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Abstract

The uniqueness problems of an entire functions that share a nonzero
finite value have been studied and many results on this topic have
been obtained. In this paper we prove a uniqueness theorem for an
entire function, which share a linear polynomial, in particular fixed
points, with its higher order derivatives.
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1 Introduction, Definitions and Results
Let f be a non-constant meromorphic function in the open complex plane

C. A meromorphic function a = a(z) is called a small function of f if T (r, a) =
S(r, f), where T (r, f) is the Nevanlinna characteristic function of f and S(r, f) =
◦{T (r, f)}, as r →∞, possibly outside a set of finite linear measure.

Let f and g be two non-constant meromorphic functions and a = a(z) be a
polynomial. We say that f and g share a CM if f − a and g − a have the same
zeros with same multiplicities. On the other hand, we say that f and g share a IM
if f − a and g − a have the same zeros ignoring multiplicities. We express the
CM sharing and IM sharing respectively by the notations f = a 
 g = a and
f = a⇔ g = a.

Let zk(k = 1, 2, . . .) be zeros of f − a and tk be the multiplicity of the zero
zk. If zk(k = 1, 2, . . .) are also zeros of g− a and the multiplicity of the zero zk is
at least tk then we use the notation f = a→ g = a.

For standared definitions and notations of the distribution theory we refer the
reader to Hayman [1964].

The problem of uniqueness of meromorphic functions sharing values with
their derivatives is a special case of the uniqueness theory of meromorphic func-
tion. There are some results related to value sharing.

In the begining, Jank, Mues and Volkmann Jank et al. [1986] considered the
situation that an entire function shares a nonzero value with its derivatives and
they prove the following result.

Theorem A. Jank et al. [1986]. Let f be a non-constant entire function and a be
a non-zero finite value. If f , f (1) and f (2) share a CM, then f ≡ f (1).

Following example shows that in Theorem A the second derivative cannot be
replaced by any higher order derivatives.

Example 1.1. Let k(≥ 3) be an integer and ω(6= 1) is a (k−1)th root of unity. We
put f = eωz + ω − 1. Then f , f (1) and f (k) share the value ω CM, but f 6≡ f (1).

On the basis of this example, Zhong improved Theorem A by considering
higher order derivetives in the following way.

Theorem B. Let f be a non-constant entire function and a be a non-zero finite
number. Also let n(≥ 1) be a positive integer. If f and f (1) share the value a CM,
and if f (n)(z) = f (n+1)(z) = a whenever f(z) = a, then f ≡ f (n).

In 2002, Chang and Fang [2002] extendeed Theorem A by considering shared
fixed points.
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Theorem C. Chang and Fang [2002]. Let f be a non-constant entire function. If
f , f (1) and f (2) share z CM, then f ≡ f (1).

Later in 2003, Wang and Yi [2003] improved Theorem A and generalize The-
orem B by considering higher order derivatives in the following way.

Theorem D. Wang and Yi [2003]. Let f be a non-constant entire function and
a be a non-zero finite constant. Also let m and n be positive integers satisfying
m > n. If f and f (1) share the value a CM, and if f (m)(z) = f (n)(z) = a
whenever f(z) = a, then

f(z) = Aeλz + a− a

λ
,

where A(6= 0) and λ are constants satisfying λn−1 = 1 and λm−1 = 1.

In this paper we improve Theorem D by considering the situation when a non-
constant entire function f shares a linear plynomial a(z) = αz + β, α( 6= 0) and
β are constants, with higher order derivatives. The main result of the paper is the
following theorem.

Theorem 1.1. Let f be a non-constant entire function and a(z) = αz + β be a
polynomial, where α(6= 0) and β are constants. Also let m amd n be two positive
integers satisfying m > n > 1. If

f(z) = a(z) 
 f (1)(z) = a(z)

and

f(z) = a(z)→ f (m)(z) = f (n)(z) = a(z),

then

f(z) = Cez

or

f(z) = Ceλz + a(z)− a(z)

λ
+
α(1− λ)

λ2
,

where C and λ are non-zero constants.
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2 Lemmas
In this section we state some necessary lemmas.

Lemma 2.1. Ngoan and Ostrovskii [1965]. Let f be an entire function of order
at most 1 and k be a positive integer, then

m

(
r,
f (k)

f

)
= o(log r),

as r →∞.

The above lemma motivates us to prove the following:

Lemma 2.2. Let f be an entire function of finite order and k be a positive integer.
Then for any small function a(z) with respect to f(z),

m

(
r,
f (k)(z)− a(k)(z)

f(z)− a(z)

)
= o(log r),

as r →∞.

Proof. Let g(z) = f(z)− a(z). Then

g(k)(z) = f (k)(z)− a(k)(z).

Now by Lemma 2.1 and using above equality, we have

m

(
r,
g(k)(z)

g(z)

)
= o(log r),

as r →∞. This implies

m

(
r,
f (k)(z)− a(k)(z)

f(z)− a(z)

)
= o(log r),

as r →∞. This proves the lemma.

Lemma 2.3. Clunie [1962]. Let f be a transcendental meromorphic solution of
the equation

fnP (f) = Q(f),

where P (f) and Q(f) are polynomials in f and its derivatives with meromorphic
coefficients aj (say). If the total degree of Q(f) is at most n, then

m(r, P (f)) ≤
∑
j

m(r, aj) + S(r, f).
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Lemma 2.4. Chen and Li [2014]. Let a(z) be an entire function of finite order
and Q(z) be a non-constant polynomial. If f is an entire solution of the equation

f (k) − eQ(z)f = a(z)

such that ρ(f) > ρ(a), then ρ(f) =∞.

We use this Lemma to prove the following one.

Lemma 2.5. Let f be a non-constant entire function of finite order and a(z) =
αz+β be a polynomial, where α(6= 0) and β are constant. Also let k be a positive
integer. If f(z) and f (k)(z) share a(z) CM, then

f (k)(z)− a(z)

f(z)− a(z)
≡ c, (2.1)

for some nonzero constant c.

Proof. Since f has finite order and since f(z) and f (k)(z) share a(z) CM, it fol-
lows from the Hadamard factorization theorem that

f (k)(z)− a(z)

f(z)− a(z)
≡ eQ(z), (2.2)

where Q(z) is a polynomial.
Suppose that F (z) = f(z)− a(z). Then F (k)(z) = f (k)(z).
From (2.2) and above equality, we have

F (k)(z)− eQ(z)F (z) = a(z).

If Q(z) is non-constant, then from above equality and by Lemma 2.4, we get
F has infinite order. Since f has finite order, this is impossible. Hence Q(z) is
a constant. Therefore from (2.2), we obtain (2.1) for a non-zero constant c. This
proves the lemma.

Lemma 2.6. Let f be a transcendental entire function of finite order and a(z) =
αz + β be a polynomial, where α(6= 0) and β are constants. Also let m be a
positive integer. If

(i) m
(
r, 1

f(z)−a(z)

)
= S(r, f),

(ii) f(z) = a(z) 
 f (1)(z) = a(z)
and

(iii) f(z) = a(z)→ f (m)(z) = a(z),
then

f(z) = Cez,

where C is a non-zero constant.
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Proof. Let

h(z) =
f (1)(z)− a(z)

f(z)− a(z)
. (2.3)

Since f(z) and f (1)(z) share a(z) CM, we see that h(z) is an entire function.
Now by Lemma 2.1, Lemma 2.2 and from the hypothesis of Lemma 2.6, we

deduce that

T (r, h(z)) = m(r, h(z))

= m

(
r,
f (1)(z)− a(z)

f(z)− a(z)

)
≤ m

(
r,
f (1)(z)− a(1)(z)

f(z)− a(z)

)
+m

(
r,
a(1)(z)− a(z)

f(z)− a(z)

)
+ log 2

= S(r, f). (2.4)

We rewrite (2.3), as

f (1)(z) = h(z)f(z) + a(z)(1− h(z))

= ξ1(z)f(z) + η1(z), (2.5)

where ξ1(z) and η1(z) are defined by

ξ1(z) = h(z), η1(z) = a(z)(1− h(z)).

By (2.5), we have

f (2)(z) = ξ1(z)f (1)(z) + ξ
(1)
1 (z)f(z) + η

(1)
1 (z)

= ξ1(z)[ξ1(z)f(z) + η1(z)] + ξ
(1)
1 (z)f(z) + η

(1)
1 (z)

= [ξ
(1)
1 (z) + ξ1(z)ξ1(z)]f(z) + η

(1)
1 (z) + η1(z)ξ1(z)

= ξ2(z)f(z) + η2(z),

where

ξ2(z) = ξ
(1)
1 (z) + ξ1(z)ξ1(z) and η2(z) = η

(1)
1 (z) + η1(z)ξ1(z).

Now from above equality and using (2.5), we get

f (3)(z) = ξ2(z)f (1)(z) + ξ
(1)
2 (z)f(z) + η

(1)
2 (z)

= [ξ
(1)
2 (z) + ξ1(z)ξ2(z)]f(z) + η

(1)
2 (z) + η1(z)ξ2(z)

= ξ3(z)f(z) + η3(z),
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where

ξ3(z) = ξ
(1)
2 (z) + ξ1(z)ξ2(z) and η3(z) = η

(1)
2 (z) + η1(z)ξ2(z).

Similarly,

f (k)(z) = ξk(z)f(z) + ηk(z), (2.6)

where
ξk+1(z) = ξ

(1)
k (z) + ξ1(z)ξk(z) (2.7)

and

ηk+1(z) = η
(1)
k (z) + η1(z)ξk(z). (2.8)

Puting k = 1 in (2.7), we have

ξ2(z) = ξ
(1)
1 (z) + ξ1(z)ξ1(z)

= h2(z) + h(1)(z).

Again puting k = 2 in (2.7), we get

ξ3(z) = ξ
(1)
2 (z) + ξ1(z)ξ2(z)

=
[
h2(z) + h(1)(z)

](1)
+ h(z)[h2(z) + h(1)(z)]

= h3(z) + h(2)(z) + 3h(z)h(1)(z).

Similarly,

ξ4(z) = h4(z) + h(3)(z) + 4h(z)h(2)(z) + 3
[
2h2(z) + h(1)(z)

]
h(1)(z).

Hence using mathematical induction, one can easily check

ξk(z) = hk(z) + Pk−1(z, h(z)), (2.9)

where Pk−1(z, h(z)) is a polynomial such that total degree degPk−1(z, h(z)) ≤
k−1 in h(z) and its derivatives, and all coefficients in Pk−1(z, h(z)) are constants.

Now putting k = 1 in (2.8), we have

η2(z) = η
(1)
1 (z) + η1(z)ξ1(z)

= [a(z)(1− h(z))](1) + a(z)(1− h(z))h(z)

= −a(z)h2(z)− a(z)h(1)(z) + (a(z)− α)h(z) + α.
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Again putting k = 2 in (2.8), we get

η3(z) = η
(1)
2 (z) + η1(z)ξ2(z)

=
[
−a(z)h2(z)− a(z)h(1)(z) + (a(z)− α)h(z) + α

](1)
+a(z)(1− h(z))(h2(z) + h(1)(z))

= −a(z)h3(z)− a(z)h(2)(z) + [2a(z)− 3a(z)h(z)− 2α]h(1)(z)

+(a(z)− α)h2(z) + αh(z).

Similarly,

= −a(z)h4(z)− a(z)h(3)(z) + [3a(z)− 4a(z)h(z)− 3α]h(2)(z)

+
[
5a(z)h(z)− 5αh(z)− 6a(z)h2(z)− 3a(z)h(1)(z) + 3α

]
h(1)(z)

+(a(z)− α)h3(z) + αh2(z).

Like the previous one, it can be easily verified that

ηk(z) = −a(z)hk(z) +Qk−1(z, h(z)), (2.10)

where Qk−1(z, h(z)) is a polynomial such that total degree degQk−1(z, h(z)) ≤
k − 1 in h(z) and its derivatives, and all coefficients in Qk−1(z, h(z)) are either
constants or polynomial a(z).

From (2.4) and (2.9), for k = 1, 2, · · · , we have

T (r, ξk(z)) = T (r, hk(z) + Pk−1(z, h(z)))

≤ T (r, hk(z)) + T (r, Pk−1(z, h(z))) + log 2

= S(r, f).

Similarly,

T (r, ηk(z)) = S(r, f).

From hypothesis of Lemma 2.6, we have

N

(
r,

1

f(z)− a(z)

)
= T (r, f(z))−m

(
r,

1

f(z)− a(z)

)
+O(1)

= T (r, f(z)) + S(r, f), (2.11)

which implies that f(z)− a(z) must have zeros.
Let zj be a zero of f(z) − a(z) with multiplicity δ(j). Since f(z) = a(z) →

f (m)(z) = a(z), we see that zj is also a zero of f (m)(z) − a(z) with multiplicity
at least δ(j). Hence f(zj) = a(zj) and f (m)(zj) = a(zj).
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It follows from (2.6) that, for k = m,

f (m)(z) = ξm(z)f(z) + ηm(z) (2.12)

and then

a(zj) = a(zj)ξm(zj) + ηm(zj).

Now we shall prove that,

a(z) ≡ a(z)ξm(z) + ηm(z). (2.13)

Otherwise,

a(z)ξm(z) + ηm(z)− a(z) 6≡ 0.

From (2.12), we have

a(z)ξm(z) + ηm(z)− a(z) = (f (m)(z)− a(z))− ξm(z)(f(z)− a(z)).

By the reasoning as mentioned above, we deduce that zj is a zero of (f (m)(z)−
a(z)) − ξm(z)(f(z) − a(z)), that is, a zero of a(z)ξm(z) + ηm(z) − a(z) with
multiplicity at least δ(j). It follows from this and the fact that ξm(z) and ηm(z)
are small functions of f(z),

N

(
r,

1

f(z)− a(z)

)
≤ N

(
r,

1

a(z)ξm(z) + ηm(z)− a(z)

)
≤ T

(
r,

1

a(z)ξm(z) + ηm(z)− a(z)

)
= S(r, f),

which contradicts (2.11). Thus

a(z) ≡ a(z)ξm(z) + ηm(z),

which is (2.13).
Now by induction we prove that

ηk+1(z) + a(z)ξk+1(z) = (a(z)− α)hk(z) +Rk−1(z, h(z)), (2.14)

where Rk−1(z, h(z)) is a polynomial such that degRk−1(z, h(z)) ≤ k − 1 in h(z)
and its derivatives, and all the coefficients in Rk−1(z, h(z)) are constants or poly-
nomial a(z).
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Firstly, from (2.7), (2.8) and for k = 1, we have

η2(z) + a(z)ξ2(z) = η
(1)
1 (z) + η1(z)ξ1(z) + a(z)

[
ξ
(1)
1 (z) + ξ1(z)ξ1(z)

]
= [a(z)(1− h(z))](1) + a(z)(1− h(z))h(z) + a(z)h(1)(z)

+a(z)h2(z)

= a(z)(−h(1)(z)) + α(1− h(z)) + a(z)h(z)− a(z)h2(z)

+a(z)h(1)(z) + a(z)h2(z)

= (a(z)− α)h(z) + α.

Secondly, we suppose that the following equation holds

ηk(z) + a(z)ξk(z) = (a(z)− α)hk−1(z) +Rk−2(z, h(z)).

Now, by (2.7)–(2.10), we deduce that

ηk+1(z) + a(z)ξk+1(z) = η
(1)
k (z) + η1(z)ξk(z) + a(z)(ξ

(1)
k (z) + ξ1(z)ξk(z))

=
[
−a(z)hk(z) +Qk−1(z, h(z))

](1)
+ a(z)(1− h(z))ξk(z)

+a(z)
[
hk(z) + Pk−1(z, h(z))

](1)
+ a(z)h(z)ξk(z)

= −ka(z)hk−1(z)− αhk(z) + [Qk−1(z, h(z))](1) + a(z)ξk(z)

−a(z)h(z)ξk(z) + ka(z)hk−1(z) + a(z) [Pk−1(z, h(z))](1)

+a(z)h(z)ξk(z)

= a(z)
[
hk(z) + (Pk−1(z, h(z)))

]
− αhk(z) + [Qk−1(z, h(z))](1)

+a(z) [Pk−1(z, h(z))](1)

= (a(z)− α)hk(z) +Rk−1(z, h(z)),

which proves (2.14).
From (2.13) and (2.14), we obtain

(a(z)− α)hm−1(z) +Rk−2(z, h(z)) ≡ a(z). (2.15)

Clearly, Rk−2(z, h(z)) 6≡ a(z). Othewise, from (2.3), (2.15) and the hypothesis of
Lemma 2.6, we have a contradiction. Hence by Lemma 2.3 and from (2.15), we
can deduce that h(z) must be constant.

From (2.7) and ξ1(z) = h(z), we have

ξ2(z) = h2(z), ξ3(z) = h3(z), ξ4(z) = h4(z).

Similarly,

ξk(z) = hk(z), for k = 1, 2, . . . . (2.16)
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Now, from (2.8) and η1(z) = a(z)(1− h(z)), we get

η2(z) = (1− h(z))(α + a(z)h(z)),

η3(z) = (1− h(z))(α + a(z)h(z))h(z),

η4(z) = (1− h(z))(α + a(z)h(z))h2(z).

Similarly,

ηk(z) = (1− h(z))(α + a(z)h(z))hk−2(z), for k = 2, 3, . . . . (2.17)

From (2.13), (2.16) and (2.17), we have

a(z) ≡ a(z)hm(z) + (1− h(z))(α + a(z)h(z))hm−2(z)

≡ hm−2(z)
[
a(z)h2(z) + α(1− h(z)) + a(z)h(z)− a(z)h2(z)

]
≡ hm−2(z) [a(z)h(z) + α(1− h(z))] ,

which implies that h(z) = 1.
Hence from (2.3) and h(z) = 1, we can obtain

f (1)(z) = f(z).

This implies

f(z) = Cez.

where C(6= 0) ia a constant. This proof the Lemma 2.6.

3 Proof of the theorem 1.1
First we verify that f(z) cannot be a polynomial. Let f(z) be a polynomial of

degree 1. Suppose that f(z) = A1z + B1, where A1(6= 0) and B1 are constants.
Then f (1)(z) = A1, f (m)(z) ≡ 0 ≡ f (n)(z). Now β−B1

A1−α is the only zero of
f(z) − a(z), A1−β

α
is the only zero of f (1)(z) − a(z) and −β

α
is the only zero of

f (m)(z)−a(z). Since f(z) and f (1)(z) share polynomial a(z) CM and the zeros of
f(z)− a(z) are the zeros of f (m)(z)− a(z), we have A1−β

α
= −β

α
and so A1 = 0,

a contradiction.
Now let f(z) be a polynomial of degree greater than 1. Suppose that deg(f(z)) =

p. Then deg(f(z)− a(z)) = p and deg(f (1)(z)− a(z)) = p− 1, it contradicts the
fact that f(z) and f (1)(z) share polynomial a(z) CM.

Hence f(z) is a transcendental entire function. Thus T (r, a(z)) = S(r, f).
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To prove the theorem let us consider two functions defined as follows.

Φ(z) =
(a(z)− a(1)(z))f (m)(z)− a(z)(f (1)(z)− a(1)(z))

f(z)− a(z)
(3.1)

and

Ψ(z) =
(a(z)− a(1)(z))f (n)(z)− a(z)(f (1)(z)− a(1)(z))

f(z)− a(z)
. (3.2)

Then Φ(z) 6≡ Ψ(z).

We know from the hypothesis of Theorem 1.1 that Φ(z) and Ψ(z) are entire
functions. Then, by Lemma 2.1 and Lemma 2.2, we have

T (r,Φ(z)) = m(r,Φ(z))

= m

(
r,

(a(z)− a(1)(z))f (m)(z)− a(z)(f (1)(z)− a(1)(z))

f(z)− a(z)

)
≤ m

(
r, (a(z)− a(1)(z))

f (m)(z)

f(z)− a(z)

)
+m

(
r, a(z)

(f (1)(z)− a(1)(z))

f(z)− a(z)

)
+ log 2

= S(r, f).

Similarly,

T (r,Ψ(z)) = S(r, f).

We shall the following three cases.

Case 1. First we suppose that Φ(z) 6≡ 0. Then by (3.1), we have

f(z) = a(z) +
1

Φ(z)
{(a(z)− a(1)(z))f (m)(z)− a(z)(f (1)(z)− a(1)(z))}. (3.3)

From (3.1) and (3.2), we get

f (1)(z) =
(a(z)− a(1)(z))

a(z)(Φ(z)−Ψ(z))
(Φ(z)f (n)(z)−Ψ(z)f (m)(z)) + a(1)(z).

Therefore

f (1)(z)− a(z) =
(a(z)− a(1)(z))

a(z)(Φ(z)−Ψ(z))
(Φ(z)f (n)(z)−Ψ(z)f (m)(z))

+a(1)(z)− a(z). (3.4)
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First we suppose that m > n > 2. Then from (3.4), we get

1

f (1)(z)− a(z)
=

1

a(z)(Φ(z)−Ψ(z))

(Φ(z)f (n)(z)−Ψ(z)f (m)(z))

f (1)(z)− a(z)

+
1

a(1)(z)− a(z)
. (3.5)

Using Lemma 2.1 and from (3.5), we have

m

(
r,

1

f (1)(z)− a(z)

)
= S(r, f). (3.6)

Next we suppose m > n = 2. Then from (3.4), we get

(f (1)(z)− a(z))(Φ(z)−Ψ(z))a(z) = γ(z) + (a(z)− a(1)(z))Φ(z)(f (2)(z)− a(1)(z))

−(a(z)− a(1)(z))Ψ(z)f (m)(z), (3.7)

where

γ(z) = (a(z)− a(1)(z))(Φ(z)a(1)(z)− (Φ(z)−Ψ(z))a(z)).

Clearly γ(z) 6≡ 0.
If γ(z) ≡ 0, then

Φ(z) ≡ a(z)

a(z)− a(1)(z)
Ψ(z),

which is a contradiction because Φ(z) and Ψ(z) are entire functions and Ψ(z) 6= 0
when a(z)− a(1)(z) = 0.

Now from (3.7) we get

1

f (1)(z)− a(z)
=

(Φ(z)−Ψ(z))a(z)

γ(z)
− a(z)− a(1)(z)

γ(z)
Φ(z)

f (2)(z)− a(1)(z)

f (1)(z)− a(z)

+
a(z)− a(1)(z)

γ(z)
Ψ(z)

f (m)(z)

f (1)(z)− a(z)
. (3.8)

Again using Lemma 2.1 and from (3.8), we get

m

(
r,

1

f (1)(z)− a(z)

)
= S(r, f),

which is (3.6).
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Since Φ(z) 6≡ 0, it follows from (3.3) and Lemma 2.1 that

T (r, f(z)) = m(r, f(z))

= m

(
r, a(z) +

1

Φ(z)
{(a(z)− a(1)(z))f (m)(z)− a(z)(f (1)(z)− a(1)(z))}

)
= m

(
r, a(z) +

(a(z)− α)f (m)(z)− a(z)f (1)(z) + a(z)α

Φ(z)

)
≤ m(r, a(z)) +m

(
r,

(a(z)− α)f (m)(z)− a(z)f (1)(z)

Φ(z)

)
+m

(
r,
αa(z)

Φ(z)

)
+ log 3

= m

r, a(z)f (1)(z)

(a(z)−α)
a(z)

f (m)(z)

f (1)(z)
− 1

Φ(z)

+ S(r, f)

≤ m

r, (a(z)−α)
a(z)

f (m)(z)

f (1)(z)
− 1

Φ(z)

+m(r, f (1)(z)) + S(r, f)

≤ m

(
r,
f (m)(z)

f (1)(z)
− 1

)
+m(r, f (1)(z)) + S(r, f)

= T (r, f (1)(z)) + S(r, f). (3.9)

Applying Lemma 2.1, We can easily see that

T (r, f (1)(z)) = m(r, f (1)(z))

= m

(
r,
f (1)(z)

f(z)
· f(z)

)
≤ m

(
r,
f (1)(z)

f(z)

)
+m(r, f(z))

= m(r, f(z)) + S(r, f)

≤ T (r, f(z)) + S(r, f). (3.10)

Combining (3.9) and (3.10), we have

T (r, f (1)(z)) = T (r, f(z)) + S(r, f). (3.11)

Since f(z) and f (1)(z) share a(z) CM, by using (3.6) and (3.11) together with
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the First Fundamental Theorem, we obtain

m

(
r,

1

f(z)− a(z)

)
= T (r, f(z))−N

(
r,

1

f(z)− a(z)

)
+O(1)

= T (r, f (1)(z))−N
(
r,

1

f (1)(z)− a(z)

)
+ S(r, f)

= m

(
r,

1

f (1)(z)− a(z)

)
+N

(
r,

1

f (1)(z)− a(z)

)
−N

(
r,

1

f (1)(z)− a(z)

)
+ S(r, f)

= m

(
r,

1

f (1)(z)− a(z)

)
+ S(r, f)

= S(r, f).

Hence by Lemma 2.6, we have

f(z) = Cez,

where C(6= 0) is a constant.

Case 2. Now we suppose that Ψ(z) 6≡ 0. Then following the similar argu-
ments of Case-1 and using Lemma 2.6, we have

f(z) = Cez.

where C(6= 0) is a constant.

Case 3. Finally we suppose that Φ(z) ≡ 0 and Ψ(z) ≡ 0. Then from (3.1)
and (3.2), we get

(a(z)− a(1)(z))f (m)(z)− a(z)(f (1)(z)− a(1)(z)) ≡ 0 (3.12)

and

(a(z)− a(1)(z))f (n)(z)− a(z)(f (1)(z)− a(1)(z)) ≡ 0. (3.13)

Now subtracting (3.13) from (3.12), we have

(a(z)− a(1)(z))(f (m)(z)− f (n)(z)) ≡ 0.

Since a(z) 6≡ a(1)(z), we get

f (m)(z) ≡ f (n)(z).
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Solving this we have

f(z) = p0 + p1e
t1z + p2e

t2z + · · ·+ pm−ne
tm−nz,

where t1, t2, · · · , tm−n are distinct (m − n)th roots of unity and p0, p1, p2, · · ·
pm−n are constants.

Since f(z) and f (1)(z) share a(z) CM, applying Lemma 2.5, we get

f (1)(z)− a(z)

f(z)− a(z)
= λ,

for some nonzero constant λ.
Solving above equality, we obtain

f(z) = Ceλz + a(z)− a(z)

λ
+
α(1− λ)

λ2
,

where C(6= 0) is a constant. This completes the proof of Theorem 1.1.

4 Conclusions
After the above discussion we arrive at the conclusion that if an entire function

and its first derivative share a linear polynomial with counting multiplicity and it
partially shares the linear polynomial with its two higher order derivatives then
the funtion is either one of the following two forms.
(i) f(z) = Cez ,
(ii) f(z) = Ceλz + a(z)− a(z)

λ
+ α(1−λ)

λ2
,

where C and λ are non-zero constants.
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