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Abstract

Let X and Y be weak hypervector spaces and Lw(X,Y ) be the set
of all weak linear operators from X into Y . We prove some algebraic
properties of Lw(X,Y ).
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1 Introduction

The concept of hyperstructure was first introduced by Marty [3] in 1934
and has attracted attention of many authors in last decades and has con-
structed some other structures such as hyperrings, hypergroups, hypermod-
ules, hyperfields, and hypervector spaces. These constructions has been ap-
plied to many disciplines such as geometry, hypergraphs, binary relations,
combinatorics, codes, cryptography, probability and etc. A wealth of appli-
cations of this concepts are given in [1− 2] and [12].

In 1988 the concept of hypervector space was first introduced by Scafati-
Tallini. She studied more properties of this new structure in [11]. In [11],
Tallini introduced the concept of norm on weak hypervector spaces. We used
this definition to extend some theorems of analysis from classic vector spaces
to hypervector spaces. For example see [5−7, 9]. Moreover, in [4] we defined
the concept of dimension of weak hypervector spaces and also authors in [8]
introduce the new concept hyperalgebra and quotient hyperalgebra.
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Now we want to use some of our defined concepts and prove some algebraic
properties of Lw(X, Y ), where Lw(X, Y ) is the set of all weak linear operators
from the weak hypervector space X into the weak hypervector space Y . Note
that the hypervector spaces used in this paper are the special case where
there is only one hyperoperation, the external one, all the others are ordinary
operations. The general hypervector spaces have all operations multivalued
also in the hyperfield (see [12]).

2 Preliminaries

We need some Preliminary definitions for to state our results. In this
section we state them.

Definition 2.1. [11] A weak or weakly distributive hypervector space over a
field F is a quadruple (X,+,o,F ) such that (X,+) is an abelian group and
o : F ×X −→ P∗(X) is a multivalued product such that

(i) ∀a ∈ F, ∀x, y ∈ X, [ao(x+ y)] ∩ [aox+ aoy] ̸= ∅,

(ii) ∀a, b ∈ F, ∀x ∈ X, [(a+ b)ox] ∩ [aox+ box] ̸= ∅,

(iii) ∀a, b ∈ F, ∀x ∈ X, ao(box) = (ab)ox,

(iv) ∀a ∈ F, ∀x ∈ X, ao(−x) = (−a)ox = −(aox),

(v) ∀x ∈ X, x ∈ 1ox.

We call (i) and (ii) weak right and left distributive laws, respectively.
Note that the set ao(box) in (3) is of the form ∪y∈boxaoy.

Definition 2.2. [11] Let (X,+, o, F ) be a weak hypervector space over a field
F , that is the field of real or complex numbers. We define a pseudonorm in
X as a mapping ∥.∥ : X −→ R, of X into the reals such that:

(i) ∥0∥ = 0,

(ii) ∀x, y ∈ X, ∥x+ y∥ ≤ ∥x∥+ ∥y∥,

(iii) ∀a ∈ F, ∀x ∈ X, sup ∥aox∥ = |a|∥x∥.

Definition 2.3. Let X and Y be hypervector spaces over F . A map T :
X −→ Y is called

(i) linear if and only if

T (x+ y) = T (x) + T (y), T (aox) ⊆ aoT (x), ∀x, y ∈ X, a ∈ F
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(ii) antilinear if and only if

T (x+ y) = T (x) + T (y), T (aox) ⊇ aoT (x), ∀x, y ∈ X, a ∈ F

(iii) strong linear if and only if

T (x+ y) = T (x) + T (y), T (aox) = aoT (x), ∀x, y ∈ X, a ∈ F.

3 Main results

Before to state our results we describe some fundamental concepts and
lemmas from [4]. For more details see [4]. By Lemma 3.1 in [4] we have
the following definition. Throughout paper, suppose that X and Y are weak
hypervector spaces over a field F .

Definition 3.1. [4] If a ∈ F and x ∈ X, then zaox for 0 ̸= a is that element
of aox such that x ∈ a−1ozaox and for a = 0, we define zaox = 0.

As the descriptions in [4], zaox is not unique, necessarily. So the set of
all these elements denoted by Zaox. In the mentioned paper we introduced a
certain category of weak hypervector spaces. These weak hypervector spaces
have been called ”normal”. We proved that Zaox is singleton in a normal
weak hypervector space.

Definition 3.2. [4] Suppose X satisfy the following conditions:

(i) (Za1ox + Za2ox) ∩ Z(a1+a2)ox ̸= ∅, ∀x ∈ X, ∀a1, a2 ∈ F ,

(ii) (Zaox1 + Zaox2) ∩ Zao(x1+x2) ̸= ∅, ∀x1, x2 ∈ X, ∀a ∈ F .

Then X is called a normal weak hypervector space.

Lemma 3.1. [4] If a ∈ F , 0 ̸= b ∈ F and x ∈ X, then the following
properties hold:

(i) x ∈ Z1ox;

(ii) aoZbox = abox;

(iii) Z−aox = −Zaox;

(iv) If X is normal, then Zaox is singleton.

In [4], the following lemma stated a criterion for normality of a weak
hypervector space.
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Lemma 3.2. [4] X is normal if and only if

(i) za1ox + za2ox = z(a1+a2)ox, ∀x ∈ X, ∀a1, a2 ∈ F ,

(ii) zaox1 + zaox2 = zao(x1+x2), ∀x1, x2 ∈ X, ∀a ∈ F .

Definition 3.3. [6] Let T : X −→ Y be an operator. T is said to be bounded
if there exists a positive real number K such that we have

∥Tx∥ ≤ K∥x∥ (∀x ∈ X).

Definition 3.4. [9] A map T : X −→ Y is called weak linear operator if T
is additive and satisfies

T (Zaox) ⊆ aoTx, (a ∈ F, x ∈ X).

Denote the set of all weak linear operators and the set of all bounded weak
linear operators from X into Y by Lw(X, Y ) and Bw(X, Y ), respectively.

Theorem 3.1. [4] Let X be normal. Then X with the same defined sum and
the following scalar product is a classical vector space:

a.x = zaox, ∀a ∈ F, x ∈ X.

Lemma 3.3. Let Y be normal, T ∈ Lw(X, Y ) and a ∈ F . Define

aT : X → Y

x 7→ a.Tx

Then aT is a weak linear operator, where the operation ’.’ is the defined scalar
product in Theorem 3.1. Moreover, for all a, b ∈ F and T, S ∈ Lw(X,Y ) we
have

a(T + S) = aT + aS,

(a+ b)T = aT + bT.

Proof. Let a.u = zaou, where u ∈ Y . From Theorem ?, we know that Y
with this scalar product is a classical vector space. Let x, y ∈ X and b ∈ F .
By Lemma 3.1 we have

(aT )(zbox) = a.T (zbox) ⊆ a.(boTx)

= {a.u : u ∈ boTx}
= {zaou : u ∈ boTx}
= zao(boTx) = zaboTx

= bozaoTx = bo(a.Tx) = bo(aT )x
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and also from the normality of Y , we obtain

(aT )(x+ y) = a.T (x+ y) ⊆ a.(Tx+ Ty)

= zao(Tx+Ty)

= zaoTx + zaoTy

= a.Tx+ a.Ty

= (aT )x+ (aT )y.

Hence aT is a weak linear operator. Now let T, S ∈ Lw(X, Y ) and x ∈ X.
The normality of Y yields

[a(T + S)]x = a.(T + S)x = zao(T+S)x = zao(Tx+Sx)

= zaoTx + zaoSx

= a.Tx+ a.Sx

= (aT )x+ (aS)x

= (aT + aS)x

which implies that
a(T + S) = aT + aS.

The second relation is proved in a similar way.

Theorem 3.2. Let Y be normal. Then Lw(X,Y ) with the following sum and
product is a weak hypervector space over F .

(T + S)x = Tx+ Sx (T, S ∈ Lw(X, Y ), x ∈ X)

aoT = {S ∈ Lw(X, Y ) : Sx ∈ aoTx, ∀x ∈ X} (a ∈ F, T ∈ Lw(X, Y )).

Proof. First we show that aoT is a nonempty subset of Lw(X,Y ). By
Lemma 3.3, aT ∈ Lw(X, Y ) and for any x ∈ X we have

(aT )x = a.Tx = zaoTx ∈ aoTx

which imply that aT ∈ aoT . It is easy to check that (Lw(X, Y ),+) is an
abelian group. We show the correctness the first property of scalar product,
the rest properties are obtained in a similar way. By Lemma 3.3, for all
a ∈ F and T, S ∈ Lw(X,Y ) we have

a(T + S) = aT + aS.

This together with

a(T + S) ∈ ao(T + S), aT ∈ aoT , aS ∈ aoS
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imply that
[ao(T + S)] ∩ [aoT + aoS] ̸= ∅

and this completes the proof.

Theorem 3.3. Let Y be normal. Then the following statements are hold.

(i) For all a ∈ F and T ∈ Lw(X, Y ) we have zaoT = aT .

(ii) Lw(X, Y ) is a normal weak hypervector space.

Proof. (i) By Definition 3.1 we have

zaoT ∈ aoT , T ∈ a−1ozaoT

which for all x ∈ X implies

zaoTx ∈ (aoT )x, Tx ∈ (a−1ozaoT )x.

Since by Theorem 3.2 we have

(aoT )x ⊆ aoTx, (a−1ozaoT )x ⊆ a−1ozaoTx,

we obtain
zaoTx ∈ aoTx, Tx ∈ a−1ozaoTx.

These relations, by Definition 3.1 yield that zaoTx = zaoTx. So we obtain
zaoTx = (aT )x, for all x ∈ X and hence zaoT = aT .

(ii) The normality of Lw(X, Y ) can be concluded from Lemma 3.3 and
part (i).

Theorem 3.4. Let Y be normal. Then Bw(X,Y ) with the defined sum and
scalar product in Theorem ? is a subhypervector space of Lw(X,Y ).

Proof. It is enough to show that T + S, aoT ∈ Bw(X,Y ) for any a ∈ F
and T, S ∈ Bw(X, Y ) it is easy to check that T+S ∈ Bw(X,Y ). Let S ∈ aoT .
Hence Sx ∈ aoTx and so

∥Sx∥ ≤ |a|∥Tx∥ ≤ |a|∥T∥∥x∥.

This completes the proof.
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