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Abstract  

With 𝒕 ∈ ℕ we define the sets 𝑲𝒕 and 𝑲𝒕
∗ containing all positive integers that 

converge to 1 in t iterations in the form of Collatz algorithm. The following are 

the properties of the {𝑲𝒕}𝒕∈ℕ and {𝑲𝒕
∗}𝒕∈ℕ: countability, empty intersection 

between the elements of the same family, and - at the end of the work - we 

conjecture that both of the two families are a partition of ℕ𝟎. We demonstrate 

also that each set  𝑲𝒕 and 𝑲𝒕
∗ is the union of two sets, a set includes even positive 

integers, the other, if it is non-empty, includes odd positive integers different 

from 1 and we go on proving that the maximum of each set  𝑲𝒕 and 𝑲𝒕
∗ is 2t and 

that 𝑲𝒕 ∩ 𝑲𝒕
∗ = {𝟐𝒕}. 
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1 Introduction  

Let us consider the Collatz conjecture (Leggerini, 2004), also known as the 

3𝑛 + 1  problem. We start from a positive integer n, if it is even we divide it by 

two, if it is odd we multiply it by three and add one to it, then we start over by 

applying the same rules on the number obtained. For example, starting from 3 

the sequence is generated: 3, 10, 5, 16, 8, 4, 2, 1. In the second form of the 

algorithm of 3𝑛 + 1 we calculate 
3𝑛+1

2
 if n is odd. With 3 we obtain the sequence 

3, 5, 8, 4, 2, 1. It is conjectured that, from any positive integer we start, the 

sequences always arrive at 1 in a finite number of steps. It seems that all 

trajectories fall into the banal cycle 4, 2, 1 if n > 2. The conjecture has not yet 

been proven and many mathematicians believe the question be undecidable 

(Conway, J. H, 1972). By applying the algorithm to a positive integer n, a 

sequence of integers is generated which we will call a sequence or trajectory 

of n which we will denote with 𝑇(𝑛) (оr 𝑇∗(𝑛) with the second form of the 

algorithm). For example 𝑇(5) = {5,16,8,4,2,1} and 𝑇∗(3) = {3,5,8,4,2,1}. Let 

ℕ = {0, 1, 2 … } and ℕ0 = {1, 2, 3 … }. If 𝑖 ∈ ℕ and 𝑛 ∈ ℕ0, we denote by 𝑇𝑖(𝑛) 

the element of place i in the trajectory 𝑇(𝑛). If 𝑖 = 0 we set 𝑇0(𝑛) = 𝑛. The 

same meaning will have 𝑇𝑖
∗(𝑛). For example 𝑇0(5) = 5, 𝑇3(5) = 4,  𝑇2

∗(3) = 8. 

We define convergent a trajectory that contains the number 1. In any trajectory 

containing 1 we will ignore the terms subsequent.  If the trajectory generated by 

the integer n converges we will say that the number n converges. Any number 

of a trajectory will be treated as a positive integer. The term ”t-convergent” will 

be equivalent to ”convergent in t iterations”. We will call the number t the 

convergence time. The notation 𝑘𝑡 will indicate that the positive integer k is t-

convergent. In the following TC will be the set of convergence times of the 

converging positive integers. 

  

 

2  The two forms of Collatz Conjecture 

First form. With 𝑛 ∈ ℕ0 e 𝑖 ∈ ℕ0 the algorithm is the iteration of the 

function: 

 

              𝑇𝑖(𝑛) = {
𝑇𝑖−1(𝑛)

2
     if  𝑇𝑖−1(𝑛) ≡ 0(𝑚𝑜𝑑2)

3 ⋅ 𝑇𝑖−1(𝑛) + 1     if  𝑇𝑖−1(𝑛) ≡ 1(𝑚𝑜𝑑2)
     (2.1) 

 

with 𝑇0(𝑛) = 𝑛 if  𝑖 = 0. 

Second form. With 𝑛 ∈ ℕ0 and 𝑖 ∈ ℕ0, the algorithm is the iteration of the 

function: 
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              𝑇𝑖
∗(𝑛) = {

𝑇𝑖−1
∗ (𝑛)

2
     if  𝑇𝑖−1

∗ (𝑛) ≡ 0(𝑚𝑜𝑑 2)

3𝑇𝑖−1
∗ (𝑛)+1

2
     if  𝑇𝑖−1

∗ (𝑛) ≡ 1(𝑚𝑜𝑑 2)
    (2.2) 

 

with 𝑇0
∗(𝑛) = 𝑛  𝑖𝑓 𝑖 = 0. 

   

3  Construction of the sets K 

Let us put in the same set 𝐾𝑡 the totality of positive integers t-convergent  

with the algorithm in the first form: 

 

              ∀𝑡 ∈ ℕ, 𝐾𝑡 = {𝑘 ∈ 𝑁0: 𝑘 = 𝑘𝑡}.                                                               (3.1) 

 

For example, applying the algorithm in the first form: 

 

𝐾0 = {1} because 1 converges to 1 in zero iterations;  

𝐾1 = {2} because 2 converges to 1 in an iteration;  

𝐾2 = {4} because 4 converges to 1 in two iterations; 

                    …      …      …      …                                            

 

If the Collatz algorithm is used in the second form, in (3.1) we will add to 𝐾𝑡 

and its elements the symbol ∗, that is: 

 

               ∀𝑡 ∈ ℕ, 𝐾𝑡
∗ = {𝑘∗ ∈ ℕ0: 𝑘∗ = 𝑘𝑡

∗}.      (3.2) 

 

Proposition 3.1. (Basic) 

∀𝑡 ∈ ℕ, 𝐾𝑡 e 𝐾𝑡
∗ are non-empty. 

 

Proof. Trivially: whatever 𝑡 ∈ ℕ, the number 2𝑡 converges to 1 in t iterations, 

hence in 𝐾𝑡 there is at least 2𝑡. For the same reason 𝑘𝑡
∗ is also non-empty. □ 

 

 

We consider the set TC of all times of convergence. Since each 𝑡 ∈ ℕ can be 

associated with a 𝐾𝑡 and a 𝐾𝑡
∗ by means of 2𝑡 and vice versa, we can state that 

𝑇𝐶 = ℕ and that the families {𝐾𝑡}𝑡∈ℕ and {𝐾𝑡
∗}𝑡∈ℕ are countable.  

 

The following corollaries then hold. 

 

Corollary 3.2. 

Any positive or null integer is a time of convergence. 
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Corollary 3.3. 

Each of the families {𝐾𝑡}𝑡∈ℕ and {𝐾𝑡
∗}𝑡∈ℕ is countable. 

 

Proposition 3.4.  

If 𝑡1 𝑎𝑛𝑑 𝑡2, with 𝑡1 ≠ 𝑡2, are in the set TC, then it results: 

 

 i)       𝐾𝑡1
∩ 𝐾𝑡2

= ∅ 

 i*)      𝐾𝑡1
∗ ∩ 𝐾𝑡2

∗ = ∅ . 

 

Proof. i) Algorithm in the first form. By Proposition 3.1, 𝐾𝑡1
and 𝐾𝑡2

 are 

non-empty. Assume that 𝐾𝑡1
∩ 𝐾𝑡2

≠ ∅ , with 𝑡1 ≠ 𝑡2. If 𝑘 ∈ 𝐾𝑡1
∩ 𝐾𝑡2

 then k 

must converge in the same number of iterations, so 𝑡1 = 𝑡2, against the 

hypothesis. Therefore 𝐾𝑡1
∩ 𝐾𝑡2

= ∅ . • 

i*) Algorithm in the second form. The proof is similar to the previous one: 

just insert the asterisk to the sets 𝐾𝑡 .  □ 

 

Each family {𝐾𝑡}𝑡∈ℕ and {𝐾𝑡
∗}𝑡∈ℕ divides ℕ0 into classes that we cannot 

consider at the moment of equivalence. 

 

4 Decomposition of sets K 

Let 𝑡 ∈ ℕ0. Applying the first form of the Collatz algorithm we will prove 

that each set 𝐾𝑡 is formed by a set 𝐴𝑡 and a set 𝐵𝑡, that is 𝐾𝑡 = 𝐴𝑡 ∪ 𝐵𝑡 with 𝐴𝑡  

containing only even numbers and 𝐵𝑡 empty or containing only odd numbers 

different from 1. Applying the second form of the Collatz algorithm we will 

prove that 𝐾𝑡
∗ = 𝐴𝑡

∗ ∪ 𝐵𝑡
∗  with 𝐴𝑡

∗ containing only even numbers and 𝐵𝑡
∗ empty 

or containing only odd numbers different from 1. We will also prove that the 

elements of 𝐾𝑡 can be obtained from all the elements of 𝐾𝑡−1 and the elements 

of 𝐾𝑡
∗ can be obtained from all elements of 𝐾𝑡−1

∗ . If t = 0 it is 𝐾0 = 𝐾0
∗ = {1} 

and therefore 2𝐾0 = 2𝐾0
∗ = {2} = 𝐾1 = 𝐾1

∗. Some B sets are empty such as sets 

𝐵1, 𝐵1
∗, 𝐵2, 𝐵2

∗,  𝐵3,  𝐵3
∗, 𝐵4, 𝐵4

∗, 𝐵6, 𝐵8, 𝐵10. I don't know if there are other empty 

B sets. In this study 𝐴0 = {1} , 𝐴0
∗ = {1} , 𝐵0 = ∅ and 𝐵0

∗ = ∅ . 
 

Let t ∈ ℕ. Here we will assume that 𝐾𝑡+1 is made up of two sets of numbers: 

 

1) by the doubles of the numbers of 𝐾𝑡; 

2) from the integers 𝑏 ≠ 1 which are odd solutions in ℕ0 of the equation   3𝑏 +

1 = 𝑘𝑡 , with 𝑘𝑡 ∈ 𝐾𝑡 , 𝑘𝑡  even and 𝑘𝑡 ≠ 4; 

and that 𝐾𝑡+1
∗  is formed by two sets of numbers:  
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1*) by the doubles of the numbers of 𝐾𝑡
∗; 

2*) from the integers 𝑏∗ ≠ 1 which are odd solutions in ℕ0 of the equation 

3𝑏∗+1

2
= 𝑘𝑡

∗ , with 𝑘𝑡
∗ ∈ 𝐾𝑡

∗ and 𝑘𝑡
∗ ≠ 2. 

 

Called P the set of even positive integers, we denote by 2𝐾𝑡 (set of even 

derivatives of the first type or set of even derivatives of 𝐾𝑡 or set of doubles of 

the first type) the set obtained by doubling all the numbers of 𝐾𝑡: 

              ∀𝑡 ∈ ℕ, 2𝐾𝑡 = {𝑎 ∈ 𝑃: 𝑎 = 2𝑘𝑡 , 𝑘𝑡 ∈ 𝐾𝑡}.     (4.1) 

We denote by 2𝐾𝑡
∗ (set of even derivatives of the second type or set of even 

derivatives of 𝐾𝑡
∗ or set of doubles of the second type) the set obtained by 

doubling all the numbers of 𝐾𝑡
∗: 

 

              ∀𝑡 ∈ ℕ, 2𝐾𝑡
∗ = {𝑎∗ ∈ 𝑃: 𝑎∗ = 2𝑘𝑡

∗, 𝑘𝑡
∗ ∈ 𝐾𝑡

∗} .                           (4.2) 

 

We denote by 𝐵𝑡+1 (set of odd derivatives of 𝐾𝑡 or set of odd derivatives of 

the first type) the numbers with the property 2) and by 𝐵𝑡+1
∗  (set of odd 

derivatives of 𝐾𝑡
∗ to set of odd derivatives of second type) numbers with the 

property 2∗). Called D the set of integers odd positive, the set of odd derivatives 

of 𝐾𝑡 we have: 

 

          ∀𝑡 ∈ ℕ, 𝐵𝑡+1 = {𝑏 ∈ 𝐷 − {1}: 3𝑏 + 1 = 𝑘𝑡 , 𝑘𝑡 ∈ 𝐾𝑡 ∩ 𝑃, 𝑘𝑡 ≠ 4}  (4.3) 

 

while the set of odd derivatives of 𝐾𝑡
∗ is 

 

           ∀𝑡 ∈ ℕ, 𝐵𝑡+1
∗ = {𝑏∗ ∈ 𝐷 − {1}:

3𝑏∗+1

2
= 𝑘𝑡

∗, 𝑘𝑡
∗ ∈ 𝐾𝑡

∗, 𝑘𝑡
∗ ≠ 2} .  (4.4) 

  

Theorem 4.1. (Theorem of the inclusion of doubles) 

 The even derivative of 𝐾𝑡 (𝐾𝑡
∗) is contained in 𝐾𝑡+1(𝐾𝑡+1

∗ ), that is: 

 

           a) ∀𝑡 ∈ ℕ, 2𝐾𝑡 ⊆ 𝐾𝑡+1        b) ∀𝑡 ∈ ℕ, 2𝐾𝑡
∗ ⊆ 𝐾𝑡+1

∗ .              (4.5) 

 

Proof. By Corollary 3.2 every t is a time of convergence. Given 𝑡 ∈ ℕ, we 

consider 𝐾𝑡 (which is non-empty by Proposition 3.1). Trivially: ∀𝑘𝑡 ∈ 𝐾𝑡, the 

trajectory 𝑇(𝑘𝑡) = {𝑘𝑡, … ,4,2,1} is contained in the trajectory 𝑇(2𝑘𝑡) =
{2𝑘𝑡 , 𝑘𝑡, … ,4,2,1}. This means that 2𝑘𝑡 is (t+1)-convergent, so 2𝑘𝑡 ∈ 𝐾𝑡+1. • 
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If 𝐾𝑡+1 is devoid of odd numbers, only the sign of equality holds. To prove 

it, let's suppose that 𝐾𝑡+1 is devoid of odd numbers and that, absurdly, it contains 

an even number 𝑎𝑡+1 which does not is double of any number of 𝐾𝑡. Since the 

even 𝑎𝑡+1  is also is (t+1)-convergent, the trajectory 𝑇(𝑎𝑡+1) =

{𝑎𝑡+1,
𝑎𝑡+1

2
, … ,4,2,1} will contain the trajectory 𝑇 (

𝑎𝑡+1

2
, ) =

{
𝑎𝑡+1

2
, … ,4,2,1} so 

𝑎𝑡+1

2
 is  t-convergent, that is 

𝑎𝑡+1

2
∈ 𝐾𝑡, against our hypothesis. 

It follows that 2𝐾𝑡 coincides with 𝐾𝑡+1 if this is devoid of odd. Then the relation 

a) of (4.5) holds for the arbitrariness of t. • 

In the case of 2𝐾𝑡
∗ proceed in the same way, mutatis mutandis. □ 

 

 

Theorem 4.2. (Odd derivative theorem of the first type) 

Let 𝑘𝑡 be even and 𝑘𝑡 ≠ 4 . If there is a positive integer b satisfying the equation 

 

              3𝑏 + 1 = 𝑘𝑡                      (4.6) 

 

then 

 

              𝑏 =
𝑘𝑡−1

3
        (4.7) 

 

belongs to 𝐵𝑡+1. 

 

Proof. Let b and 𝐾𝑡 satisfy the hypotheses. Since 𝑏 is odd and different from 

1, its successor is 𝑘𝑡, because to b is applied (2.1), so the trajectory 𝑇(𝑏) =

𝑇 (
𝑘𝑡−1

3
) = {

𝑘𝑡−1

3
, 𝑘𝑡, … ,4,2,1} contains the trajectory 𝑇(𝑘𝑡) = {𝑘𝑡, … ,4,2,1}. 

This means that b converges in  t + 1 iterations, that is 𝑏 ∈ 𝐵𝑡+1. □ 

 

Recall that an odd derivative 𝐵𝑡 either is empty or is formed only by odd 

positive different from 1. 

 

 

Theorem 4.3. (Theorem of strict inclusion of odd derivatives of the first type)  

The odd derivative of 𝐾𝑡(𝐾𝑡
∗) is strictly contained in 𝐾𝑡+1(𝐾𝑡+1

∗ ), that is: 

 

           a) ∀𝑡 ∈ ℕ, 𝐵𝑡+1 ⊂ 𝐾𝑡+1      b) ∀𝑡 ∈ ℕ, 𝐵𝑡+1
∗ ⊂ 𝐾𝑡+1

∗ .    (4.8) 

 

Proof. By Proposition 3.1 every 𝐾𝑡+1(𝐾𝑡+1
∗ ) is non-empty because it contains 

at least the even number 2𝑡+1, therefore 𝐵𝑡+1 even if it were empty could not 

coincide with 𝐾𝑡+1(𝐾𝑡+1
∗ ). □ 
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Theorem 4.4. (Theorem of the union of even and odd derivatives of the first type) 

The set 𝐾𝑡+1 is the union of the set of doubles of 𝐾𝑡 and of the odd derivative of 

𝐾𝑡, that is:  

 

              ∀𝑡 ∈ ℕ, 𝐾𝑡+1 = 2𝐾𝑡 ∪ 𝐵𝑡+1.                                                  (4.9) 

(remarkable equality, algorithm in first form) 

 

Proof. Let us consider 𝐾𝑡, with 𝑡 ∈ ℕ. It is necessary to demonstrate that 

1) there are no other even integers (t+1)-convergent beyond those of 2𝐾𝑡; 

2) the odd numbers (t+1)-convergent  are only those of 𝐵𝑡+1. 

 

We prove 1). We denote by 𝐴𝑡+1 the totality of even positive integers 

converging in t + 1 iterations that we know to be non-empty (each 𝐴𝑡 contains 

at least 2𝑡). It immediately turns out that ∀𝑡 ∈ ℕ, 2𝐾𝑡 ⊆ 𝐴𝑡+1. 

We show that 

              ∀𝑡 ∈ ℕ, 2𝐾𝑡 = 𝐴𝑡+1.                 (4.10) 

If for a fixed 𝑡 ∈ ℕ there were an even 𝑎𝑡+1 ∈ 𝐴𝑡+1 that was not double of any 

positive integer of 𝐾𝑡, it would be absurd because the trajectory 𝑇(𝑎𝑡+1) =

{𝑎𝑡+1,
𝑎𝑡+1

2
, … 4,2,1} would contain the trajectory 𝑇 (

𝑎𝑡+1

2
) = {

𝑎𝑡+1

2
, … ,4,2,1} 

whose seed at 
𝑎𝑡+1

2
∈ 𝐾𝑡 and whose double 𝑎𝑡+1 is in 𝐴𝑡+1, against the 

hypothesis. Hence the strict inclusion cannot hold and, by the arbitrariness of t, 

(4.10) is true. • 

 

We prove 2). With the same fixed  𝑡 ∈ ℕ, we denote by 𝛽𝑡+1 the totality of 

the odd positive integers converging in t + 1 iterations . Obviously we have 

𝐵𝑡+1 ⊆ 𝛽𝑡+1. 

We show that 

 

              ∀𝑡 ∈ ℕ, 𝐵𝑡+1 = 𝛽𝑡+1 .                           (4.11) 

 

If for the fixed t, 𝛽𝑡+1 = ∅,  then also 𝐵𝑡+1 = ∅ and therefore 𝐾𝑡+1 = 2𝐾𝑡, that 

is (4.9) for the arbitrariness of t. 

Otherwise, for fixed t, let 𝛽𝑡+1 ≠ ∅ . If there was an 𝑏𝑡+1 ∈ 𝛽𝑡+1 not coming by 

any even of 𝐾𝑡, that is such that 𝑏𝑡+1 ∉ 𝐵𝑡+1 , then an absurdity would follow 

because the trajectory 𝑇(𝑏𝑡+1) = {𝑏𝑡+1, 3𝑏𝑡+1 + 1, … ,4,2,1} would contain the 

trajectory 𝑇(3𝑏𝑡+1 + 1) = {3𝑏𝑡+1 + 1, … ,4,2,1}  whose even seed 3𝑏𝑡+1 + 1 =
𝑘𝑡 ∈ 𝐾𝑡 , therefore, by Theorem 4.2, 𝑏𝑡+1 ∈ 𝐵𝑡+1 against the hypothesis. For 

this reason strict inclusion cannot be valid and, due to the arbitrariness of t (4.11) 

is true. • 



About two countable families in the finite sets of the Collatz Conjecture 

 

232 

 

 

From 1) and 2) follows the remarkable equality (4.9). □ 

 

By (4.10), (4.9) becomes 

 

              ∀𝑡 ∈ ℕ, 𝐾𝑡+1 = 𝐴𝑡+1 ∪ 𝐵𝑡+1 .                         (4.12) 

(remarkable equality, algorithm in the first form) 

 

If for a given t the derivative 𝐵𝑡+1 of 𝐾𝑡 is empty, we have   

 

              𝐾𝑡+1 = 𝐴𝑡+1.                (4.13) 

 

We now find the numbers of 𝐵𝑡+1
∗ . 

 

Theorem 4.5. (Theorem of the odd derivative of the second type) 

Let 𝑘𝑡
∗ ∈ ℕ0, 𝑘𝑡

∗ ≠ 2 . If there exists the positive integer b satisfying the equation 

 

              3𝑏∗ + 1 = 2𝑘𝑡
∗                           (4.14) 

 

then 

 

              𝑏∗ =
2𝑘𝑡

∗−1

3
                            (4.15) 

 

belongs to 𝐵𝑡+1
∗ . 

 

Proof. Let 𝑘𝑡
∗ and 𝑏∗ satisfy the hypotheses. Since 𝑏∗ is odd and different 

from 1, its successor is 𝑘𝑡
∗,  because (2.2) is applied to 𝑏∗, so the trajectory 

𝑇(𝑏∗) = 𝑇 (
2𝑘𝑡

∗−1

3
) = {

2𝑘𝑡
∗−1

3
, 𝑘𝑡

∗, … ,4,2,1}  contains the trajectory 𝑇(𝑘𝑡
∗) =

{𝑘𝑡
∗, … ,4,2,1} . This means that 𝑏∗ converges in t + 1 iterations, that is 𝑏∗ ∈ 𝐵𝑡+1

∗ . 

□ 

Recall that an odd derivative 𝐵𝑡
∗ o is either empty or is formed only by odd 

positive integers different from 1. 

 

As shown for (4.10) it results 

 

               ∀𝑡 ∈ ℕ, 2𝐾𝑡
∗ = 𝐴𝑡+1

∗                (4.16) 
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where 𝐴𝑡+1
∗   is the totality of the even positive integers  (t+1)-convergent, that 

is of the doubles of the numbers of 𝐾𝑡
∗. Equation (4.16) is demonstrated how it 

is done for the first part of the proof of the Theorem 4.4 by adding the asterisk 

∗ to the 2𝐾𝑡 and 𝐴𝑡 sets. Equation (4.16) will occur in the proof of first part of 

Theorem 4.6. 

 

Theorem 4.6. (Theorem of the union of even and odd derivatives of the second type) 

The set 𝐾𝑡+1
∗  is the union of the set of doubles of 𝐾𝑡

∗ and the odd derivative of 

𝐾𝑡
∗, that is: 

 

              ∀𝑡 ∈ ℕ, 𝐾𝑡+1
∗ = 2𝐾𝑡

∗ ∪ 𝐵𝑡+1
∗  .                                     (4.17) 

(remarkable equality, algorithm in the second form) 

 

Proof. We proceed as in the proof of Theorem 4.4 adding the asterisk ∗ to all 

the sets and considering, in the second part, (
3𝑏𝑡+1

∗ +1

2
) as successor of 𝑏𝑡+1

∗ ∈

𝛽𝑡+1
∗  .   □ 

  

By (4.16), (4.17) can be written 

 

              ∀𝑡 ∈ ℕ, 𝐾𝑡+1
∗ = 𝐴𝑡+1

∗ ∪ 𝐵𝑡+1
∗                (4.18) 

(remarkable equality, algorithm in the second form)  

 

and if, for a certain t, the derivative 𝐵𝑡+1
∗  of  𝐾𝑡+1

∗  it is empty, then 

 

              𝐾𝑡+1
∗ = 𝐴𝑡+1

∗  .                            (4.19) 

 

5 Examples 

To obtain the set  𝐾𝑡+1 it will be necessary to double all the numbers 𝑘𝑡 of 𝐾𝑡 

in order to have 𝐴𝑡+1 and it will be necessary to determine all the numbers 𝑏 ∈
𝐵𝑡+1 starting from the even numbers 𝑘𝑡 of 𝐾𝑡, that is, it will be necessary to 

verify if  𝑘𝑡 − 1 is divisible by three when 𝑘𝑡 is even with 𝑘𝑡 ≠ 4 (Theorem 4.2 

and definition of  𝐵𝑡+1 in (4.3)). 

 

► We determine the sets 𝐾8 and 𝐾9. 

 

𝐾8 

We use the set  𝐾7 = {3,20,21,128} . We have 𝐴8 = 2𝐾7 = {6,40,42,256} . It 

turns out 𝐵8 = ∅ since none of the equations  
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(1) 3b + 1 = 20 

(2) 3b + 1 = 128 

has solutions in ℕ0. Hence 𝐾8 = 𝐴8 ∪ ∅ = {6,40,42,256}.  

𝐾9 

We use the set 𝐾8 = {6,40,42,256}. We have 𝐴9= 2𝐾8 = {12, 80, 84, 512}. We 

solve in ℕ0 the following equations: 

(1) 3b + 1 = 6 

(2) 3b + 1 = 40 

(3) 3b + 1 = 42 

(4) 3b + 1 = 256. 

The first and third equations have no solutions in ℕ0. The second and fourth 

equations have as solutions in ℕ0 13 and 85 respectively, therefore 𝐵9 = {13, 

85}. 

Thus 𝐾9 = 𝐴9 ∪ 𝐵9 = {12,80,84,512} ∪ {13,85} = {12,13,80,84,85,512} . 
 

In the same way they are obtained 

𝐾10 = {4 − 26 − 160 − 168 − 170 − 1024}  

𝐾11 = {48 − 52 − 53 − 320 − 336 − 340 − 341 − 2048}  

𝐾12 = {17 − 96 − 104 − 106 − 113 − 640 − 672 − 680 − 682 − 4096} 

… 

The underlined numbers are the odd derivatives of the previous set. 

  

To obtain the set 𝐾𝑡+1
∗  it will be necessary to double all the numbers 𝑘𝑡

∗ of 𝐾𝑡
∗ 

in order to have 𝐴𝑡+1
∗  and it will be necessary to determine all the numbers 𝑏∗ ∈

 𝐵𝑡+1
∗  starting from each 𝑘𝑡

∗ of 𝐾𝑡
∗, that is, it will be necessary to verify whether 

2𝑘𝑡
∗ − 1   is divisible by three when 𝑘𝑡

∗ ≠ 2 (Theorem 4.5 and definition of 𝐵𝑡+1
∗  

in (4.4)). 

 

► We determine the sets 𝐾5
∗ and 𝐾6

∗. 

 

𝐾5
∗ 

We consider 𝐾4
∗ = {5,16} . Its even derivative is 𝐴5

∗ = {10,32}. Of the two 

equations 
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(1) 
3𝑏∗+1

2
= 5  

(2) 
3𝑏∗+1

2
= 16  

only the first admits in ℕ0 the solution 𝑏∗= 3 therefore 𝐵5
∗ = {3} е 𝐾5

∗ = 𝐴5
∗ ∪

𝐵5
∗ = {3,10,32}. 

 

𝐾6
∗ 

We consider 𝐾5
∗ = {3,10,32} . Its even derivative is 𝐴6

∗ = {6,20,64} . Of the 

three equations 

 

(1) 
3𝑏∗+1

2
= 3  

(2) 
3𝑏∗+1

2
= 10  

(3) 
3𝑏∗+1

2
= 32  

 

only the third has solution 𝑏∗ = 21 in ℕ0. Hence 𝐵6
∗ = {21} е 𝐾6

∗ = 𝐴6
∗ ∪ 𝐵6

∗ =

{6,20,21,64} .  

 

 

In the same way they are obtained 

𝐾7
∗ = {12 − 13∗ − 40 − 42 − 128} 

𝐾8
∗ = {24 − 26 − 80 − 84 − 85∗ − 256} 

𝐾9
∗ = {17∗ − 48 − 52 − 53∗ − 160 − 168 − 170 − 512} 

𝐾10
∗ = {11∗ − 34 − 35∗ − 96 − 104 − 106 − 113∗ − 320 − 336 − 340 − 341∗

− 1024} 

... 

 

The numbers with an asterisk are the odd derivatives of the previous set. 
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6 The maxima of 𝑲𝒕 and 𝑲𝒕
∗

 

By examining the sets K, we can suppose that the number 2𝑡  is the maximum 

of every set 𝐾𝑡 and of every 𝐾𝑡
∗. This is confirmed by the subsequent Theorem 

6.2. The following Lemma 6.1 contains some obvious conclusions. 

 

Lemma 6.1. 

i) If  𝑘𝑡 ∈ 𝐾𝑡 then 2𝑘𝑡 ∈ 𝐴𝑡+1, ∀𝑡 ∈ ℕ  
ii) If 𝑎𝑡 ∈ 𝐴𝑡 then 2𝑎𝑡 ∈ 𝐴𝑡+1, ∀𝑡 ∈ ℕ0  
i∗) If 𝑘𝑡

∗ ∈ 𝐾𝑡
∗ then 2𝑘𝑡

∗ ∈ 𝐴𝑡+1
∗ , ∀𝑡 ∈ ℕ  

ii∗) If 𝑎𝑡
∗ ∈ 𝐴𝑡

∗ then 2𝑎𝑡
∗ ∈ 𝐴𝑡+1

∗ , ∀𝑡 ∈ ℕ0 . 
 

Proof. Recall that (4.10) and (4.16) hold. 

i) Let 𝑘𝑡 ∈ 𝐾𝑡, with 𝑡 ∈ ℕ. The trajectory 𝑇(𝑘𝑡) is contained in the trajectory 

𝑇(2𝑘𝑡) = {2𝑘𝑡, 𝑘𝑡 , … ,4,2,1} because 2𝑘𝑡  is an even that converges in t + 1 

iterations, that is 2𝑘𝑡 ∈ 𝐴𝑡+1. • 

ii) Let 𝑎𝑡 ∈ 𝐴𝑡, with t ∈ ℕ0. Since 𝐴𝑡 ⊆ 𝐾𝑡  is also 𝑎𝑡 ∈ 𝐾𝑡. Applying i) it 

follows that 2𝑎𝑡 ∈ 𝐴𝑡+1 ∀𝑡 ∈ ℕ0. • 

The i∗) and ii∗) prove to be the i) and ii) respectively, just asterisking the sets 

𝐾𝑡, 𝐴𝑡 and their elements.  □ 

 

Theorem 6.2.  (Maxima theorem of 𝐾𝑡 and 𝐾𝑡
∗) 

𝑖) ∀𝑡 ∈ ℕ0, 𝑚𝑎𝑥(𝐾𝑡) = 2𝑡  

i*) ∀𝑡 ∈ ℕ0, 𝑚𝑎𝑥(𝐾𝑡
∗) = 2𝑡. 

 

Proof. i) We will proceed by induction using the remarkable equality (4.12). 

If 𝑡 = 1 then max 𝑚𝑎𝑥(𝐾1) = 21 = 2.  Let us fix a 𝑡 > 1 and let, by inductive 

hypothesis 

 

              𝑚𝑎𝑥(𝐾𝑡) = 2𝑡.         (6.1) 

 

We will prove that it is also 𝑚𝑎𝑥(𝐾𝑡+1) = 2𝑡+1. To do this, it will be necessary 

to prove that 

1) max 𝑚𝑎𝑥(𝐴𝑡+1) = 2𝑡+1 

 and 

2) every number of 𝐵𝑡+1 is less than 2𝑡+1. 
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First part 

1) We show that every number of 𝐴𝑡+1 is less than or equal to 2𝑡+1 and that 

2𝑡+1is in 𝐴𝑡+1. Let 𝑘𝑡 ∈ 𝐾𝑡. Then, by hypothesis (6.1) 

 

              ∀𝑘𝑡 ∈ 𝐾𝑡, 𝑘𝑡 ≤ 2𝑡.         (6.2) 

 

By the i) of Lemma 6.1 

 

              2𝑘𝑡 ∈ 𝐴𝑡+1.          (6.3) 

 

From (6.2) it follows that 

 

              ∀𝑘𝑡 ∈ 𝐾𝑡, 2𝑘𝑡 ≤ 2𝑡+1.                      (6.4) 

 

Since for the inductive hypothesis (6.1) it is 2𝑡 ∈ 𝐾𝑡, then, for the remarkable 

equality (4.12), we have 2𝑡 ∈ 𝐴𝑡, from which, for the ii) of Lemma 6.1, it 

follows that 

 

              2𝑡+1 ∈ 𝐴𝑡+1.         (6.5) 

 

From (6.3), (6.4) and (6.5) we obtain that 𝑚𝑎𝑥(𝐴𝑡+1) = 2𝑡+1.    • 

Second part 

2) If 𝐵𝑡+1 = ∅ from (4.12) it follows that 𝐾𝑡+1 = 𝐴𝑡+1 and from 𝑚𝑎𝑥(𝐴𝑡+1) =
2𝑡+1 (First part) it follows that 𝑚𝑎𝑥(𝐾𝑡+1) = 2𝑡+1. Let 𝐵𝑡+1 ≠ ∅. We show 

that every element 𝑏𝑡+1 of 𝐵𝑡+1 is less than 2𝑡+1. The numbers of 𝐵𝑡+1 are the 

odd numbers of the form (4.7): 

 

              𝑏𝑡+1 =
𝑘𝑡−1

3
𝑐𝑜𝑛 𝑘𝑡 ∈ 𝐾𝑡 𝑎𝑛𝑑 𝑘𝑡 even     (6.6) 

 

 but, from 𝑘𝑡 − 1 < 𝑘𝑡 we get that 

 

              
𝑘𝑡−1

3
< 𝑘𝑡         (6.7) 

 

then from (6.6), (6.7) and (6.1) it follows that 

 

              𝑏𝑡+1 < 𝑘𝑡 ≤ 2𝑡        (6.8) 
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and therefore: ∀𝑏𝑡+1 ∈ 𝐵𝑡+1,  𝑏𝑡+1 < 2𝑡+1, that is 2). From the first and the 

second part it follows that all the numbers of 𝐾𝑡+1 are less than or equal to 

2𝑡+1and this proves the i).  • 

 

i*) We will proceed by induction using the remarkable equality (4.18). If 𝑡 = 1 

then 𝑚𝑎𝑥(𝐾1
∗) = 21=2. Let, by inductive hypothesis, be 

   

              𝑚𝑎𝑥(𝐾𝑡
∗) = 2𝑡 con 𝑡 > 1 .        (6.9) 

 

We will prove that it is also 𝑚𝑎𝑥(𝐾𝑡+1
∗ ) = 2𝑡+1. To do this, it will be necessary 

to prove that 

 

1*) 𝑚𝑎𝑥(𝐴𝑡+1
∗ ) = 2𝑡+1 

 

and 

 

2*) every number of 𝐵𝑡+1
∗  is less than 2𝑡+1 . 

 

First part ∗ 

1*) The proof is similar to that of the first part of  i), just adding the asterisk ∗ 

to the sets 𝐴𝑡+1, 𝐾𝑡+1 and their elements. Therefore 2𝑡+1 is the maximum of 

𝐴𝑡+1
∗  and 1*) is proved. • 

Second part ∗ 

2*) If 𝐵𝑡+1
∗ ≠ ∅ from 4.18) it follows that 𝐾𝑡+1

∗ = 𝐴𝑡+1
∗  and from 𝑚𝑎𝑥(𝐴𝑡+1

∗ ) =
2𝑡+1 (First part*) it follows that 𝑚𝑎𝑥(𝐾𝑡+1

∗ ) = 2𝑡+1. 

Let 𝐵𝑡+1
∗ ≠ ∅. We show that every 𝑏𝑡+1

∗  of 𝐵𝑡+1
∗  is less than 2𝑡+1. The numbers 

of 𝐵𝑡+1
∗  are the odd numbers of the form (4.15): 

 

              𝑏𝑡+1
∗ =

2𝑘𝑡
∗−1

3
, with 𝑘𝑡

∗ ∈ 𝐾𝑡
∗                                     (6.10) 

 

but, from 2𝑘𝑡
∗ − 1 < 2𝑘𝑡

∗ we get that 

 

              
2𝑘𝑡

∗−1

3
< 2𝑘𝑡

∗                                                  (6.11) 

 

and for the inductive hypothesis (6.9) we also have that 

 

              ∀𝑘𝑡
∗ ∈ 𝐾𝑡

∗, 2𝑘𝑡
∗ ≤ 2𝑡+1 .               (6.12) 
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Finally for (6.10), (6.11), (6.12) we can write that 𝑏𝑡+1
∗ < 2𝑘𝑡

∗ ≤ 2𝑡+1, then  
∀𝑡 > 1 all numbers 𝑏𝑡+1

∗  di 𝐵𝑡+1
∗  are less than 2𝑡+1. The 2*) is thus proved. • 

From 1*) and from 2*) it follows that all integers of 𝐾𝑡+1
∗  are less than or equal 

to 2𝑡+1 and so i*) is also proved. □ 

The following corollaries immediately follow from Theorem 6.2. 

 

Corollary 6.3. 

i) ∀𝑡 ∈ ℕ, 𝑚𝑎𝑥(2𝐾𝑡) = 2𝑡+1  

i∗) ∀𝑡 ∈ ℕ, 𝑚𝑎𝑥(2𝐾𝑡
∗) = 2𝑡+1  . 

 

Corollary 6.4. 

i) ∀𝑡 ∈ ℕ0, 𝑚𝑎𝑥(𝐴𝑡) = 2𝑡  

i∗) ∀𝑡 ∈ ℕ0, 𝑚𝑎𝑥(𝐴𝑡
∗) = 2𝑡 . 

 

Theorem 6.2 provides indications on the type of numbers contained in the 

sets K: either there is only 2𝑡 or there are positive integers less than or equal to 

2𝑡 and this means that each set K is finite. Therefore, the following corollary 

can also be stated. 

 

Corollary 6.5. 

∀𝑡 ∈ ℕ, 𝐾𝑡 𝑎𝑛𝑑 𝐾𝑡
∗  are finite. 

 

Each set K is formed by the finite numerical sets A and B. It follows that if B is 

non-empty then it has a maximum. Therefore the following corollary holds. 

 

Corollary 6.6.  

i)   If  for 𝑡 ∈ ℕ0 is 𝐵𝑡 ≠ ∅  then ∃ 𝑚𝑎𝑥(𝐵𝑡) 

i*)  If  for 𝑡 ∈ ℕ0 is 𝐵𝑡
∗ ≠ ∅  then ∃ 𝑚𝑎𝑥(𝐵𝑡

∗) . 

 

In the following paragraph 7 we will investigate the maxima of the sets B. 

 



About two countable families in the finite sets of the Collatz Conjecture 

 

240 

 

 

7 On the maxima of the sets B 

We give a strict increase of the maxima of the sets B. 

 

Proposition 7.1. 

i) If  𝐵𝑡+1 ≠ ∅ then ∃𝑘𝑡 ∈ 𝐾𝑡, 𝑘𝑡 ≠ 4, 𝑘𝑡 even : 𝑚𝑎𝑥(𝐵𝑡+1) <
𝑘𝑡−1

2
  

i*) If  𝐵𝑡+1
∗ ≠ ∅ then ∃𝑘𝑡

∗ ∈ 𝐾𝑡
∗, 𝑘𝑡

∗ ≠ 2: 𝑚𝑎𝑥(𝐵𝑡+1
∗ ) <

2𝑘𝑡
∗−1

2
 . 

 

Proof. i)  If 𝐵𝑡+1 ≠ ∅, then by definition of 𝐵𝑡+1 in correspondence of every 

odd 𝑏𝑡+1 ∊ 𝐵𝑡+1  will exist an even number 𝑘𝑡 ∈  𝐾𝑡 with 𝑘𝑡 ≠ 4 such that 

𝑏𝑡+1 =
𝑘𝑡−1

3
   but   

𝑘𝑡−1

3
<

𝑘𝑡−1

2
, then 𝑏𝑡+1 <

𝑘𝑡−1

2
. Then, in particular, i) holds 

also for the maximum of 𝐵𝑡+1. •  

i*) If 𝐵𝑡+1
∗ ≠ ∅, then by definition of 𝐵𝑡+1

∗  in correspondence of every odd  

𝑏𝑡+1
∗ ∈ 𝐵𝑡+1

∗  will exist an even number 𝑘𝑡
∗ ∈ 𝐾𝑡

∗ with 𝑘𝑡
∗ ≠ 2 such that 𝑏𝑡+1

∗ =

2𝑘𝑡
∗−1

3
 but 

2𝑘𝑡
∗−1

3
<

2 𝑘𝑡
∗−1

2
, then 𝑏𝑡+1

∗ <
2 𝑘𝑡

∗−1

2
. Then, in particular, also for the 

maximum of 𝐵𝑡+1
∗  holds i*). □ 

 

From Proposition 7.1 follows the following corollary which gives a plus a bit 

more large of the maxima of the sets B. 

 

Corollary 7.2. 

i) If  𝐵𝑡+1 ≠ ∅,  then 𝑚𝑎𝑥(𝐵𝑡+1) < 2𝑡                                                                              

i*) If  𝐵𝑡+1
∗ ≠ ∅, then 𝑚𝑎𝑥(𝐵𝑡+1

∗ ) < 2𝑡 . 

 

Proof.  i)  If  𝐵𝑡+1 ≠ ∅,  then  the  inequality  i)  of Proposition 7.1 holds and 

also 
𝑘𝑡−1

2
< 𝑘𝑡  but, by Theorem 6.2, the maximum of 𝐾𝑡 is 2𝑡, so 𝑚𝑎𝑥(𝐵𝑡+1

∗ ) <

2𝑡.  • 

i*) If 𝐵𝑡+1
∗ ≠ ∅,  then the inequality i*) of  Proposition 7.1 holds and also 

2𝑘𝑡
∗−1

2
< 𝑘𝑡

∗  but, by Theorem 6.2, the maximum of 𝐾𝑡
∗ is 2𝑡, so 𝑚𝑎𝑥(𝐵𝑡+1

∗ ) <

2𝑡.  □ 
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In some cases it is possible to determine the maximum of the sets B. Let's see 

how. The numbers of 𝐵𝑡+1and of 𝐵𝑡+1 
∗ come from the integer solutions, if they 

exist, of the equations 

  

              𝑏𝑡+1 =
𝑘𝑡−1

3
  with  𝑘𝑡 ∈ 𝐾𝑡, 𝑘𝑡 even and 𝑘𝑡 ≠ 4     (7.1) 

 

              𝑏𝑡+1
∗ =

2𝑘𝑡
∗−1

3
 with  𝑘𝑡

∗ ∈ 𝐾𝑡
∗ and  𝑘𝑡

∗ ≠ 2           (7.2) 

 

by the Theorems, respectively, 4.2 and 4.5. In fact, the largest odd integer that 

can be obtained from (7.1), if we substitute the maximum of 𝐾𝑡  for 𝑘𝑡, is  
2𝑡−1

3
, 

which is integer if 2𝑡 − 1 is divisible by three. Likewise, the largest odd integer 

which can be obtained from (7.2), if we replace 𝑘𝑡
∗  by the maximum of 𝐾𝑡

∗, is  

2𝑡+1−1

3
, which is integer if  2𝑡+1 − 1 is divisible by 3. We can therefore state the 

following theorem. 

 

Theorem 7.3. 

i) If  2𝑡 − 1 ≡ 0(𝑚𝑜𝑑 3), with  𝑡 ∈ ℕ0  and  𝑡 > 2, then 𝑚𝑎𝑥(𝐵𝑡+1) =
2𝑡−1

3
 

i*) If  2𝑡+1 − 1 ≡ 0(𝑚𝑜𝑑 3), with  𝑡 ∈ ℕ0 and 𝑡 > 1, then 𝑚𝑎𝑥(𝐵𝑡+1
∗ ) =

2𝑡+1−1

3
. 

  

 

SECOND DEMONSTRATION OF THE THEOREM 7.3 

 

Proof.  i) By hypothesis the number 2𝑡 is t-convergent and the equation 3𝑏 +

1 = 2𝑡 is satisfied by 𝑏 =
2𝑡−1

3
  which is different from 1 because 𝑡 > 2, 

therefore, by theorem 4.2 it is 𝑏 ∈ 𝐵𝑡+1. Assume that ∃𝛽 ∈ 𝐵𝑡+1: 𝑏 < 𝛽 that is, 

taking into account the form of b and β, we suppose that it is  
2𝑡−1

3
<

𝑘𝑡−1

3
 with 𝑘𝑡 ∈ 𝐾𝑡 e 𝑘𝑡 even; from this it follows that 2𝑡 < 𝑘𝑡, absurd thing 

because the maximum of 𝐾𝑡 is 2𝑡. Then it must turn out ∀𝛽 ∈ 𝐵𝑡+1: 𝛽 ≤ 𝑏, that 

is the thesis. •  
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i*) By hypothesis the number 2𝑡 is (t+1)-convergent and the equation 3𝑏 + 1 =

2𝑡+1  is satisfied by 𝑏 =
2𝑡+1−1

3
  which is different from 1 because 𝑡 > 1, 

therefore, by theorem 4.5 it is 𝑏∗ ∈ 𝐵𝑡+1
∗ . Assume that  ∃𝛽∗ ∈ 𝐵𝑡+1

∗ : 𝑏∗ < 𝛽∗ that 

is, taking into account the form of 𝑏∗ and 𝛽∗, supposing it is 
2𝑡+1−1

3
<

2𝑘𝑡
∗−1

3
  with  𝑘𝑡

∗ ∈ 𝐾𝑡
∗, from this it follows that 2𝑡 < 𝑘𝑡

∗, which is absurd because 

the maximum of 𝐾𝑡
∗ is 2𝑡. Then it must turn out ∀𝛽∗ ∈ 𝐵𝑡+1

∗ : 𝛽∗ ≤ 𝑏∗ that is the 

thesis. □ 
 

For example: 

• ... 

  
• for 𝑡 = 14 risults 214 − 1 ≡ 0(𝑚𝑜𝑑3), then 𝑚𝑎𝑥(𝐵15) = 𝑚𝑎𝑥(𝐵14

∗ ) = 5461 

• for 𝑡 = 16 risults 216 − 1 ≡ 0(𝑚𝑜𝑑3), then 𝑚𝑎𝑥(𝐵17) = 𝑚𝑎𝑥(𝐵16
∗ ) = 21845 

• for 𝑡 = 18 risults 218 − 1 ≡ 0(𝑚𝑜𝑑3), then 𝑚𝑎𝑥(𝐵19) = 𝑚𝑎𝑥(𝐵18
∗ ) = 87381 

 

• .... 

 

8 On the intersection of 𝑲𝒕 and 𝑲𝒕
∗ 

In this paragraph we will prove that the intersection of the sets 𝐾𝑡 and 𝐾𝑡
∗ is 

{2𝑡}. 

 

Lemma 8.1. 

The intersection of the odd derivatives of the first type t-convergent and of the 

even derivatives of the second type t-convergent is empty, that is 

 

              ∀𝑡 ∈ ℕ0, 𝐵𝑡 ∩ 𝐴𝑡
∗ = ∅.                                (8.1) 

 

Proof. Obviously, because an odd derivative either is empty or is made up of 

odd integers different from 1 and an even derivative contains only even 

numbers. □ 

 

Lemma 8.2. 

The intersection of the odd derivatives of the second type t-convergent and of 

the even derivatives of the first type t-convergent is empty, that is 

 

               ∀𝑡 ∈ ℕ0, 𝐵𝑡
∗ ∩ 𝐴𝑡 = ∅.       (8.2) 
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Proof. Obviously, because an odd derivative either is empty or is made up of 

odd integers different from 1 and an even derivative contains only even 

numbers. □ 

 

Lemma 8.3. 

The intersection of the odd derivatives of the first type t-convergent and of the 

odd derivatives of the second type t-convergent is empty, that is 

 

               ∀𝑡 ∈ ℕ0, 𝐵𝑡 ∩ 𝐵𝑡
∗ = ∅.       (8.3) 

 

Proof. Trivially, if 𝑡 = 1 the sets 𝐵1 and 𝐵1
∗ are both empty. Assume absurdly 

that for 𝑡 > 1 it results 𝐵𝑡 ∩ 𝐵𝑡
∗ ≠ ∅ and consider every 𝑛𝑡 ∈ 𝐵𝑡 ∩ 𝐵𝑡

∗. 

 

From 

𝑛𝑡 ∈ 𝐵𝑡 = {𝑛𝑡 ∈ 𝐷 − {1}: 3𝑛𝑡 + 1 = 𝑘𝑡−1, 𝑘𝑡−1 ∈ 𝐾𝑡−1 ⋂ 𝑃 , 𝑘𝑡−1 ≠
4, 𝑘𝑡−1 − 1 ≡ 0(𝑚𝑜𝑑 3)}  

 

follows that nt is an odd integer of the form (4.7), that is  𝑛𝑡 =
𝑘𝑡−1−1

3
. 

 

From 

𝑛𝑡 ∈ 𝐵𝑡
∗ = {𝑛𝑡 ∈ 𝐷 − {1}:

3𝑛𝑡 + 1

2
= 𝑘𝑡−1

∗ , 𝑘𝑡−1
∗ ∈ 𝐾𝑡−1

∗ , 𝑘𝑡−1
∗ ≠ 2, 2𝑘𝑡−1

∗ − 1

≡ 0(𝑚𝑜𝑑 3)} 

it follows that nt is an odd integer of the form (4.15), that is  𝑛𝑡 =
2𝑘𝑡−1

∗ −1

3
. 

By equating the two expressions of 𝑛𝑡 we have  
𝑘𝑡−1−1

3
=

2𝑘𝑡−1
∗ −1

3
  and therefore 

 

               𝑘𝑡−1 = 2𝑘𝑡−1
∗ .        (8.4) 

 

Equality (8.4)  is  manifestly  absurd  because 𝑘𝑡−1 is (t-1)-convergent and 2𝑘𝑡−1
∗  

is t-convergent. Therefore it makes no sense to suppose that the intersection 

𝐵𝑡 ∩ 𝐵𝑡
∗ for 𝑡 > 1 is non-empty and (8.3) is proved. □ 

 

Lemma 8.4. 

The intersection of 𝐾𝑡 and 𝐾𝑡
∗ is equal to the intersection of the even derivatives 

of  𝐾𝑡−1 and of the derivatives even of 𝐾𝑡
∗, that is 

 

              ∀𝑡 ∈ ℕ0, 𝐾𝑡 ∩ 𝐾𝑡
∗ = 𝐴𝑡 ∩ 𝐴𝑡

∗.     (8.5) 
 

Proof. We will use the notable equalities 4.12) and 4.18). We have ∀𝑡 ∈ ℕ0: 
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               𝐾𝑡 ∩ 𝐾𝑡
∗ = (𝐴𝑡 ∪ 𝐵𝑡) ∩ (𝐴𝑡

∗ ∪ 𝐵𝑡
∗) =         

                                      

= ((𝐴𝑡 ∪ 𝐵𝑡) ∩ 𝐴𝑡
∗) ∪ ((𝐴𝑡 ∪ 𝐵𝑡) ∩ 𝐵𝑡

∗) = 

 

= (𝐴𝑡 ∩ 𝐴𝑡
∗) ∪ (𝐵𝑡 ∩ 𝐴𝑡

∗) ∪ (𝐴𝑡 ∩ 𝐵𝑡
∗) ∪ (𝐵𝑡 ∩ 𝐵𝑡

∗).                    (8.6) 

  

The thesis follows by applying, in order, Lemmas 8.1, 8.2 and 8.3 to the second, 

third and fourth intersection in the last line of (8.6).  □ 

 

Lemma 8.5. 

The intersection of the even derivatives of the first and second type t-convergent 

is {2𝑡}, that is: 

 

               ∀𝑡 ∈ ℕ0, 𝐴𝑡 ∩ 𝐴𝑡
∗ = {2𝑡}.         (8.7) 

 

Proof. Applying the equalities (4.10) and (4.16) to the intersection 𝐴𝑡 ∩ 𝐴𝑡
∗ 

we have:  

 

              ∀𝑡 ∈ ℕ0, 𝐴𝑡 ∩ 𝐴𝑡
∗ = 2𝐾𝑡−1 ∩ 2𝐾𝑡−1

∗ = 2(𝐾𝑡−1 ∩ 𝐾𝑡−1
∗ ).   (8.8) 

 

Applying Lemma 8.4 to the intersection in the last parenthesis of (8.8) we have 

 

              ∀𝑡 ∈ ℕ0, 2(𝐾𝑡−1 ∩ 𝐾𝑡−1
∗ ) = 2(𝐴𝑡−1 ∩ 𝐴𝑡−1

∗ ) = 

                                      = 2(2𝐾𝑡−2 ∩ 2𝐾𝑡−2
∗ ) = 22(𝐾𝑡−2 ∩ 𝐾𝑡−2

∗ ).   (8.9) 

Applying Lemma 8.4 again to the intersection in the last parenthesis of (8.9) and 

iterating, we obtain 

 

       ∀𝑡 ∈ ℕ0, 22(𝐾𝑡−2 ∩ 𝐾𝑡−2
∗ ) = 22(𝐴𝑡−2 ∩ 𝐴𝑡−2

∗ ) = ⋯ = 2𝑡−1(𝐾1 ∩ 𝐾1
∗).     (8.10) 

 

Finally, applying Lemma 8.4 again to the intersection in the last parenthesis of 

(8.10), we have 

 

            ∀𝑡 ∈ ℕ0, 2𝑡−1(𝐾1 ∩ 𝐾1
∗) = 2𝑡−1(𝐴1 ∩ 𝐴1

∗ ) = 2𝑡−1(2𝐾0 ∩ 2𝐾0
∗) =   

 

                  = 2𝑡(𝐾0 ∩ 𝐾0
∗) = 2𝑡({1} ∩ {1}) = {2𝑡} .      □                        (8.11)   

 

Theorem 8.6. 

The intersection between 𝐾𝑡 and 𝐾𝑡
∗ is equal to {2𝑡}, that is 

 

              ∀𝑡 ∈ ℕ0, 𝐾𝑡 ∩ 𝐾𝑡
∗ = {2𝑡}.                  (8.12) 
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Proof. Applying Lemma 8.4 to the intersection 𝐾𝑡 ∩ 𝐾𝑡
∗, we have (8.5). 

Applying the Lemma 8.5 at the intersection 𝐴𝑡 ∩ 𝐴𝑡
∗ we obtain (8.12).  □ 

 

 

9   Conclusions  
Collatz's conjecture can be re-proposed using the sets K and their first 

properties. We have seen that the sets 𝐾𝑡 and 𝐾𝑡
∗ are non-empty (Basic  3.1) and 

they are also two by two disjoint (Corollary 3.4). So, if the following coverage 

equalities of ℕ0 were also true: 

  

   a)  ⋃ 𝐾𝑡
+∞
𝑡=0 = ℕ0 ,    𝑡 ∈ ℕ                b)  ⋃ 𝐾𝑡

∗+∞
𝑡=0 = ℕ0 ,       𝑡 ∈ ℕ 

  

we could say that each of the families {𝐾𝑡}𝑡∈ℕ and  {𝐾𝑡
∗}𝑡∈ℕ is a partition of ℕ0. 

In this case the Collatz conjecture would be proved.   
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