A GEOMETRIC INTERPRETATION OF THE FIGUEROA PLANES

Rita VINCENTI Dipartimento di Matematica - Università degli Studi - Perugia

In [3] Grundhöfer gives a synthetic construction of a Figueroa plane of order q^3 starting from $PG(2,q^3)$ which is independent on the algebraic point of view of the action of a Singer group, as Figueroa [1] used in the original construction.

In this paper, we analyze at first the action of the collineation \varnothing of order h of $PG(2,q^h)$, $q=p^r$, p,h primes , p,h>2, fixing PG(2,q) pointwise . If h=5,7 we prove that \varnothing admits three kinds of point and line orbits, as in the case h=3 . The group of the collineations of $PG(2,q^h)$ which fix PG(2,q), acts trasitively on the points and on the lines of \varnothing_3 and \varnothing_3 respectively, precisely when h=3. In Sec.3, we analyze the Grundhöfer construction by a geometric point of view and we obtain that a Figueroa plane of order q^3 can be represented starting from $PG(2,q^3)$ leaving invariant the incidence relation and replacing the subset \mathscr{L}_3 of the lines by a new subset \mathscr{L}_3^* , any new line $r^*\in \mathscr{L}_3^*$ consisting of a subset of the old line r, union a subset of an algebraic curve defined by r.

1. PRELIMINARY RESULTS.

Let $F=GF(q^h)$ be a Galois field , $q=p^r$, p,h primes , p,h>2. The field F can be regarded as an extension K(w) of K=GF(q) , where w is a root of a polynomial $f(x) \in K[X]$, deg f=h, f irreducible over K. Let $\alpha: x \mapsto x^q$ be the automorphism of F fixing the subfield K elementwise. Then $\alpha: x \mapsto x^q = h = |\langle x \rangle|$.

Denote by $\Pi = PG(2,q^h)$ the desarguesian plane over F and by $\Pi = PG(2,q)$ the subplane of Π coordinatized by K with respect to a chosen coordinate. system for Π so that a point P of Π has homogeneous coordinates (x,y,z), $x,y,z \in F$, and a fixed line 1_∞ has equation z=0; denote by α the collineation of Π defined by $(x,y,z)\alpha = (x\tilde{\alpha}, y\tilde{\alpha}, z\tilde{\alpha})$.

Express $\overline{I} = (\Theta, \mathcal{L}, I)$ as an incidence structure such that $\overline{I}_0 = (\Theta_0, \mathcal{L}_0, I_0)$ where $\Theta \subset \Theta$, $\mathcal{L}_0 \subset \mathcal{L}$, $I = I_0 \times \mathcal{L}_0$, I = E.

Let $\mathfrak{S} = \{s, s \times, s \times^2, \dots, s \times^{h-1}\}$ be the orbit of the element $s \in \mathfrak{G} \cup \mathfrak{K}$ under the action of the group $\langle \times \rangle$.

LEMMA 1.1- i) the group $\langle \alpha \rangle$ is planar and fixes precisely the points of Θ_0 (the lines of \mathcal{L}_0);

ii) ∀s ∈ GUL, |Os| =h if and only if s ∉ GUL;

iii) $r \supset \theta P$ for some $P \in r$ if and only if $r \in \mathcal{L}_{0}$ ($P \in \cap \theta r$ for some $r \ni P$ if and only if $P \in \Theta$).

Proof:

A point P=(x,y,z) is in \bigcirc of and only if $X=xz^{-1}$, $Y=yz^{-1}$ are in K when $z\neq 0$ or $X=xy^{-1}$ or $Y=x^{-1}y$ are in K when z=0,

A point P is fixed by & if and only if

 $(x \approx , y \approx , z \approx) = (\lambda x, \lambda y, \lambda z)$; equivalently, $X \approx x$ and $Y \approx x \approx x$, that is, if and only if X,Y are elements of X. Hence x fixes precisely the points of X. The dual argument holds for the lines.

A point P of is fixed by $\alpha^i \in \langle \alpha \rangle$ where i=1,...,h if and only if $X \tilde{\alpha}^i = X$, $Y \tilde{\alpha}^i = Y$; the elements X,Y must belong to a field M such that $K \in M \setminus F$ |M:F| = s, s/h. Therefore s=1 and P is a point of W. The dual arguments hold for the lines.

Let $s \in \mathcal{P} \cup \mathcal{L}$; then $|\Theta_s| \leq h$. We have $|O_s| < h$ if and only if there exist i, j such that $1 \le i < j < h-1$ and s < i = s < j, or, $s \propto j^{-1} = s$, that is (by i)) , if and only if $s \in \mathscr{P}_0 \cup \mathscr{L}_0$. Furthermore,

 $\Theta P \subset r$ if and only if $r=P P \propto = P \propto P \propto^2 = r$; that is, if and only if r is a fixed line under < ∞>; P∈∩ or if and only if P is a point fixed by < <>>.

REMARK 1- From iii) it follows that h/p r.

LEMMA 1.2- Three points of OP are collinear if and only if there exist i,j such that $1 \le i \le j \le h$ and P, P \propto^i , P \propto^j are collinear.

Proof:

Let $P \propto^k$, $P \propto^m$, $P \propto^n$ be three points of ΘP , kemen. Then $P \alpha^k$ $P \propto^m$, $P \propto^n \in r$ where $r \in \mathcal{L}$ if and only if P, $P \propto^i$, $P \propto^j \in r$ where i=m+n-k, j=n+h-k.

REMARK 2- If $P \in r$ and $P \neq P$, then $r=P P \propto P \propto^2$ is equivalent to $r \in \mathcal{L}$.

Assume that an orbit ΘP contains three collinear points. Rrom Lemma 1.2 it follows that this is equivalent to assuming that there exists a line $\in \mathscr{L}$ such that $r=P P \propto P \propto j$ where $1 \leq i < j < h$.

LEMMA 1.3- If a) j=2i or j+i=h or

b) i=h-2s and j=h-s for some s , then r is a line

of \mathscr{L} .

Proof:

The length of the orbit Or is less than h if and only if there exists s, $1 \le s \le h$ such that $r \propto s = P \propto p \propto i + s = r = P P \propto i P \propto j$.

If j=2i, then $r \propto^{i} = P \propto^{i} P \propto^{2i} P \propto^{j+i}$

 $r \cap r \propto^{i} \supset \left\{ P \quad i, P \quad ^{2i} = P \quad j \right\};$ if j+i=h, then $r \propto^{i} = P \propto^{i} P \propto^{2i} P \propto^{j+i}$ and $r \cap r \propto^{i} \supset \left\{ P \propto^{i}, P \propto^{j+i} = P \propto^{h} = P \right\};$ in both cases, r=rex1.

 $P \propto^{s} P \propto^{h-s} P$ and since $r = P P \propto^{i} P \propto^{j} = P P \propto^{h-2s} P \propto^{h-s}$, we have $r \cap r \underset{\triangle}{\overset{s}{\nearrow}} \left\{ \text{ P, } \text{ P} \underset{\triangle}{\swarrow} ^{h-s} \right\} \text{ ; hence } r = r \underset{\triangle}{\nearrow} .$

LEMMA 1.3'- The dual of Lemma 1.3.

PROPOSITION 1.1- If h=5, then the point-orbits OP are of the following three types: 1)trivial; 2) incident a line; 3) a 5-arc; the line-orbits Or are of the following three types: 1') trivial; 2') confluent in a point; 3') a 5- gon.

Let P be a point of \mathbb{T} ; if $P \in \mathscr{P}_0$ then ΘP is trivial; if $P \in \mathbb{F}_0$ where $r \in \mathscr{L}_0$ and $P \notin \mathscr{P}_0$, then $\Theta P \subset r$.

Proof:

Let P be a point of $\mathscr{D} - \mathscr{D}$ such that $P \notin r \forall r \in \mathscr{L}_0$; such point does exist since \mathcal{T}_0 is not a Baer subplane. The orbit θP contains three collinear points if and only if there exist i,j $1 \le i < j < 5$ such that $P, P \propto^i$, $P \propto^j$ are collinear (see Lemma 1.2).

Let $r = P P \propto^i P \propto^j$; by Lemma 1.3,a), we obtain $r = r \propto^i \forall (i,j) \in \{(1,2), 2,4), (1,4), (2,3)\}$, and by b), $r = r \propto^s$, s = 1,2 $\forall (i,j) \in \{(3,4),(1,3)\}$.

This means that for all the possibilities of the choices

i,j $1 \le i < j < 5$ the line r is a line of \mathcal{L}_o , $\theta P \subset r$, a contradiction. Hence there exist no exponents i,j such that P, $P \propto^i$, $P \propto^j \in \theta P$ are collinear. Equivalently, the orbit θP is a 5-arc. The dual arguments hold for the line orbits.

Let ΘP be a point-orbit such that $P \notin \mathscr{P}_o$ and $\Theta P \not\subset r \forall r \in \mathscr{L}$. Assume that ΘP contains three collinear points, that is, there-exists a line $r = P P \propto^i P \propto^j | 1 \le i \le j \le h$ and $|\Theta r| \ne 1$.

Let $\mathscr{S}=(\Theta P, \Theta r, I_{\Theta P x \Theta r})^b \wedge the incidence structure consisting of the points of the orbits of P and the lines of the orbit of r.$

<u>LEMMA 1.4-</u> $\mathscr S$ is an incidence structure with parameters b=v=h , r,k $\geqslant 3$. Proof:

Any line $m \in \theta r$ contains at least three distinct points, namely $P \bowtie^{5}$, $P \bowtie^{i+s}$, $P \bowtie^{j+s}$ as $m = r \bowtie^{s}$ for some s. For any point $Q \in \theta P$, $Q = P \bowtie^{t}$ for some t; hence Q is incident with the following three distinct lines: $r \bowtie^{t}$, $r \bowtie^{s}$ where s = t - i, $r \bowtie^{s'}$ where s' = t - j as image of P under \bowtie^{t} ; of $P \bowtie^{i}$ under $\bowtie^{s'}$, respectively.

PROPOSITION 1.2- If h=7 then the point-orbits OP are of the following three

types: 1) trivial; 2) incident a line; 3) a 7-arc; the line-orbits θr are of the following three types : 1')trivial ; 2') confluent in a point; 3') a 7-gon. Proof:

Let $P \in \mathcal{P}$; if $P \in \mathcal{P}$ then ΘP is trivial; if $P \notin \mathcal{P}$ and $P \in r$, where $r \in \mathcal{L}_{0}$, then $\theta P \subset r$.

Let P be a point of \mathscr{P} - $\mathscr{P}_{_{\mathbf{O}}}$ such that P \notin r \forall r \in $\mathscr{L}_{_{\mathbf{O}}}$. Such a point does exist since T is not a Baer subplane.

Assume that r contains three collinear points, that is, assume that there exists $r = P P \propto^i P \propto^j$, $1 \le i < j < 7$.

From Lemma 1.4 it follows that each of the points P, $P \propto^i$, $P \propto^j$ is incident with two distinct lines of Or other than r ; that is, the lines through P $P \propto^i$, $P \propto^j$ are all the lines of θr since h=7. Hence $r \cap r \propto^s \in \left\{P, P \propto^i\right\}$,

P Poi Poj r Poj \forall s=1,...,6. We prove that \forall t,t'=1,...,6, row to row the row that \forall t,t'=1,...,6, row to row the row to row to

From the above we obtain $R \propto^{-t} \in \left\{ P, P \propto^i, P \propto^j \right\}$ or $R \in \left\{ P \propto^t, P \propto^{i+t}, P \propto^{j+t} \right\}$. Thus any two lines of θr are incident with a point of OP.

Given P and $P \propto^t \in \theta P$ set $r = P P \propto^t$. Since P is incident with three lines $r_1, r_2, r_3 \in \theta r$ and each line of θr contains three points of θP , on these three lines through P lie all points of ΘP . Hence r=r for some i=1,2,3. As $r'=P \propto^S P \propto^{S'}$ is equivalent to $r' \propto^{-S} = P P \propto^{S'-S}$, we conclude that any two of the points of ΘP are incident with a line of θr and $\mathcal{G} = (\theta P, \theta r, I_{/\theta P x \theta r})$ is the projective

Hence the orbit θP cannot have three collinear points.

plane PG(2,2) and $2/q=p^r$, a contradiction.

2. FURTHER PROPERTIES OF THE COLLINEATION @

As in Sec. 1 , let $TT=PG(2,q^h)$, TT=PG(2,q) TT < TTRepresent $\overline{\Pi} = (\mathfrak{G}, \mathcal{L}, \Pi)$. Let α be the collineation of $\overline{\Pi}$ induced by the automorphism of F fixing elementwise K . Thus a fixes elementwise the points and the lines of π . We can partition the sets $\mathfrak S$ and $\mathcal L$ as follows :

$$\begin{split} \mathfrak{S}_1 &= \left\{ \begin{array}{l} \mathtt{P} \in \mathfrak{S} \ / \ \mathtt{P} \alpha = \mathtt{P} \right\} &; \qquad \mathcal{L}_1 &= \left\{ \mathtt{r} \in \mathcal{L} \ / \ \mathtt{r} \alpha = \mathtt{r} \right\} \\ \mathfrak{S}_2 &= \left\{ \begin{array}{l} \mathtt{P} \in \mathfrak{S} \ / \ \mathtt{J} \mathbf{r} \in \mathcal{L}_1 \ \mathtt{s.t.} \ \mathtt{P} \ \mathtt{I} \ \mathtt{r} \right\} ; \ \mathcal{L}_2 &= \left\{ \mathtt{r} \in \mathcal{L} \ / \ \mathtt{J} \mathtt{P} \in \mathfrak{S}_1 \ \mathtt{s.t.} \ \mathtt{r} \ \mathtt{I} \ \mathtt{P} \right\} \\ \mathfrak{S}_3 &= \mathfrak{S} - (\mathfrak{S}_1 \cup \mathfrak{S}_2) &; \qquad \mathcal{L}_3 &= \mathcal{L} - (\mathcal{L}_1 \cup \mathcal{L}_2) \end{array} \end{split}$$

It is clear that $\Pi_{0} = (\theta_{1}, \mathcal{L}_{1}, I)$. Let A be the group of the automorphisms of T which map T onto itself.

- LEMMA 2.1- For any $\sigma \in A_o$ it is:

 i) $\sigma' = \alpha \sigma \alpha^{-1} \in A_o$ and σ' works as σ on \mathcal{T}_o ;

 ii) $\sigma'(\mathfrak{S}_i) = \mathfrak{S}_i$ and $\sigma'(\mathcal{L}_i) = \mathcal{L}_i \quad \forall i=1,2,3.$
 - Proof:
 - i) : for any $P \in \mathcal{C}_1$ set $P' = P\sigma$; it is $P' \in \mathcal{C}_1$ and $P\sigma' = P \alpha\sigma\alpha^{-1} = P \sigma\alpha^{-1} = P' \alpha^{-1} = P' = P\sigma$. The dual arguments hold for the lines of \mathcal{L} , .
- ii) : by i), it follows $O'(\mathcal{P}_1) = \mathcal{P}_1$ and $O'(\mathcal{L}_1) = \mathcal{L}_1$. For any point $P \in \Theta_2$ there exists exactly one line $r \in \mathcal{L}_1$ such that PIr and Po' is a point of ro'=r' where $r' \in \mathcal{L}_1$, by i) , that is Po' is a point of \mathfrak{S}_2 . The dual arguments holds for the lines of \mathscr{L}_2 . Thus $\sigma'(\mathcal{P}_2) = \mathcal{P}_2$ and $\sigma'(\mathcal{L}_2) = \mathcal{L}_2$. Therefore it must be also $\sigma'(\Theta_q) = \Theta_q$ and $\sigma'(\mathcal{L}_q) = \mathcal{L}_q$.

Let $C_0 \subset A_0$ be the subset of the central collineations of $\overline{\mathcal{H}}$ having the center and the axis in \mathbb{I} . It is known that $\langle C \rangle = A$ (see [3]).

LEMMA 2.2- For any $\sigma \in C$ it is $\alpha \sigma = \sigma \alpha$ Proof:

Let $\sigma \in C$; let $C \in \mathcal{C}_1$ and $a \in \mathcal{L}_1$ be the center and

the axis of σ , respectively, and let $P\sigma = Q$ where P, $Q \in \mathbb{G}_1$. Take $\sigma' = \alpha\sigma\alpha^{-1}$. By Lemma 2.1 we have that $\sigma' \in A_0$, $C\sigma' = C$, $\forall A \in \mathbb{G}_1$ s.t. A I a then $A\sigma' = A$ and $\forall r \in \mathcal{L}_1$ s.t. C I r then $r\sigma' = r$; moreover $P\sigma' = Q$. For any line r such that C I r, if $r \notin \mathcal{L}_1$, then $r \in \mathcal{L}_2$, $r \in \mathcal{L}_2$ and C I $r\alpha$; thus $r\sigma' = r\alpha\sigma\alpha^{-1} = r\alpha\alpha^{-1} = r$.

For any point $R \in \mathbb{G}_1$ such that $R \ \mathbf{I} \ \mathbf{a}$, if $R \notin \mathbb{G}_1$ then $R \in \mathbb{G}_2$ and $R\alpha \in \mathbb{G}_2$, $R\alpha \ \mathbf{I} \ \mathbf{a}$; thus $R\sigma' = R\alpha\sigma\alpha^{-1} = R\alpha\alpha^{-1} = R$.

Therefore σ' is a central collineation of $\overline{\Pi}$ having center C, axis a and $P\sigma'=Q$; this means that $\sigma'=\sigma$; equivalently $\alpha\sigma=\sigma\alpha$

Set θ s = $\{s, s\alpha, ..., s\alpha^{h-1}\} \forall s \in G \cup L$.

PROPOSITION 2.1- For any $\sigma \in A_{\sigma}$ it is $\alpha \sigma = \sigma \alpha$ and $(\theta s) \sigma = \theta (s \sigma)$.

Proof:

As $\langle C \rangle = A_0$, for any $\sigma \in A_0$, $\sigma = \sigma_1 \sigma_2 \dots \sigma_r$ where $\sigma_i \in C_0$; it is $\alpha \sigma \alpha^{-1} = \alpha \sigma_1 \dots \sigma_r \alpha^{-1} = \alpha \sigma_1 \alpha^{-1} \alpha \sigma_2 \alpha^{-1} \dots \alpha \sigma_r \alpha^{-1} = \sigma_1 \sigma_2 \dots \sigma_r = \sigma$ $(\theta s) \sigma = \left\{ s, s\alpha, \dots, s\alpha^{h-1} \right\} \sigma = \left\{ s, s\alpha\sigma, \dots, s\alpha^{h-1} \right\} = \left\{ s, (s\sigma)\alpha, \dots, (s\sigma)\alpha^{h-1} \right\} = \theta(s\sigma).$

PROPOSITEON 2.2- For any point $P \in \mathfrak{S}_1$ there are $q^3 - q^2 - 1$ non-identical collineations of C of center P: $q^2 - 1$ of them are elations, $q^3 - 2q^2$ of them are homologies.

The non-identical elations of C_0 of center P are as many are the lines of $\overline{\Pi}_0$ incident P, that is, q+1, times q-1, where q-1 is the number of the points of $\ell \cap \Theta_1$, any $\ell \in \mathcal{L}_1$ $\ell \ni P$, which are different from P and from a chosen and fixed point of $\ell \cap \Theta_1$.

The non identical homologies of C_0 of center P are as many are the lines r of \mathcal{L}_1 incident P, that is, q^2 , times q-2 which is the number of the points Θ_1 of any line ℓ of π_0 through P, different from P, from $\ell \cap r$ and from a fixed point of $\ell \cap \Theta_1$.

Choose and fix any point $P \in \Theta_3$; set $P A_o = \left\{ P \sigma / \forall \sigma \in A_o \right\}$, $r A_o = \left\{ r \sigma / \forall \sigma \in A_o \right\}$.

THEOREM 2.1- PA_o = \mathfrak{G}_3 , rA_o = \mathcal{L}_3 precisely when h=3.

Proof:

Let $\mathfrak{G}' = \left\{ P' = P \sigma / \forall G \in A_o \right\}$; it is $\mathfrak{G}' \subseteq \mathfrak{G}_3$. For any $\sigma \in A_o$ it is $\sigma = \sigma_1 \sigma_2$ where σ_1 , $\sigma_2 \in C_o$.

Consider the subgroup $\Sigma_1 < C_0$ of the collineations of $\overline{\Pi}_0$ of center $P_1 \in \mathcal{P}_1$. It is $P \Sigma_1 \subseteq P P_1 \cap \mathcal{P}_3$ where $P P_1 \in \mathcal{L}_2$ and $P \Sigma_1 = q^3 - q^2$.

For any $P_2 \in \mathcal{C}_1$, $P_2 \neq P_1$ and $\Sigma_2 < C_0$, consider the point $P\sigma_1\sigma_2 \quad \forall \sigma_i \in \Sigma_i$, i=1,2.

3. THE GEOMETRIC INTERPRETATION

Let $F=GF(q^3)$ be a Galois field, $q=p^T$, p prime p>2, and let K=GF(q) be the subfield of F of order q .

Let $\overline{\text{II}} = PG(2,q^3)$ be the Galois plane of order q^3 and $\overline{\text{II}} = PG(2,q)$, TI < TI.

Let α be the collineation of $\overline{\Pi}$ induced by the automorphism of F fixing pointwise the subfield K . The order of α is 3 and α fixes precisely the points and the lines of $\overline{\mathbb{N}}$ (see Sec. 1). We can represent $\overline{11}$ as an incidence structure $\overline{11} = (G, \mathcal{L}, I)$ and we can partition the sets ${\mathfrak S}$ and ${\mathcal L}$ into three classes ${\mathfrak S}$, and ${\mathcal L}$, i=1,2,3 according to the three possible orbits of points, lines respectively, under the action of α (see [2]).

It is $\mathbb{T}_{Q} = (\Theta_1, \mathcal{L}_1, I)$.

The incidence relation I can be partitionned into nine sets

(3.1)
$$P\mu = P \alpha P \alpha^2$$
and a map
$$\mu' : \mathcal{L}_3 \rightarrow \mathcal{G}_3$$

(3.2)
$$r\mu^{\dagger} = r \alpha \Lambda r \alpha^2$$

Take

$$I^{*} = (I - I_{33}) \cup I_{33}$$
 where

 $I^{\#} = (I-I_{33}) \cup I'_{33} \qquad \text{where}$ $(P,r) \in I'_{33} \qquad \text{if and only if} \qquad (r\mu',P\mu) \in I_{33}$ The incidence structure $\Pi^{\#} = (\Theta,\mathcal{L},I^{\#}) \qquad \text{is a Figueroa plane (compare)}$

The projective plane $\mathcal{T}^{\#}$ can be obtained by \mathcal{T} "redefining" the incidence relation between the points of Θ and the lines of \mathcal{L}_3 as follows: (3.3) P I*r if and only if Pµ I rµ'

The relation (3.3) is equivalent to (3.4) P α · P α^2 I r α α r α^2 Applying α^3 to (3.4), we obtain P P α I r α r α .

LEMMA 3.2- a) $r \in \mathcal{L}_3$ is equivalent to $r \cap r \cap q \in \mathcal{P}_3$; b) $|r \cap \mathcal{P}_2| = q^2 + q + 1$, $|r \cap \mathcal{P}_3| = q^h - q^2 - q$.

a): let $Q=r n r \alpha$; it must be $Q \in \overline{G}_2 \cup \overline{G}_3$ (otherwise, $r \in \overline{G}_1$); $Q \in \overline{G}_2$ is equivalent to " $\exists a \in \mathcal{L}_1$ s.t. $Q=a \cap r$ ", or $Q\alpha=a \cap r \alpha$ and $Q=Q\alpha$, a contradiction.
b): let P_0 be a point of $r \cap \overline{G}_1$, then $P_0=r \cap r \alpha$ contradicts a); thus $r \cap \overline{G}_1 = \emptyset$. For any $r_1 \in \mathcal{L}_1$, $Q_1=r_1 \cap r$ is a point of $r \cap \overline{G}_2$. Let $r_2 \in \mathcal{L}_1$, $r_2 \neq r_1$, $Q_2=r_2 \cap r$; if $Q_1=Q_2$ then $Q_1=r_1 \cap r_2$ is a point of $r \cap \overline{G}_1$, a contradiction to a). Therefore $|r \cap \overline{G}_2| = |\mathcal{L}_1|$. The remaining points of r are in \overline{G}_3 .

Let $r \in \mathcal{L}_3$; take Q=r n r α .

LEMMA 3.3- It is :

 $\{P \in \Theta \mid P \mid r\} \cap \{P \in \Theta \mid P \mid r\} = \{P \in \Theta_2 \mid P \mid r\} \cup \{Q, Q\alpha^{h-1}\}.$ Proof:

By Lemma 3.2, we can write $r=r_2 \vee r_3$ where $r_2=\left\{P\in \mathcal{C}_2/\ P\ I\ r\right\}$, $r_3=\left\{P\in \mathcal{C}_3/\ P\ I\ r\right\}$. For any point $P\in r_2$ it is equivalent "PIr" and "PI". For any point $P\in r_3$, $P\ I^*r$ if and only if $P\ P\alpha\ I\ Q$; if $P\neq Q$ and $P\alpha\neq Q$ then $P\ P\alpha\ I\ Q$. Thus there are only two possibility: P=Q or $P\alpha=Q$.

Let us introduce a coordinate system in $\overline{\mathfrak{ll}}$ so that a point P of $\overline{\mathfrak{ll}}$ - r_{∞} , r_{∞} a distinguished line, has non-homogeneaous coordinates (x,y), $x,y\in F$, $(x,y)\in (x,y,1)$, and for any point P' of r_{∞} it is P'=(x,y,0). Moreover, $P\alpha=(x^q,y^q)$ and $P'\alpha=(x^q,y^q,0)$.

Any line r is represented by an equation x=c or y=xm+b and r α by $x=c^q$ or $y=xm^q+b^q$, respectively .

Set $G' = \left\{ P \in \Theta_3 / P I^* r \right\}$; by Lemma 1.1 it follows that $G' = \left\{ P \in \Theta_3 / P P \alpha I Q \right\}$.

PROPOSITION 3.1-6' is a subset of an algebraic curve G of \overline{H} of order q+1.

Proof:

Let P=(x',y') be a point of a'; since $P \in G_3$, then $P\alpha=(x'^q,y'^q)$ where $x'^q \neq x'$ and $y'^q \neq y'$.

Let y=xm+b be the equation of r; y=xm^q+b^q is the equation of ra and $m^q \neq m$, $b^q \neq b$, as $r \in \mathcal{L}_3$ (see Sec. 1).

The equation of the line P Pa is y=xn+c where

$$n=(y'-y'^q)(x'-x'^q)^{-1}$$
 , $c=(x'y'^q-x'^qy')(x'-x'^q)^{-1}$

The line P P α is incident to the point Q if and only if P P α belongs to the bundle (Q) of the lines of $\mathbb T$ with center Q, equivalently if and only if there exists $\lambda, \mu \in F$ such that

(3.5) $\lambda + \mu = 1$, $\lambda m + \mu m^q = n$, $\lambda b + \mu b^q = c$.

The relations (3.5) are equivalent to

$$(m - m^q)(b - b^q)^{-1} = (n - m^q)(c - b^q)^{-1}$$

(3.6)
$$(m-m^q)(x'y'^q-x'^qy')-(b-b^q)(y'-y'^q)+(bm^q-b^qm)(x'-x'^q)=0$$

The equation (3.6) in x',y' represents an algebraic curve \mathcal{C} of \mathcal{T} of order q+1.

As Π'' is a projective plane and a point P=(x,y) belongs to Θ_1 if and only if $P\alpha=(x^q,y^q)=(x,y)=P$ (see Sec. 1) then we can easily prove the following:

PROPOSITION 3.2- For any line r of \mathcal{L}_3 , the curve \mathcal{C} contains all the points of \mathcal{T}_0 and $\mathcal{C}'=\mathcal{C}-(\mathcal{C}\cap\mathcal{C}_1)$ consists of q^3-q^2-q points of \mathcal{C}_3 .

For any line $r \in \mathcal{L}_3$ of equation y=xm+b set: $r_2 = \left\{ (x,y) \in \mathfrak{S}_2 \ / \ y=xm+b \right\} \quad , \quad r_3 = \left\{ (x,y) \in \mathfrak{S}_3 \ / \ y=xm+b \right\} \quad \text{and} \quad$

$$r_2 = \{(x,y) \in G_2 \mid y = xm + b\}$$
, $r_3 = \{(x,y) \in G_3 \mid y = xm + b\}$ and $r_3 = \{P \in G_3 \mid P \mid I^*r\} = \{P = (x,y) \in G_3 \mid (x,y) \text{ satisfy } (3.6)\}$
It is $r = r_2 \cup r_3$.

Take

(3.7)
$$r^* = r_2 \cup r_3^*$$
; $\mathcal{L}_3^* = \{r^* / \forall r \in \mathcal{L}_3\}$; $\mathcal{L}_3^* = \mathcal{L}_1 \cup \mathcal{L}_2 \cup \mathcal{L}_3^*$

As an easy consequence of Lemmas 3.1, 3.3 and of the Propositions 3.1, 3.2 we can state the following

THEOREM 3.1- The Figueroa plane $II^* = (\mathfrak{G}, \mathcal{L}, I^*)$ of order q^3 is represented by $(\mathfrak{G}, \mathcal{L}^*, I)$.

REMARK 1 - The representation of \mathbb{T}^* by $(\mathfrak{S}, \mathcal{L}^*, \mathbf{I})$ starts again from \mathbb{T} ; the subset \mathcal{L}_3 of the lines is replaced by \mathcal{L}_3^* , any new line $\mathbf{r}^* \in \mathcal{L}_3^*$ consisting of two subsets : the subset \mathbf{r}_2 of the "old" line \mathbf{r} and the subset \mathcal{E}^* of the curve \mathcal{E} defined by \mathbf{r} , which replaces the points of $\mathbf{r} \cap \mathfrak{S}_3$.

REMARK 2 - Let α be the collineation of $\overline{\mathbb{N}}$ described by the diagonal matrix A 3x3 over F , A=diag(1, rⁱ, rⁱ⁺¹) where 2i+l=h , r is an element of F of order h . It is A^h = I .

Define a map $\mu: \mathfrak{G} \xrightarrow{i} \mathcal{L}$ where $\mathfrak{G}' \subset \mathfrak{G}$ is the set of the point of $\overline{\mathbb{N}}$ not fixed by α , P μ = P α^i P α^{i+1} and a map $\mu': \mathcal{L}' \xrightarrow{i} \mathfrak{G}$ where $\mathcal{L}' \subset \mathcal{L}$ is the set of the lines of $\overline{\mathbb{N}}$ not fixed by α , s μ' = s α' o s α^{i+1} (compare [2], for i=1). We can easily prove that the mappings μ and μ' are involutorial birational reciprocities as $(x,y,z)\mu = [\theta yz, xz, xy]$ in homogeneous coordinates of points, resp., lines in $\overline{\mathbb{N}}$, where $\theta = -r^{i^2}(1+r^i)$; the analogous holds for μ' .

REFERENCES

- [1] R.FIGUEROA: "A Family of not (V,1)-transitive Projective Planes of order q^3 , $q\ne 1$ (3) and q>2 ", Math.Z. $\underline{181}$ (1981) 471-479.
- [2] T.GRUNDHÖFER: "A Synthetic construction of the Figueroa Planes",

 J.of Geometry, 26 (1986) 191-201.
- [3] K.W.GRUENBERG, A.J.WEIR: "Linear Geometry", Springer-Verlag, N.Y Heidelberg, Berlin (1967).
- [4] C.HERING, H.J.SHAFFER: "On the nex Projective Planes of R.Figueroa",
 Comb. Theory, Proc.Schloss Ruischholzhausen 1982, ed.
 D.Jugnickel and K.Vedder, Berlin, Heidelberg, N.Y.
 (1982) 187-190.
- [5] I.R.SHAFAREVICH: "Basic Algebraic Geometry", Berlin, Heidelberg, N.Y. 1974.

Rita Vincenti Dipartimento di Matematica Università degli Studi Via Vanvitelli 1 06100 PERUGIA (I)