace <M, K>,

If the deficiency d of S equals

3 =q +..+qt+l,
then the number of messages is q' + l-q(q"1 + ...+ 1), the total number of keys is
(q'+..+ 1D and A(S) is essentially perfect.

Proof. The number k of keys equals k = 3(q' +...+1) = (q"+..+ 1)2. On
the other hand, any (t + 1)-dimensional subspace Lhrough an element of S has
exactly 8 points in common with D(S). So, the bad guy can forge a message
with probability 1/8 = 1/(q' +... +q +1).

So, the assertion follows.

Remarks.

1. The case t = 1is of particular interest. In the essentially perfect case, we
have qz-q messages, but only (q + 1)2 keys. Ore example ol such a system is
obtained if a reguius is removed from a "regular spread" (alias an "elliptic
congruence”).

2. The authentication systems A(S) are only perfect if the order of P is 2.
(Assume that A(S) is perfect. Then, by 2.1 (iii) any two distinct authenticators
must inlersect in a unique key. This means that any two (t + 1)-dimensional
subspaces through distinct clements of § intersect each other in al most one
point of D(S). Therefore any line joining two points of D{S) intersects at most
one element of S, In other words, any such line contains at most one point of
P(S), where P(S) denotes the set of points on the elements of S.

So, for a fixed point Q € D(S) we have

q'+...+q+1 = number of lines through Q = |P(S)|] =
= q2t+1+...+1- | D) |,
therefore

IDE)| = ¢**.

On the other hand, any line connecting two points on different elements
on S contains at most one point of D(S). Since any point of P lies on such a
line, it follows
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| B s (@' +..+1)%
Together it follows

@< {DE)| s (@ +..+ 12

Consequently,
th +1(q_1)2 < (q[+ 1_1)2’
gl 3q+1) = 2¢' 41 < o,

soq = 2.

5. The Lucky Bad Guy

In this last section we address the problem of the lucky bad guy. So far we
considered our systems under the unspoken hypothesis that the same key was
used only once. In other words, we assumed that a change of keys takes place
after every message. Now we would like to discuss a more realistic situation in
which there are several messages authenticated with the same key. Is there any
security, if the bad guy knows two or more valid authenticators belonging to
the same key? For most of the above discussed authentication schemes the
answer is "no". (This is called a spoofing attack of order s [11]). For most of
the above discussed authentication schemes the answer is "no". For instance,
in the fundamental example two different authenticators determine the key
uniquely.

Let us consider authentication systems in which all messages have the same
number n of authenticators. Then the bad guy’s chance of success is at least
1/n, since for his favourite message he simply has to choose one of the n
authenticators at random. What we would like to have is that after the
observation of s messages beloinging to the same key the chances of the bad
guy become not better.

Under the same conditions for authentication system in [9] Fik has shown
the following:



Num. I - Maggio 1990  Ratio Mathematica A. Beutelspacher et al.

Theoreme. Suppose that any authenticator has just one message. Assume
furthermore that all messages and all keys occur with the sanie
probability. Denote by k the total number of keys. Then, in any authentication

system, the bud guy's chance of succes for a spoofing attack of order s is at least
1/k Vs+1)

For s = 1 this is the bound proven in [9].

An authentication system A in which this theoretical bound is hold is said
to be s-fold perfect. In a s-fold perfect authentication system given any
1,0 < i < s messages my, .., m; authenticated by the same key, the bud guy’s
chance of successfully falsificating any messages ms my .., m; is only
1/k ll(s+1).

A is called essentially s-fold perfect, if knowledge of any s authenticators
belonging to the same key gives the bad guy a chance of success of
O(1/k 1/(“"1)) for falsificating an authenticator of a message choosen at
random out of the remaing messages.

We conclude by presenting the {ollowing authentication systems,

5.1 Theorem. Let P = PG(s + 1,q) be the (s + 1)-dimensional projective space
of order q. Fix a point P, of P, Define the Joltowing authentication system A,

Messages are the q° + ... +q +1 lines of P through Py,
keys are the ¢* * ! hyperplanes of P not through Py,

the authenticator belonging to the message | and the key H is the
point | ¥ H. In other words, the authenticators are precisely the
points = P, of P.

Then A is essentially s-fold perfect.

Proof. Suppose that the bad guy has observed t < s messages my ..., m;
with corresponding authenticators ay, ..., a, then the bad guy knows that the
key hyperplane H interscts <my .,m> in <a; ., a>, whichisa
hyperplane of <my .., m>. therefore he knows that a message in
<my, .., m> has as its authenticator the point mN <ay, ., a;>. So, for
those < q'*! + . + q + 1 messages the chance of falsificating is
1, whereas forany of the other = ¢° + ... + ¢' messages the probabitity is only
1/q.
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So, the mean probability of guessing the correct authenticator is
0O (lfk lf(S+1 ))-

Hence A is essentially s-fold perfect.

52 Theorem. Let P = PG(s + 1,q) be the (s +1 )-dimensional projective

space of order q. Fixa point Py of P.Define the following authentication system
A,

Messages are lines of P throught P, which are in general position,
that is, no t of them are contained in a common (t-1)-dimensional
subspace (t<s + 1)

keys are the ¢** ! hyperplanes of P not through Py,

the authenticator belonging to the message 1 and the key H is the
point 1 N H. In other words, the authenticators are precisely the
points # Py of P,

Then A is s-fold perfect.

Proof.. It is clear that under the present hypotheses the situation described
above cannot occur. '
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