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Abstract

The Mean square error matrices, bias vector and risk functions of pro-
posed improved mixed regression estimators are obtained by employing the
small disturbance approximation technique under the condition, when dis-
turbance terms follows multivariate t-distribution. Further, the risk function
criterion is used to examine the efficiency of proposed improved mixed re-
gression estimators.
Keywords: Stochastic restrictions; Mixed regression estimator; Stein- rule
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1 Introduction
When incomplete prior information is expressible in the form of set of linear

stochastic restrictions on the coefficients in a linear regression model, the method
of mixed regression for the estimation of regression coefficients provides asymp-
totically a more efficient estimator than the least squares method that ignores the
prior restrictions.
Stemming from the philosophy of stein-rule in this paper we proposed two fami-
lies of improved estimators for the regression coefficients and study their proper-
ties when disturbances have multivariate t-distribution. For multivariate t - distri-
bution see, [12], [10] and [3]. In section 2, we discuss the framework and estima-
tors. The properties of these estimators are presented in section 3 and the results
are compared in section 4. Simulation Study is carried out to support theoretical
finding in Section 5.

2 Model Specification and the Estimators
Let us postulate the linear regression model

Y = Xβ + U (1)

Where, Y is a n × 1 vector of dependent variables; X is a n × p column rank
matrix of n-observations on p explanatory non-stochastic variables; β is a p × 1
non-null vector of regression coefficient and U is a n × 1 vector of disturbance
following multivariate student t-distribution with probability density function as:

f

(
U

v
, σ2

)
=
γv/2Γ

(
v+n
2

)
π

n
2 Γ
(
v
2

) σ−n
[
v +

U ′U

σ2

]−n+v
2

(2)

Where, v > 0, σ > 0 are respectively the degree of freedom and dispersion pa-
rameters; the vector U has its error components Ui ∈ (−∞,∞), i = 1, 2, ..., n.
Here the error vector U has mean vectorE(U) = 0 for v > 1, variance-covariance
matrix E(U ′U) = σ2

(
v

v−2

)
I , for v > 2, measure of skewness γ1 = 0 and mea-

sure of kurtosis γ2 = σ4
(

6
v−4

)
I for v > 4.

Let the stochastic restrictions on β in (1) be

r = Rβ + V (3)

Where, r is a J × 1 vector of known elements, R is a J × p full row rank matrix
of known elements and V is a J × 1 vector of distribution such that

E(V ) = 0 ; E(V ′V ) = Ω (4)
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Where, Ω is a J × J positive definite symmetric matrix of known elements.

Further, we assume that the errors associated with the stochastic restriction are
independent with the distribution in model (1).
The ordinary least square (OLS) estimator of β that ignores the prior restrictions
(3) is

bo = (X ′X)−1X ′Y (5)

If we consider the prior information (3), then the mixed regression (MR) estimator
of β is given by

bMR = [X ′X + S2R′Ω−1R]−1[X ′Y + S2R′Ω−1r] (6)

Where ,

S2 =
1

n− p
((Y −Xb)′(Y −Xb)) (7)

The Stein-rule estimator of β is

bs =

[
1− k (Y −Xb)′(Y −Xb)

b′o(X
′X)b0

]
bo (8)

Where, k is a positive scalar characterizing the estimator.

The Stein-Mixed Regression (SMR) estimator of β is given as

bSMR =

[
X ′X +

1

n− p
[(Y −XbS)′(Y −XbS)]R′Ω−1R

]−1
[
X ′Y +

1

n− p
[(Y −XbS)′(Y −XbS)]R′Ω−1r

]
(9)

The Mixed Stein-Regression (MSR) estimator of β is

bMSR =

[
1− k (Y −XbMR)′(Y −XbMR)

b′MR(X ′X)bMR

]
bMR (10)

3 Properties of the Estimators

PX = X(X ′X)−1X ′ (11)

M = [I − PX ] (12)
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Mj = [PX − jC−1Xββ′X ′] j = 1, 2, . (13)

Nj = [(X ′X)−1 − jC−1ββ′] j = 1, 2, . (14)

C = β′X ′Xβ (15)

µ = (X ′X)−1R′Ω−1R(X ′X)−1 (16)

The OLS estimator defined in (5) is found to be unbiased if v > 1, with variance
- covariance matrix and risk function given by

E[(b0 − β)(b0 − β)′] = σ2

(
v

v − 2

)
(X ′X)−1; v > 2 (17)

Risk(bo) = σ2

(
v

v − 2

)
tr(X ′X)−1L; v > 2 (18)

Where, L is a positive definite symmetric loss matrix.

The properties of the MR estimator are same as the SMR estimator, so we consider
only the SMR estimator and present the results in the form of following theorems.

Theorem 3.1. The asymptotic expression for the bias vector, mean squared error
matrix and risk function of SMR estimator, up to order o(σ4) of approximations
are given as

B(bSMR) = 0 (19)

M(bSMR) = σ2

(
v

v − 2

)
(X ′X)−1 − σ4V1; v > 4 (20)

Where,

V1 =
[(

1− 2

n− p
− 6

v − 4
θ

)
µ+

6

(v − 4)(n− p)(
µX ′(In ∗M)X(X ′X)−1 + (X ′X)−1X ′(In ∗M)Xµ

)]
(21)

θ =
trM(In ∗M)

(n− p)2
(22)
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Risk(bSMR) = σ2

(
v

v − 2

)
tr(X ′X)−1L− σ4trV1L (23)

Proof 3.1: To employ small disturbances asymptotic approximations. Let us
write model (1) as

Y = Xβ + σω (U = σω) (24)

So that the i.i.d. elements of ω have multivariate-t distribution with mean zero for
v > 1, variance

(
v

v−2

)
, for v > 2, measure of skewness γ1 = 0 and measure of

kurtosis γ2 =
(

6
v−4

)
for v > 4.

Now, using (24) in (5), we find

b0 = β + σ(X ′X)−1X ′ω (25)

So that
Y −Xb0 = σMω (26)

Where
M = [In −X(X ′X)−1X ′] (27)

Using (25), we find up to order o(σ) of approximations.

1

b′o(X
′X)b0

= C−1[1− 2σC−1β′D′ω] (28)

Now, using (25), (26), and (28) in (8), we get up to order o(σ2) of approxima-
tions.

bs − β = σ(X ′X)−1X ′ω − σ2kω′MωC−1β (29)

and for the same order of approximation, we have

Y −Xbs = σMω − σ2kω′MωC−1Xβ (30)

Thus, using (30) and (3) in (9), we get

bSMR − β = σh1 + σ2h2 + σ3h3 + σ4h4 (31)

Here,
h1 = (X ′X)−1X ′ω (32)

h2 =

(
ω′Mω

n− p

)
(X ′X)−1R′Ω−1V (33)
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h3 =

(
ω′Mω

T −G

)
µX ′ω (34)

h4 =

(
ω′Mω

n− p

)2

[k2(n− p)C−1(X ′X)−1R′Ω−1V − µR′Ω−1V ] (35)

It is easy to see that

E(h1) = E(h2) = E(h3) = E(h4) = 0 (36)

Utilizing (36) in (31), we obtain the result (19) of the Theorem 1.

Now using (31), we get

(bSMR − β)(bSMR − β)′ = σ2h1h
′
1 + σ3(h1h

′
2 + h2h

′
1)

+ σ4(h1h
′
3 + h2h

′
2 + h3h

′
1) (37)

Here,
E(h1h

′
1) = (X ′X)−1 (38)

E(h1h
′
2) = E(h2h

′
1) = 0 (39)

E(h1h
′
3) =

1

n− p

[
6

v − 4
(X ′X)−1X ′(In ∗M)Xµ+ (n− p)µ

]
(40)

E(h2h
′
2) =

[(
6

v − 4

)
θ +

(
n− p+ 2

n− p

)]
µ (41)

Utilizing (38), (39), (40) and (41) in (37), we obtain the result (20) of the Theorem
1.

Risk(bSMR) = trM(bSMR)L (42)

Thus, result (23) of the Theorem 1 follows from (42).

Theorem 3.2. The asymptotic expression for bias vector, mean squared error ma-
trix and risk function of MSR estimator, up to order o(σ4) of approximations are
given as

B(bMSR) = −σ2kv(n− p)
v − 2

C−1β + σ4
[ 6k

v − 4
C−2(

(trM4(In ∗M))I + 2(X ′X)−1X ′(In ∗M)X − Cθµ(X ′X)
)
β

+ kC−2
(

(n− p)(p− 2)I − n− p+ 2

n− p
Cµ(X ′X)

)
β
]

(43)
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Where * denotes Hadamard product.

M(bMSR) = σ2

(
v

v − 2

)
(X ′X)−1 − σ4

[
V1 +

12k

v − 4
C−1[

(X ′X)−1X ′(In ∗M)X(X ′X)−1 − C−1
(

(X ′X)−1X ′(In ∗M)Xββ′

+ ββ′X ′(In ∗M)X(X ′X)−1 +

(
k

2

)
(trM(In ∗M))ββ′

)]
+ 2k(n− p)N(2+ k

2
(n−p+2))

]
(44)

Risk(bMSR) = σ2

(
v

v − 2

)
tr(X ′X)−1L− σ4

[
trV1L

+ 12
k

v − 4
C−1

(
tr(X ′X)−1X ′(In ∗M)X(X ′X)−1L

− C−1
(

2β′X ′(In ∗M)X(X ′X)−1Lβ +
k

2
(trM(In ∗M))β′Lβ

))
+ 2k(n− p)trN(2+ k

2
(n−p+2))L

]
(45)

Proof 3.2: Using (3), (24) and (26) in (6), we obtain up to order o(σ2) of
approximations.

bMR = β + σ(X ′X)−1X ′ω + σ2

(
ω′Mω

n− p

)
(X ′X)−1R′Ω−1V (46)

Thus, for the same order of approximation, we have

1

b′MR(X ′X)bMR

= C−1
[
1− 2σC−1β′X ′ω

− σ2C−1
( 2

n− p
ω′MωV ′Ω−1Rβ + ω′MDω

)]
(47)

Using (46), we get up to order o(σ2)of approximations.

Y −XbMR = σMω − σ2

(
ω′Mω

n− p

)
X(X ′X)−1R′Ω−1V (48)

Using (46), (47) and (48) in (10), we obtain up to order o(σ4), we get

bMSR − β = σh∗1 + σ2h∗2 + σ3h∗3 + σ4h∗4 (49)

Where
h∗1 = (X ′X)−1X ′ω (50)
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h∗2 =

(
ω′Mω

n− p

)[
(X ′X)−1R′Ω−1V − kC−1β

]
(51)

h∗3 = −
(
ω′Mω

n− p

)[
µ+ k(n− p)C−1N2)

]
X ′ω (52)

h∗4 = k(ω′Mω)C−2
( 2

n− p
ω′Mωββ′R′Ω−1V + ω′M4ωβ

+ 2(X ′X)−1X ′ωω′Xβ
)
−
(
ω′Mω

n− p

)2

[
µR′Ω−1V + kC−1(β′V ′Ω−1R + (n− p)I)(X ′X)−1R′Ω−1V

]
(53)

Here, it is easy to verify that
E(h∗1) = 0 (54)

E(h∗2) = −k(n− p)C−1β (55)

E(h∗3) = 0 (56)

E(h∗4) =
6k

v − 4
C−2

[
(trM4(In ∗M))I + 2(X ′X)−1X ′(In ∗M)X

− Cθµ(X ′X)
]
β + kC−2

[
(n− p)(p− 2)I −

(
n− p+ 2

n− p

)
Cµ(X ′X)

]
β (57)

Utilizing (54), (55), (56) and (57) in (53), we obtain the result (43) of the Theorem
2.
Now, using (53) we get

(bMSR − β)(bMSR − β)′ = σ2h∗1h
∗′
1 + σ3(h∗1h

∗′
2 + h∗2h

∗′
1 )

+ σ4(h∗1h
∗′
1 + h∗2h

∗′
2 + h∗3h

∗′
1 ) (58)

Here, we see that

E(h∗1h
∗′
1 ) =

(
v

v − 2

)
(X ′X)−1 (59)

E(h∗1h
∗′
2 ) = 0 (60)

E(h∗1h
∗′
3 ) =

6

(v − 4)(n− p)

[
(X ′X)−1X ′(In ∗M)Xµ

+ k(n− p)C−1(X ′X)−1X ′(In ∗M)XN2

]
− µ− k(n− p)C−1N2 (61)
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E(h∗2h
∗′
2 ) = µ

[
6

v − 4
θ +

(
n− p+ 2

n− p

)
I

]
+ k2C−2ββ′

[ 6

v − 4
trM(In ∗M) + (n− p)(n− p+ 2)

]
(62)

Utilizing (59), (60), (61) and (62) in (58), we obtain the result (44) of the Theorem
2. Similarly, we can obtain the result (45) of the Theorem 2.

4 Comparison of the Estimators

4.1 The comparison the risk functions of OLS and SMR esti-
mators

On comparison the risk functions of OLS and SMR estimators. We observe
that up to order o(σ2) of approximations, both the estimators have same risk and
for higher order of approximation, we see that

Risk(b0)−Risk(bSMR) =

σ4
[ 6

v − 2

( 2

n− p
tr(X ′X)−1X ′(In ∗M)XµL− θtrµL

)
+
(n− p− 2

n− p

)
trµL

]
(63)

If we choose L = (X ′X), then expression (63) becomes

Risk(b0)−Risk(bSMR)

= σ4
[ 6

v − 2

( 2

n− p
tr(X ′X)−1X ′(In ∗M)X(X ′X)−1R′Ω−1R

− θtr(X ′X)−1R′Ω−1R
)

+

(
n− p− 2

n− p

)
tr(X ′X)−1R′Ω−1R

]
(64)

Since, the expression (64) is positive semi-definite, so bSMR dominates b0 and as
v →∞, expression (64) reduces to

Risk(b0)−Risk(bSMR) = σ4

(
n− p− 2

n− p

)
tr(X ′X)−1R′Ω−1R (65)

Which is positive semi-definite. Thus, bSMR dominates b0, so long as n− p > 2.
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4.2 The comparison the risk functions of OLS and MSR esti-
mators

On comparison the risks of OLS and MSR, we see that up to order o(σ2)
of approximations, both the estimators have same risk and for higher order of
approximations, we find that bMSR dominates bo so long as (65) is positive semi-
definite and if we choose k to satisfy,

0 < k <
2(n− p)

T

C

β′Aβ

[
tr(X ′X)−1L− 2C−1β′Lβ +

6

(n− p)(v − 4)(
tr(X ′X)−1X ′(In ∗M)X(X ′X)−1L− 2C−1β′X ′(In ∗M)X(X ′X)−1Lβ

)]
(66)

Where

T =

[
6

v − 4
(trM(In ∗M)) + (n− p)(n− p+ 2)

]
(67)

If we choose L = (X ′X), then the above condition of dominance becomes

0 < k <
2(n− p)

T

[
p− 2 +

6

(n− p)(v − 4)

(
tr(X ′X)−1X ′(In ∗M)X

− 2C−1β′X ′(In ∗M)Xβ
)]

(68)

And as v →∞, condition (68) reduces to

0 < k <
2

n− p+ 2
(p− 2); p > 2 (69)

Which is well known condition of dominance of stein-rule estimator over the least
squares estimator.

4.3 The comparison the risk functions of SMR and MSR esti-
mators

On comparing the risk function associated with the estimators SMR and MSR
respectively, we observe that the estimator MSR dominates the estimator SMR
so long as (30 )holds and as v → ∞ and again by choosing L = (X ′X), the
condition of dominance becomes (69).
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5 Simulation Results
The proposed estimator bSMR is more efficient than OLSE under given lin-

ear model. Although, theoretically the results are drawn in equation (65), the
proposed Stein-mixed Regression (SMR) estimator bSMR is more efficient than
ordinary least square estimator b0 under condition n − p > 2. In this section, we
perform simulations for exact equation (65) under conditions n−p > 2, n > p > j
with sigma equal to one.

Each result is based on 100,000 simulations runs using MATLAB. The result
shown for n = 10, 11, 12, 13, 14, 15 in Table 1, 2, 3 & 4. The main finding of our
numerical evaluation is following:-

1. The simulation results strongly support the theoretical findings.
2. The simulation result also explains the strength keep on increasing as we go for
large value of n, p and j.
3. The results are independent of value of sigma.
4. Hence, bSMR is more efficient than b0 under condition n− p > 2.
5. The simulation results also reveals that bMSR is also more efficient over b0 (as
it also depends on (65) under condition at (69)).

Figure 1: Average dominance condition for difference between n & p

Based on simulation study, the dominance of bSMR has been proven over b0
under certain set of conditions. Further, the behavior of dominance is studied for
various combination of different values of n, p and j. The average dominance is
derived based on probability for different combination of n, p and j; when σ = 1.
The figure 1 depicts average dominance keeps on decreasing with increase in gap
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Figure 2: Dominance behavior for different values of p; when n=10 & j=5

Figure 3: Average dominance condition for given value of p & j for n=20

between n and p. The figure 2 also depicts a decreasing trend with increase in
value of p, when n = 10 and j = 5. Similarly, figure 3 shows the behavior of
dominance condition for different value of p and j for fixed value of n equal to
20.
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Table 1: Average Value of Dominance for different values of n and p for j = 2
sigma = 1.

j=2 n=10 n=11 n=12 n=13 n=14 n=15

p=3 0.67823 0.67492 0.67793 0.67688 0.67390 0.67539

p=4 0.67300 0.67079 0.66877 0.66903 0.66816 0.66654

p=5 0.67187 0.66562 0.66558 0.66668 0.66416 0.66691

p=6 0.66660 0.66642 0.66755 0.66509 0.66370 0.66186

p=7 0.66755 0.66497 0.66408 0.65994 0.66305 0.65982

p=8 - 0.66816 0.66611 0.66010 0.66261 0.66156

p=9 - - 0.66861 0.66352 0.66143 0.66036

Remark: No value for dominance where n− p 6 2.
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Table 2: Average Value of Dominance for different values of n and p for j = 3
sigma = 1.

j=3 n=10 n=11 n=12 n=13 n=14 n=15

p= 4 0.70809 0.70806 0.70722 0.70725 0.70806 0.70611

p= 5 0.70570 0.70449 0.70581 0.70385 0.70381 0.70162

p= 6 0.70612 0.70319 0.70252 0.69998 0.70281 0.70205

p= 7 0.70651 0.70266 0.70281 0.70253 0.69810 0.69816

p= 8 - 0.70735 0.70167 0.70011 0.70183 0.69960

p= 9 - - 0.70592 0.70486 0.70001 0.70028

p=10 - - - 0.70784 0.70426 0.70033

p=11 - - - - 0.70692 0.70500

Remark: No value for dominance where n− p 6 2.
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Table 3: Average Value of Dominance for different values of n and p for j = 4
sigma = 1.

j=4 n=10 n=11 n=12 n=13 n=14 n=15

p= 5 0.74738 0.74891 0.74713 0.74538 0.74603 0.74668

p= 6 0.74694 0.74586 0.74771 0.74337 0.74335 0.74346

p= 7 0.75060 0.74841 0.74539 0.74412 0.74366 0.74381

p= 8 - 0.74740 0.74561 0.74405 0.74213 0.74607

p= 9 - - 0.74752 0.74623 0.74547 0.74207

p=10 - - - 0.74601 0.74774 0.74091

p=11 - - - - 0.74832 0.74426

p=12 - - - - - 0.74612

Remark: No value for dominance where n− p 6 2.
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Table 4: Average Value of Dominance for different values of n and p for j = 5
sigma = 1.

j=5 n=20 n=25 n=30 n=35 n=40 n=45 n=50

p = 5 0.78748 0.78793 0.78713 0.78373 0.78562 0.78336 0.78686

p=10 0.78359 0.78228 0.78284 0.78158 0.77898 0.77644 0.78005

p=15 0.78586 0.78143 0.77689 0.78072 0.77643 0.77454 0.77655

p=20 - 0.78350 0.78017 0.77976 0.77657 0.77576 0.77628

p=25 - - 0.78453 0.78062 0.77884 0.77852 0.77563

p=30 - - - 0.78408 0.78044 0.77743 0.77703

p=35 - - - - 0.78478 0.77772 0.77486

p=40 - - - - - 0.78208 0.77728

Remark: No value for dominance where n− p 6 2.
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