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In [3] Grundh8fer gives a synthetic construction of a
Figueroa plane of order q3 starting from PG(Z,q3) which
is independent on the algebraic point of view of the action
of a Singer group, as Figueroa [l] used 1n the original
construction.
In this paper, we analyze at first the action of the collineation
X of order h of PG(Z,qh) . q=Dr , 7pP,h primes , p,h>» 2 ,
fixing PG(2,q) pointwise . If h= 5,7 we prové that o
admits three kinds of point and line orbits, as in the case
h=3 . The group of the collineations of PG(Z,qh) which fix
PG(2,q), acts trasitively on the points and on the lines of
G 3 and .83 respectively, precisely when h=3.
In Sec.3, we analyze the Grundh8fer construction by a geometric
point of view and we obtain that a Figueroa plane 0% order q
can be represented starting from PG(Z,qB) leaving invariant
the incidence relation and replacing the subset &£ _ of the lines
by a new subset d?: , any new line r‘;e-f;: consisting of a

4

subset of the old line r |, union a subset of an algebraic

curve defined by v



L. PRELIMINARY RESULTS.

h N .
Let F=GF(q ) be a Galois field , q=p' , p,h primes , p,h>2 .

The field F can be regarded as an extension K(w) of K=GF(q) , where w

is a root of a polynomial f(x)e K[x] s deg f=h, f irreducible over K.
Let & : Xe>X' be the automorphism of P fixing the subfield” K element—
wise, Then ,Z=h=|<a5| .

Denote by Tr"éPG{Z,qh) the desarguesian plane over F and by TT;EPG(Z,q}

the subplane of M coordinatizéd by K with respect to a chosen toordinate
system for 1l so that a point P of I has homogeneous coordinates (X,¥,2),
X,¥,Z€F, and a fixed line 1, has equation z=0 ; denote by o« the colline-

ation of I defined by (x,y,2)et =(x& , y&, z¥).

Express Tr'(@,qﬂ-, I) as an incidence structure such that Tl-ot(Go,,t’o, 1)
o

where @OC@.'{OCf, I°=I‘l@ xe o+ I=€

(8] (8]
2 h=1
Let s ={s, S8, Sof ,...,5 E be the orbit of the element s&@yf

under the action of the group <ey,

LEMMA 1.1- i) the group <« is planar and fixes precisely the points of
@ (the lines of £ );
o o
ii) ¥s¢®0L jos| -n if and only if s¢ @ L L

iii) r > 6P for some Per if and only if rel (Pe\Br for some
o
roP if and only if P e®@ ),
o

Proof:

A point  P=(x,y,z) is in @0 if and only if
X=xz:l : '|:'=},|rz-“1 are in ¥ wvhen z#0 or
x#xyl_l or ‘r=)c:1y are in K wvhen =z=0,

A point P is fixed by « if and only if
(x& ,yo ,z& )=(2x, Ay, Az) ; equivalently, X% =X and YZ =Y,
that is, if aond only if LY are elements of K . Hence o fixes precisely

the points of TTO_ The dual argument holds for the lines,

. , . i ; :
A point P of is fixed by a £Ca > where 1i=1,...,h if and
g ~1 ~1 e
only if Xa =X , Y a =Y ; the elements X,Y must belong to a field
M such that Kg¢M<F |[M:F| =s , s/h . Therefore s=1 and P is a point

of 1T . The dual arguments hold for the lines.
Q
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Let se9?U% 3 then l'as‘ Z h., We have Eﬂs'i< h if and only if there
; . . 1 j
exist 1, j such that 1€ 1< j<¢ h-1 and sSeof =8 g(" , or,

5 of = s , that is (by 1)) , if and only if s %U&"g . Furcthermore,

. . 2 L
6P C r 1if and only 1f r=P Pex = PotPor = 1 ; that 1s, 1f and only
if r is a fixed line under <ol > ; Peﬂer if and only if P 1is a point

fixed by <oc? -

rh r
REMARK, 1- From 1ii) it follows that hip -p .

LEMMA 1.2~ Three points of OP are collinear if and only if there exist i,

[

1

such that 1 £ i<j<¢h and P, Po{l, PufJ

are collinear.
Proof:
k m n . k
Let Pof , Polt , Pot be three points of 8P, k¢m¢en. Then Po
m n . i i h—k
Pox , Pt € r vwhere re ¥ 1if and only if P, PcxX , Po{JE r

where i=m+n-k, j=n+h-k.

2 ;
REMARK 2- If PEr and P # P, then r=P P Pot is equivalent to re,&%.

Assume that an orbit 6P contains three collinear points., Erom Lemma 1.2

it follows that this is equivalent to assuming that there exists a ling €%

such that =P Po(LPo{J where leiecjeh o
LEMMA 1,3~ If a) j=2i or j+i=h or

b) i=h~25 and j=h-s for some s , then r is.a line

of ZF.

[=]
Proof:

The length of the orbit &r 1is less than h  If and only if there exists

S, l£€s<h such that r o{s= Pms Po(i+s P¢(j+s =y =P Poii Po{.J.
1t §=1%, chen ‘el wped pocs pydts  ‘and

rhro-:ij{P i,Pzi=Pj} :
if j+i=h , then ro{i = Pc{i Po-.'zi P¢:>«Lj+iL and rﬁro{i o Echi, POLj+i=Pc(h=
in both cases . r=r¢><i'
op dwpede  aEd Seheny o e el el padB s peP e Tl o
l?t::‘-(‘cj Eo{h_s P and since r =P Pc-c‘i ]E’c:-(j =P [’t:><kh_25 1’-’0(1'_s , we have

5 h—s s
r M Teog 3{13, Pod } ; hence T =rex

LEMMA 1.3"- The dual of Lemma 1.3,
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PROPOSITION 1.1- If h=5 , then the point-orbits ©F are of the following

three types: l)trivial; 2) incident a line ; 3) a 5-arc;

the line-orbits Or are of the following three types: 1') trivial; 2') con-

fluent im a poimnt; 3') a 5- gon.

Proof:

Let P be a point of M ; if Pe€ 9;‘ then 6P is trivial ; if Per
where reg 2’0 and P & 90 , then 8P = r.
Let P be a point of & - %' such that P ¢ r v‘reyo; suchfpoint doés exest
since _ﬂ'o is not a Baer subplane. The orbit ©F contains three collinear points
if and only if there exist i,j 1%£i< j<5 such that P, Pl . Pa(‘i are
collinear (see Lemma 1.2).
Let r=~P Pofi Po(j ; by Lemma 1.3,a), we obtain ruraci ﬁ‘(i,j}Ei(l,z),
2,6, (L&), 2,9}, and by b), rere’ , s=1,2 ¥(i,j)e{(3,4},(1,3>}.

This means.that for all the possibilities of the choices

i,3 1£i1¢<j<5 the line r is a line of fo, 6P Crx, .':.l contradiction.
Hence there exist no exponents 1i,j such that P , Podi' . Pc;.cJ € 0P are

collinear. Equivalently, the orbit ©P is a 5-arc. The dual arguments hold

for the line orbits.

Let ©OP be a point-orbit such that P ¢ Q’O and 6P & r v_re_ff.

Assume that OP contains three collinear points, that is, there-eéxists a line

]

r=PPet Pol leicj<h and |Br|: # 1.

e
Let Y=(ep, Or, IIB k) » the incidence structure consisting of the points

of the orbits of P and the lines of the orbit of r

LEMMA 1.4~ & is an incidence structure with parameters b=v=h , r,k >3 .

Proof:

g i g 5
Any line m & 6r contains at least three distinet points , namely P&,
i+s j*s g :
P y Pox as m=roe for some s . For any point QEDOP ,

Q = P! for some € ; hence @ is incident with the following three distinct

5 t s . s' / ;
lines: red , rod where s=t—i, rto¢ where s'=t-] as image of P under
L

i . :
o ; of Po'  under o(s ; of pe{’  under c:<s , respectively.

PROPOSITION 1.2- If h=7 then the point-orbits ©P are of the following three

158



types : 1) trivial ; 2) incident a line $ 3) a 7-arc ;

the line-orbits Or are of the following three types : 1')trivial

2') confluent in a point ; 3') a 7--gon.
Proof:

Let Pe & ; if Pe.‘% then ©P is trivial ; if p ¢ 9‘0 and” PE€r,

where r e _S’o, then OPcC r.

Let P be a point of & - ?n such that P ¢ r ¥Yr E_g’o . Such a point
does exist since ']T:: is not a Baer subplane.

Assume that r contains three collinear points, that is, assvme that there

exists r =P P Px', 1<i<jc7.

From Lemma 1.4 it follows that each of the peints P, Pofi' \ Po-cj is incident

with two distinct lines of @r other than r ; that is, the lines through P

-

k]

Pot’ ’ P’  are all the lines of Or since h=7. Hence rar& e {P, P’
P Pg(l Pol’ . POCJ} 5 s=1,...,6. We prove chal:."ft.t'=i,...,6
L]

t t '
rel NreX € 6P :
///\/\ t t! t'-t

' . -t
R=ro¢ N reox s equivalent to R =rNre

. - i i
From the above we obtain R et € {P » P, Pun!J } or
t i+t j+t . o ;
R e E? & , Pox » Pot . Thus any two lines of Or are incident with
a point of 6P,
t - t e g ;
Given P and Po{ €OF set 1 = P Pl . Since P 1is incident with three

lines € 2Tk, € Or and each line of Or contains three points of 6P,

on these three lines through P lie all points
i
- e s . ;
of OP . Hence r=r, for some 1=1,2,3 , As r'= P Pot’ is equivalent
B L]
=5 s§'-s .
to r'el " = P Pex » we conclude that any two of the points of OP arc

incident with a line of Or and &= {(ep, or, 1 ) is the projective
/8Px6r

r
plane PG(2,2) and 2/q=p , a contradiction.

Hence the orbit 6P cannot have three collinecar points,
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2. FURTHER PROPERTIES OF THE COLLINEATION «

. h —_— B
Ag in Sec. 1 , let TI=PG(2,q ) , -n-D“Pszjq) It D< i
Represent T=(@.,£, 1) . Let o be the collineation of ¥ induced
by the automorphism of F fixing elementwise ¥ . Thus a fixes element-

wise the points and the lines of T . We can partition the secs & and &
Q

as follows :

@ - {re@ 1 rar] ;L= frels rascy
@, ={re@/drel sty ; L -frel/3ved s rIP}
@, @-(@luﬁ‘z) J S =cf—-(-{’1u«[’2)

It is clear that TI (g .
o 1 L

Let Aﬂ be the group of the automorphisms of T which wmap Tro onto

1

n

icself.

LEMMA 2.1- For any GéAO ic is @
-1
i) o'=aoca & A and o' works as & ean T
o

[a]
ii) o'(@) =@ and o' (L) =L ¢ i=1,2,3.
1 1 1 1

Proof:
i} : for any Pe@l set P'=Po0 ; it is P‘e@l and
Po'= Poda  =Pow " =P' o ! «pP' = Po .The dual arguments
hold for the lines of a('_g, P
i) : by 1), it follows o (P =@ and G'(L-L .
For any point P é@z there exists exactly one line refl such that
PIr and Pg' is a point of r6'=r' where r'edd L by i) , that is
Po"' is a point of @2- The dual arguments holds for the lines of of 5
Thus 0'(_@2)= & and U'(of?z)ﬂcfz . Therefore it must be also

-
i

o'<@3)=@3 and o'fc€3>=.f3.

Let CDC AO be the subset of the central collineations of [l having

the center and the axis in T . It is known that <« C > = A {see [3])-
o a a
LEMMA 2.2- For any 90 & C it is ol = oo
—_— o
Proof:
Let o & CD i let C ef-?l and a &afl be the center and

160



thie axis of g respectively, and let Pa = Q where P, Q€ (t.?l.
Take g'= uou‘l . By Lemma 2.1 we have thac g' c ﬁo v Co'=c |
oA e @1 S.t. Ala then AG'-A and V¥ r.-e,('fl s.t. €I7r then
to'=r ; moreover Pg' = Q . For amy line r such that C I r ,

if © & £1 , then r&q{'z ’ r a&-f? and C I ra ; thus
vo'=sr aca = ruu-l =r. -

For amy point R t@i such that R I a , if R 4&@1 then

Réﬁspz and
Ra 6@2 v PRala; thus Ro's Rmm_l

=1
= Raa =R .

Therefore g’

is a central collineation of Il having center C , axis

a and P0'=Q ; this means chat o'=g . equivalently @0 = oo

h- .
Set @ s -is. S0, ..., SO 1} ¥ sGul .

PROPOSITION 2.1- For any O & Ao it is ad = ga and (Bs5)0 = 6(s0).

Proof:
As < CH =A , for any O € A 0 =00, ...0 where O € C ;
] o o | 1 2 r 1 o
e = ag a - =0T o (s ] % a i a_a o} o
= i a0 & R a = =
e St b 172 ¢ /

h-1
(as)5=fs. S0, ... , B0 cl=§s, suc,....sulc -

$s. (s0a,.u., (scr)ah"_} = 6(s0).

h—l}

3 2 : s :
PROPOSITEON 2.2- For any point P&@l there are q -q -1 mnon-identical
collineations of € of center P : q -1 of them are elations,
o
3 2 3
q -2q of them are homologies.

Proof:

The non-identical elations of ¢ of center P are as many are the

lines of T incident P , that is, q+l, times q-1 , where q-1 is
(4]
the number of the points of En@l , any E.g.[f1 €3 P, which are different

from P and from a chosen and fixed point of En@l 2
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The non identical homologies of C of center P are as many are
a

2 2 : 2 : ;
the lines r of ..Cl incident P , that is, q , times g-2 which

15 the number of the points @l of any line f{ of m through
o

P , different from P , from £ n r and from a fixed point of

tn&, -

Choose and fix any point P & @3 ; set
PA=EP0!'@"0.«.—‘A1 , r A =ir0 f'\?"Gf:Azg.

o o o o
THEQREM 2.1- P Ao = ‘33 , T AD - o N precisely when h=3.

Proof:

i
Let @'- EP'= F o f'?AGé_—AO?S ; it is @'Q@E} . For any
T A it i g=ag_ a h o c,e C .
ch At is 1 9 where j = Oyer
Consider the subgroup Zld. Co of the collinearions of [T  of center
o
F é@ . It is FI ¢ PP & where PP ed and
1 1 3 9 1 1 3 1 2
1 “
b = -

JP 2 J q -q .

For any P2 5_@1 . P2§‘P1 and 22 < Co’ consider the point

PGIGQ voi & Ei , i=1,2.

.

it 1is Po:o_ & P_Pg  ; if Po o & P, F PO, , then the lines P2 Pa

12 2 1 12 1 1 1
and PIP PGl would have two different points P-’Jl and P0102 in
common, Ehus P =P2 , 4 contradiction. If there would be points Q
in the set P Pl e @3 - Plll , there would exists no Gn.‘_-Ao such
that Po= @ . Hemce, PI =P B M @ , and h=3 follows.
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3. THE GEOMETRIC INTERPRETATLION

Let F=GF(q3} be a Galeis field, q=pr s P prime py» 2 , and let
K=GF{q)} be the subfield of F of order q

Ler TT=PG(2,¢’) be the Galois plane of order 1;3 and “ITO=PG(2,q) ,
i = I . .

Let o be the collineation of ||l induced by the automorphism of F
fixing pointwise the subfield K . The order of @ is 3 and «
fixes precisely the points and the lines of Tro (see Sec. 1 ).

We can represent W as an incidence structure W =(@,£,I) and we
can partition the sets 3 and £ into three classes @i and ﬁi
1=1,2,3  according to the three possible orbits of points, lines
respectively, under the action of a (see [2] ).

e is T -(®,&,D.

The incidence relation I can be partitionned into nine sers

s In (€ x RJ.) ¥i,j=1,2,3 note that
113= @ = I31 and 133# @ (compare IZ] i
Define a map w: @ 3.—}‘("3
{3.1) Pu =P a P ol
and a map u'i 063—-*@3
2
(3.2) = r aNro
Take
¥ =11 Ju 1! where
33 33
(P,T) € 1;3 if and only if (rp',Pu) & 1_3
I
The incidence structure TT"(G},£ I% is a Figueroa plane (compare

2],

* — _——
The projective plare 11 = can be obtained by Il "redefining" the incidence
relation between the points of & and the lines of J:] as follows:

3
(3.3 P 1™t if and only if PW I 1
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LEMMA 3.1-  If pe@3 and re£3,then

p ™ ¢ 15 equivalent to PPal rora“.

Proof:
The relation (3.3) 1is equivalent to
2 2
(3.4) P . Pa I ra A ra

3
Applying a to (3.4) , we obtain PPalrm ra

LEMMA 3.2- a) re£3 is equivalent to rnr ue(‘% i
b} [fﬂ@zl =-=12+q+1 ' lrn@’ﬂ -qh-qz-q .
Proof:
a): let Q=rpra ; it must be Qeﬁ’zulﬁ:; {otherwise, rf@l); Qe@z is equivalent

rto " 2 a.e.fl s.t. Q=apr", or Qu=anra and Q=Qu , a contradiction,

b) : let PO be a point of rr‘.@1 , then P°=rn re contradicts a);

thus rn@l = ¢ . For any rleoe Lt Ql=rlﬁ r is a point of rn@z.
b - , Q.= ; i » th =r_n i

Let rze—«Cl rzylrl Q,r,nr if Q=q, en Q=r,nr, is

a point of rn@l , a contradiction to a). Therefore [rnﬁ’zl -idfli.

The remaining points of r are in@3 s
Let I'Efj ; take Q=rnra .
LEMMA 3.3- It is

fPE@J’PIr} ﬁf Pe®/ P 1* rl* {PEQZIP Ir u{q . Qah_ls.
Proof:

By Lemma 3.2 , we can write r=r_w r_ where

r =fpe{5’2f P I r} i Eam [P-E@SI p IJr} .

2

For any point Pe r, it is equivalent "PILr" and "7P Iror 1,
For any point Pe Ty , PI%r if and only if PPxlQ; if

P ¢4 Q and Pa ¢ Q then PP o [ Q. Thus there are only two possi-
bility : P =0Q or Pa=Q

Let us Introduce a coordinate system in !l so that z point P of
= r, ., r., adistinguished line, has non-homogeneaous coordinates

(GLy) . x,yeF (x,y)=(x,y,1), and for any point P' of r, it

is P'=(x,y,0) . Moreowver, ]1[1=(xq'yq) and p’q:(quyq_oj
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Any line r is represented by an equation X=¢ or y=xm+b and

T by x=c1 or y-mqﬂ;q , respectively

5et &'= f-PE?E?af p 1" r} ; by Lemma 1.1 it follows that
e'- {PG@3IPMIQ§ .

PROPOSITION 3.1- &' is a subset of an algebraic curve & of 11

of order g+l

Proof:

Let P=(x',y') be a point of &' ; since Pe@g' then Pc.ﬂ{x'q,y'q)
where x'%¥ x' and y' Iy
Let  y=xm+b be the equation of r ; y-mqﬂ:q is the equation of ra
and mqq‘m . b b , as réuf3 ( see Sec. 1 ).
The equation of the line P Pa is  y=xntc where

1

q)_'l R Ct(xlqu_xlqyl:'(xl-xlq}_ .

ﬂ-(}'l"’?‘q}(xi_xl
The line P Pa is incident to the point Q if and only if P Pa belongs
to the bundle (Q) of the lines of Il with center Q , equivalently if

and only if there exists A,ug¢F such that

(3:5) x+p = 1, dmvm? = 0, dbep? = o

The relations (3.5) are equivalent to

@-a(b=-0H"" - (n-alyce-bYL

or ,
(3.6)  (@a) (x'y" Tx Yy )= (b-bY) (y ' —y ' Iy + (bm-bIm) (x"=x' V= 0

The equation (3.6) in x',y' represents an algebraic curve & of T

of order qg+l.

r, : : :

As N7 is a projective plane and a peint P=(x,y) beleongs to @1
if and enly if I’a=(xq,yq)={x,:.r)-t’ {(see Sec. 1 ) then we can easily
prove the following :

PROPOSITION 3.2- For any line r of 58 5 the curve & contains
b ol S e ) 1,
a2ll the points of " and §'=E’—-( :’2”@1) consists of q —q —q
Lo

points of @ .
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Foar any line r G£3 of equation y=xmtb set

r. = {{x,}') &= @2 ! y=xm+b} . 1'3 = i(x,y)é @‘?3 / y=xm+b} and

2
r_§= {fé@jf P I*r‘} = {P-——(x,y}e@j { {x,y) satisfy {3.6}}
It is r= 1"2'\..”-3
Take
{3.7) 'J::‘:=rulr"iE : :38*2 r*,’fr éf}‘fﬂlf Uq,P L'«f‘-
) 2V 3 5 3 3y 1 2 3

As an easy consequence of Lemmas 3.1, 3.3 and of the Propositions

3.1, 3.2 we can state the following

_ - 3
THEOREM 3,1- The Figueroa plane 1 =(®&,L, I*) of order ¢

is represented by (@,fi: ).

*
REMARK 1 - The representation of T* by (@,f , I ) starts again
o y . *

from [l ; the subset £ 3 of the lines 1s replaced by .f 5 any
k]
new line r¥ E-JCS consisting of two subsets : the subset r2
of the "old" line r and the subset ¢&' of the curve {5

defined by r , which replaces the points of r r\@%.

REMARK 2 - Let a be the collineation of N  described by the diagonal

matrix A 3x3 over F , A=diag(l, rl, r1+l) where 2i+l=h
r is an element of F of order h . It is Ah =1

Define a map U :@J—:; L where @'« @  is the set of the
point of T not fixed by a , Fu=~P Oti P ai+1 and a map
(VIR n[t_)@ where ,,f'(‘_‘.)f_ is the set of the lines of | not
fixed by o , s u'=s L:l.n = ozi+l {compare I?_J , for i=1).

We can easily prove that the mappings u and p' are imvoluterial
birational reciprocities  as I(x,y,z)u = [ Byz, xz, x}rj in
homogeneous coordinates of points, resp., lines in F-f_ ,where

o= —ri2(1+rij ; the analogous holds for '
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