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Abstract
The largest class of hyperstructures is the one which satisfy the

weak properties and they are called Hv-structures introduced in 1990.
The Hv-structures have a partial order (poset) on which gradations
can be defined. We introduce the LV-construction based on the Levels
Variable.
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1 Fundamental Definitions

In a set H is called hyperoperation (abbreviation hyperoperation=hope)
in a set H, is called any map · : H ×H → P(H)− {∅}.
Definition 1.1 (Marty 1934). A hyperstructure (H, ·) is a hypergroup if (·)
is an associative hyperoperation for which the reproduction axiom: hH =
Hh = H,∀x ∈ H, is valid.

Definition 1.2 (Vougiouklis 1990). In a set H with a hope we abbreviate by
WASS the weak associativity : (xy)z ∩ x(yz) 6= ∅, ∀x, y, z ∈ H and by COW
the weak commutativity : xy∩yx 6= ∅,∀x, y ∈ H. The hyperstructure (H, ·) is
called Hv-semigroup if it is WASS, it is called Hv-group if it is reproductive
Hv-semigroup, i.e. xH = Hx = H,∀x ∈ H. The hyperstructure (R,+, ·) is
called Hv-ring if both (+) and (·) are WASS, the reproduction axiom is valid
for (+) and (·) is weak distributive with respect to

(+) : x(y + z) ∩ (xy + xz) 6= ∅, (x+ y)z ∩ (xz + yz) 6= ∅,∀x, y, z ∈ R

.
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Definition 1.3 (Santilly-Vougiouklis). A hyperstructure (H, ·) which con-
tain a unique scalar unit e, is called e-hyperstructure. A hyperstructure
(F,+, ·), where (+) is an operation and (·) is a hyperoperation, is called
e-hyperfield if the following axioms are valid:

1. (F,+) is an abelian group with the additive unit 0,

2. (·) is WASS,

3. (·) is weak distributive with respect to (+),

4. 0 is absorbing element: 0 · x = x · 0 = 0,∀x ∈ F ,

5. there exists a multiplicative scalar unit 1, i.e. 1 · x = x · 1 = x, ∀x ∈ F ,

6. for every x ∈ F there exists a unique inverse x−1, such that

1 ∈ x · x−1 ∩ x−1 · x.

The elements of an e-hyperfield are called e-hypernumbers. In the case
that the relation: 1 = x · x−1 = x−1 · x, is valid, then we say that we have a
strong e-hyperfield.

Construction 1.4. The Main e-Construction. Given a group (G, ·), where
e is the unit, then we define in G, a large number of hyperoperations (⊗) as
follows:

x⊗ y = {xy, g1, g2, . . .},∀x, y ∈ G− {e}, and g1, g2, . . . ∈ G− {e}

g1, g2, . . . are not necessarily the same for each pair (x, y). Then (G,⊗)
becomes an Hv-group, in fact is Hb-group which contains the (G, ·). The
Hv-group (G,⊗) is an e-hypergroup. Moreover, if for each x, y such that
xy = e, so we have x⊗ y = xy, then (G,⊗) becomes a strong e-hypergroup.

For more definitions and applications on Hv-structures, see the books and
papers [1-20].

The main tool to study hyperstructures are the fundamental relations β∗,
γ∗ and ε∗, which are defined, in Hv-groups, Hv-rings and Hv-vector spaces,
resp., as the smallest equivalences so that the quotient would be group, ring
and vector space, resp. Fundamental relations are used for general defini-
tions. Thus, an Hv-ring (R,+, ·) is called Hv-field if R/γ∗ is a field.

Definition 1.5. Let (H, ·), (H, ∗) be Hv-semigroups defined on the same set
H. Then (·) is called smaller than (∗), and (∗) greater than (·), iff there
exists an f ∈ Aut(H, ∗) such that xy ⊂ f(x ∗ y),∀x, y ∈ H. Then we write
· ≤ ∗ and we say that (H, ∗) contains (H, ·). If (H, ·) is a structure then it
is called basic structure and (H, ∗) is called Hb-structure.
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Theorem 1.6 (The Little Theorem). Greater hopes than the ones which are
WASS or COW, are also WASS or COW, respectively.

This Theorem leads to a partial order on Hv-structures, thus we have
posets. The determination of all Hv-groups and Hv-rings is very interesting.
To compare classes we can see the small sets. The problem of enumeration of
classes of Hv-structures was started very early but recently we have results
by using computers. The partial order in Hv-structures restricts the problem
in finding the minimals.

2 Enumeration Theorems

Theorem 2.1 (Chung-Choi). There exists up to isomorphism, 13 minimal
Hv-groups of order 3 with scalar unit, i.e. minimal e-hyperstructures of or-
der 3.

Theorem 2.2 (Bayon-Lygeros).

• There exist, up to isomorphism, 20 Hv-groups of order 2.

• There exist, up to isomorphism, 292 Hv-groups of order 3 with scalar
unit, i.e. e-hyperstructures of order 3.

• There exist, up to isomorphism, 6494 minimal Hv-groups of order 3.

• There exist, up to isomorphism, 1026462 Hv-groups of order 3.

Theorem 2.3 (Bayon-Lygeros).

• There exist, up to isomorphism, 631609 Hv-groups of order 4 with scalar
unit, i.e. e-hyperstructures of order 4.

• There exist, up to isomorphism, 8.028.299.905 abelian Hv-groups of
order 4.

Theorem 2.4 (Bayon-Lygeros).

• The number of abelian Hv-groups of order 4 with scalar unit (i.e. abelian
e-hyperstructures) in respect with their automorphism group are the fol-
lowing
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|Aut (Hv)| 1 2 3 4 6 8 12 24

— — — 32 — 46 5510 626021

• There are 63 isomorphism classes of hyperrings of order 2.

• There are 875 isomorphism classes of Hv-rings of order 2.

• There are 33277642 isomorphism classes of hyperrings of order 3.

In all the above results we construct the poset of hyperstructures of order
2 and 3 in the sense of inclusion for hyperproducts. We compute the Betti
numbers of the poset of Hv-groups of order 2 and we have the following re-
sults: (1, 5), (2, 4), (3, 6), (4, 4), (5, 1). We also compute the Betti numbers
of the poset of hypergroups of order 3 and we have the following results:
(1, 59), (2, 168), (3, 294), (4, 438), (5, 568), (6, 585), (7, 536), (8, 480), (9, 358),
(10, 245), (11, 160), (12, 66), (13, 29), (14, 10), (15, 2), (16, 1).

We explicitly compute the Cayley subtables of the minimal e-hyperstruc-
tures with H = {e, a, b} and we have for the products (aa, ab, ba, bb) the
following results: (b; e; e; a), (eb; a; a; e), (e; ab; ab; e), (a; eb; eb; a), (ab;
ea; ea; e), (H; eb; a; ea), (H; a; eb; ea), (a; H; H; e), (b; H; H; e), (a; H; H;
b), (H; b; a; H), (H; a; b; H), (H; e; ab; H).

3 Construction Theorems

There are several ways to organize such posets using hyperstructure the-
ory. We present now a new construction on posets and we name this LV-
construction since it is based on gradations where the Levels are used as
Variable. Thus LV means Level Variable.

Theorem 3.1. The LV-Construction I
Consider the set Pn of all Hv-groups defined on a set of n elements. Take

the following gradation on Pn based on posets:
Level 0 (or grade 0), denoted by g0, is the set of all minimals of Pn. Level

(grade) 1, denoted by g1, is the set of all Hv-groups obtained from minimals
by adding one only element to anyone of the results of the products of two
elements on the minimals of Pn, i.e. of g0. Level 2 (or grade 2), denoted
by g2, is the set of all Hv-groups obtained from minimals by adding only
two elements to anyone of the results of the products of two elements of the
minimals g0. Then inductively the Level k is defined, denoted by gk. In the
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case that an Hv-group is obtained by adding k1 elements of one minimal and
by adding k2 elements of another minimal then we consider that it belongs to
the Level min(k1, k2).

Denote by r the cardinality of the minimals, |g0| = r, and by s the number
of levels. Take any Hv-group with r elements corresponding to the r elements
of g0, so we have an Hv-group (g0, ∗). Then we define a hope on

Pn = g0 ∪ g1∪, . . . ,∪gs−1,

as follows

x⊗ y =

{
x ∗ y, ∀x, y ∈ g0

gκ+λ, ∀x ∈ gκ, y ∈ gλ, where (κ, λ) 6= (0, 0)

Then the hyperstructure (Pn,⊗) is an Hv-group where its fundamental
group is isomorphic to Zs, thus we have

Pn/β
∗ ≈ Zs.

Proof. Let us correspond, numbered, the levels with the elements of Zs :
gi → i, i = 0, . . . , s− 1.

From the definition of (⊗) any hyperproduct of elements from several
levels, apart of g0, equals to only one special set of Hv-groups that constitute
one level. Moreover we have

x⊗ y = g0,∀x ∈ gκ, y ∈ g−κ, for any κ 6= 0.

That means that the elements of g0are β*-equivalent. Therefore all elements
of each level are β∗-equivalent and there are no β∗-equivalent elements from
different levels. That proves that

Pn/β
∗ ≈ Zs.

The above is a construction similar to the one from the book [15, p.27]
A generalization of the above construction is the following:

Theorem 3.2. The LV-Construction II
Consider a graded finite poset with n elements: Pn = g0∪g1∪, . . . ,∪gs−1,

with s levels (grades) g0,g1, . . . ,gs−1, such that

s−1∑
i=0

|gi| = n.
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Denoting |g0| = r, we consider two Hv-groups (E, ·) and (S, ∗) such that
|E| = r, |S| = s and moreover S has a unit single element e. Then we
take 1:1 maps from E onto g0 and from S onto {g0,g1, . . . ,gs−1}, so we
obtain two Hv-groups: (g0, ·) and

(
G = {g0,g1, . . . ,gs−1}, ∗

)
where E = g0

corresponds to the single element e. We define a hope on Pn as follows:

x⊗ y =

{
x · y, ∀x, y ∈ g0

gκ ∗ gλ, ∀gκ,gλ ∈ G, where (κ, λ) 6= (0, 0)

Then the hyperstructure (Pn,⊗) is an Hv-group where its fundamental group
is isomorphic to the fundamental group of (S, ∗), therefore we have

(Pn,⊗)/β∗ ≈ (S, ∗)/β∗.

Proof. From the reproductivity of (G, ∗), for each gκ, κ 6= 0, there exists a
gλ such that g0 ∈ gκ ∗ gλ. But g0 is a single element of (S, ∗), therefore we
have g0 = gκ ∗ gλ. Then, by the definition, for any x ∈ gκ, y ∈ gλ we have,
x⊗ y = g0. Therefore, all the elements of g0 are β∗-equivalent. On the other
side, from the definition, all elements of each level are β*-equivalent and
they are β∗-equivalent elements with different levels if and only if they are
β∗-equivalent in (G, ∗). In other wards they follow exactly the β∗-equivalence
of (G, ∗).

That proves that
(Pn,⊗)/β∗ ≈ (S, ∗)/β∗.

With this LV-construction we can define the poset for Hv-groups of order
2. So we get a non-connected poset with Betti numbers for the two subposets
(1,4), (2,4), (3,1) and (1,1), (2, 4), (3,6).
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