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Abstract

A G-metric over an abelian linearly ordered group G = (G, ®, <)
is a binary operation, dg, verifying suitable properties. We consider
a particular G metric derived by the group operation @ and the total
weak order <, and show that it provides a base for the order topology
associated to G.
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1 Introduction

The object of the investigation in our previous papers have been the pair-
wise comparison matrices that, in a Multicriteria Decision Making context,
are a helpful tool to determine a weighted ranking on a set X of alternatives
or criteria [1], [2], [3]. The pairwise comparison matrices play a basic role in
the Analytic Hierarchy Process (AHP), a procedure developed by T.L. Saaty
[17], [18], [19]. In [14], the authors propose an application of the AHP for
reaching consensus in Multiagent Decision Making problems; other consensus
models are proposed in [6], [11], [15], [16].

The entry a;; of a pairwise comparison matrix A = (a;;) can assume
different meanings: a;; can be a preference ratio (multiplicative case) or a
preference difference (additive case) or a;; is a preference degree in [0, 1]
(fuzzy case). In order to unify the different approaches and remove some
drawbacks linked to the measure scale and a lack of an algebraic structure,
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in [7] we consider pairwise comparison matrices over abelian linearly ordered
groups (alo-groups). Furthermore, we introduce a more general notion of
metric over an alo-group G = (G, ®, <), that we call G-metric; it is a binary
operation on GG

d:(a,b) € G* = d(a,b) € G,

verifying suitable conditions, in particular: a = b if and only if the value
of d(a,b) coincides with the identity of G. In [7], [8], [9], [10] we consider a
particular G-metric, based upon the group operation ® and the total order
<. This metric allows us to provide, for pairwise comparison matrices over
a divisible alo-group, a consistency index that has a natural meaning and it
is easy to compute in the additive and multiplicative cases.

In this paper, we focus on a particular G-metric introduced in [7] look-
ing for a topology over the alo-group in which the G-metric is defined. By
introducing the notion of dg-neighborhood of an element in an alo-group
G = (G,®,<), we show that the above G-metric generates the order topol-
ogy that is naturally induced in G by the total weak order <.

2 Abelian linearly ordered groups

Let G be a non empty set, ® : G x G — G a binary operation on G, <
a total weak order on G. Then G = (G, ®, <) is an alo-group, if and only if
(G,®) is an abelian group and

a<b=a0Gc<bOec. (1)

As an abelian group satisfies the cancellative law, that is a©c=bOc <
a =b, (1) is equivalent to the strict monotonicity of ® in each variable:

a<b&sabGe<boe (2)
Let G = (G,®, <) be an alo-group. Then, we will denote with:
e ¢ the identity of G;
e 2=V the symmetric of € G with respect to ®;
e - the inverse operation of ® defined by a+b=a® b~
o 2™ with n € Ny, the (n)-power of x € G:

n _ )6 if n=0
T 2 Ve, if n>1;

x(
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e < the strict simple order defined by x < y < = < y and x # y;
e > and > the opposite relations of < and < respectively.
Then
W V=exb (@obV=aDVeobY (axd)YV=b+a (3)
moreover, assuming that G is no trivial, that is G # {e}, by (2) we get
a<esaV>e a<bead™>pY (4)

a®a>a Va>e, a®a<a Va<e. (5)

By definition, an alo-group G is a lattice ordered group [4], that is there
exists a V b = max{a, b}, for each pair (a,b) € G*. Nevertheless, by (5), we
get the following proposition.

Proposition 2.1. A no trivial alo-group G = (G, ®, <) has neither the great-
est element nor the least element.

Order topology. If G = (G,®,<) is an alo-group, then G is naturally
equipped with the order topology induced by < that we will denote with 7.
An open set in 7g is union of the following open intervals:

o ja.b={reG:a<z<b}
o |«a={zeG:z<al;
o b= [={reG:x>0b};

and a neighborhood of ¢ € G is an open set to which ¢ belongs. Then G x G is
equipped with the related product topology. We say that G is a continuous
alo-group if and only if ® is continuous.

Isomorphisms between alo- groups An isomorphism between two alo-
groups G = (G,®,<) and G’ = (G',0,<) is a bijection h : G — G’ that is
both a lattice isomorphism and a group isomorphism, that is:

r<y< h(z)<hly) and h(x©y)=h(z)oh(y). (6)
Thus, h(e) = €', where ¢’ is the identity in G’, and

h(@™) = (h(2)Y. (7)
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By applying the inverse isomorphism h™! : G’ — G, we get:
o y) = @) R ). b ) = )Y ()

By the associativity of the operations ® and o, the equality in (6) can be
extended by induction to the n-operation ();_; ;, so that

n

W) = Oiihlz),  ha™) = h(x)™. (9)

i=1

3 G-metric
Following [5], we give the following definition of norm:
Definition 3.1. Let G = (G, ®, <) be an alo-group. Then, the function:
|-]|:a€eG—=]la]|=aVvaVed (10)
s a G-norm, or a norm on G.
The norm [|a|| of a € G is also called absolute value of a in [4].

Proposition 3.1. [7] The G-norm satisfies the properties:

L |al| = [la"V]];

2. a <llall;

3. |lal] > e;

4. |lall =e<a=ce¢;

5. [la™| = ||a]|™;

6. |la® bl <lla]| @ ||b]|- (triangle inequality)

Definition 3.2. Let G = (G,®, <) be an alo-group. Then, the operation
d:(a,b) € G* - d(a,b) € G
1s a G-metric or G-distance if and only if:
1. d(a,b) > e;
2. d(a,b) =e < a=b;
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3. d(a,b) =d(b,a);
4. d(a,b) < d(a,c) ®d(b,c).
Proposition 3.2. [7] Let G = (G, ®, <) be an alo-group. Then, the operation
dg : (a,b) € G* = dg(a,b) = ||la=b|| € G (11)
1s a G-distance.

Proposition 3.3. [7] Let G = (G,®,<) and G' = (G',0,<) be alo-groups,
h : G — G an isomorphism between G and G'. Then, for each choice of
a,be G :

dg:(h(a), h(b)) = h(dg(a,b)). (12)

Corolary 3.1. Let h : G — G’ be an isomorphism between the alo-groups
Gg=(G,0,<) and G = (G',0,<). If ' = h(a),b = h(b),r = h(r) € G,
thenr >e<r' >¢e and

dg/(a', b)) < r' < dg(a,b) <.

4 Examples of continuous alo-groups over a

real interval
An alo-group G = (G, ®, <) is a real alo-group if and only if G is a subset
of the real line R and < is the total order on G inherited from the usual
order on R. If GG is a proper interval of R then, by Proposition 2.1, it is an

open interval.
Examples of real divisible continuous alo-groups are the following (see [8]

[9]):

Additive alo-group R = (R, +, <), where + is the usual addition on R.
Then, e =0 and for a,b € R and n € N:

aV=—a, arb=a-0b "™ =na.
The norm ||a|| = |a] = a V (—a) generates the usual distance over R:

dr(a,b) =|a—0b = (a—b)V (b—a).
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Multiplicative alo-group ]0,4+o0[ = (]0,400], -, <), where - is the usual
multiplication on R. Then, e = 1 and for a,b €]0,+o00[ and n € N:

o™t = 1/a, a+b= %, a™ = q".

The norm ||a|| = |a| = aVa™! generates the following ]0,+o0] - distance

Q|

a
djo,+o0[(a, b) = b Vv

Fuzzy alo-group ]0,1[= (]0,1[, ®, <), where ® is the binary operation in
10, 1[:

ab

® : (a,b) €]0,1[x]0,1[ ab+ (1 —a)(1— D)

€]0, 1], (13)

Then, 0.5 is the identity element, 1 — a is the inverse of a €]0, 1],

- — __a(l=b) 0 —
a—+b= a(l—b)+(1—a)b’ CL( ) —05,

= @y e (1)
and
dio.1(a,b) = a(l —b) b(1 —a) Ca(1-b) V(1 —a)
j0,17(a,b) = al—=0)+(1—a)b bl—a)+(1—ba a(l—b)+bl—a)

(15)

Remark 4.1. By Proposition 2.1, the closed unit interval [0,1] can not be
structured as an alo-group; thus, in [7], the authors propose @ as a suitable
binary operation on 10,1, satisfying the following requirements: 0.5 is the
identity element with respect to ®; 1 — a is the inverse of a €]0,1[ with
respect to ®; (]0, 1], ®, <) is an alo-group. The operation & is the restriction
to ]0,1[x]0,1[ of the uninorm.:

0, a,b) € {(0,1),(1,0)};

Van={% u (D ELOD0.0)

m, otherwise.

The uninorms have been introduced in [12] as a generalization of t-norm

and t-conorm [13] and are commutative and associative operations on [0, 1],
verifying the monotonicity property (1).
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5 dg- neighborhoods and order topology

In this section G = (G,®, <) is an alo-group and dg the G-distance in
(11).

Definition 5.1. Let c,r € G and r > e; then the dg-neighborhood of ¢ with
radius v 1s the set:

Nyg(c;r) ={x € G :dg(x,c) <r}. (16)

Of course ¢ € Ny, (c;r) for each r > e. Then, Ng,(c) will denote a dg-
neighborhood of ¢ and Ny, the set of the all dg-neighborhoods of the elements
of G.

Proposition 5.1. Let ¢,r € G and r > e; then:
Ny (c;r) =le+r,cOr|

Proof. By properties (2), (3), (4) weget c+r=corY <c<cor
and:

x € Ngg(c;r)

)

e<zr+c<r
or

e<c—zxIT<r

0

e<zr+c<r
or

rD < rre<e

)

c<zr<cOr
or

c—r<r<c

T €lc+rcOT]
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Proposition 5.2. Let h: G — G’ be an isomorphism between the alo-group
G = (G,0,<) and the alo-group G' = (G',0,<). Then, for each choice of
c,r € G and ;v € G such that ¢ = h(c), r > e and r' = h(r), the following
equality holds:

N, (") = h(Ngg(c;r)). (17)
Proof. By Proposition 3.3 and Corollary 3.1. O

Example 5.1. The neighborhoods related to the examples in Section J are
the following:

e in the additive alo-group R = (R,+,<), the neighborhood of ¢ with
radius r is the open interval |c —r,c+ r|;

e in the multiplicative alo-group ]0,4o00[ = (]0,+ocl, -, <), the neighbor-
hood of ¢ with radius r is the interval |<,c - r|;

e in the fuzzy alo-group ]0,1[= (]0,1[,®, <), the neighborhood of ¢ with

radius r is the open interval ]c(lfcr()l;(rl)fc)r’ T

By Proposition 5.1, Ny, (c;r) is a particular neighborhood of ¢ in the
order topology 7g. We show by means of the following results that the set
Ny, generates the order topology associated to G.

Proposition 5.3. Let A be an open set in the order topology 7g. Then for
each ¢ € A there exists a dg-neighborhood of ¢ included in A.

Proof. It is enough to prove the assertion in the case that A is an open
interval |a, b[. Let ¢ €]a,b] and r = dg(a,c) ANdg(b,c) = (c+a) A (b+c). Let
us consider the cases:

l.r=c+a<b-+g

2.r=b+c<c—+a.

In the first case, a = ¢c+7r, cO®r < band so Jc+r,cOr[C A =|a,b[
thus, by Proposition 5.1, Ng,(c;7) € A. In the second case, the inclusion

Ny, (c;7) € A can be proved by similar arguments. O

Corolary 5.1. The set Ng, of the all dg-neighborhoods of the elements of G
s a base for the order topology Tg.

10
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