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Encryption using semigroup action
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Abstract

An enciphering transformation is a function f that converts any plain-
text message into a ciphertext message and deciphering transforma-
tion is a function f~!, which reverse the process. Such a set-up is
called a cryptosystem. In this paper, we extend a generalization of the
original Diffie-Hellman key exchange and ElGamal cryptosystem in
(Z/pZ)* by constructing a semigroup action on a finite dimensional
vector space 1" over F.
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1 Introduction

Recently there has been a lot of on-going research work to find more secure
and efficient public key cryptosystems based on algebraic structures such as non-
abelian groups, linear groups, semigroups and power series rings (see Anshel et al.
[1999], Baumslag et al. [2006], Maze et al. [2007], Shpilrain and Zapata [2006]),
and where the security is based on hard algorithmic problems from combinato-
rial group theory. The hard problems from combinatorial group theory include
the conjugacy search problem, the decomposition search problem and the sub-
group membership search problem. Most common public key cryptosystems and
public key exchange protocols presently in use, such as the RSA algorithm, Diffie-
Hellman, and elliptic curve methods are number theory based and hence depend
on the structure of abelian groups.

The idea of using semigroups as platforms for public key cryptosystems has
appeared in several papers. Yamamura [1998] has considered a group action of
Sly(Z). Blackburn and Galbraith [1999] have analyzed the system of Yamamura
and they have shown that it is insecure. Maze et al. [2007] showed that the discrete
logarithm problem over a group can be considered as a special case of an action
by a semigroup on a set. They showed that every semigroup action by an abelian
semigroup on a set gives rise to a Diffie-Hellman key exchange. By taking the
action of the semigroup on itself, a semigroup can then be used as a platform
for a public key cryptosystem. Kropholler et al. [2010] studied the potential of
the semigroup (a,b ;a? =", a? = b*) as platforms for the Diffie-Hellman key
exchange protocol. Special instances of semigroup actions appears in Anshel et al.
[1999], Shpilrain and Ushakov [2005], Ko et al. [2000] and Slavin [2007]. In
this paper, we try to extend a generalization of the original Diffie-Hellman key
exchange and ElGamal cryptosystem in (Z/pZ)* by constructing a semigroup
from a (p, ¢)-graph G and defining a semigroup action on a finite vector space of
dimension g over the field F5.

2 Notations and Basic Results

Most of the notations, definitions and results we mentioned here are standard
and can be found in Menezes et al. [1996], Koblitz [1998], Lyndon and Schupp
[1977], Maze et al. [2007] and Diffie and Hellman [1976].

Most of the public key cryptosystems and public key exchange protocols cur-
rently in use, like the Diffie and Hellman [1976] key exchange protocol, the ElGa-
mal [1985] public key cryptosystem, the Digital Signature Algorithm (DSA) and
the ElGamal’s signature scheme, use the discrete logarithm problem as the basis
of their security.
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The discrete logarithm problem can be defined as follows.

Problem 2.1. (Discrete Logarithm Problem) Let G be a group and a,b € G. Find
an integer n € N such that a™ = b.

Problem (2.1) has a solution if and only if b € (a), the cyclic group generated
by a. If b € (a) then there is a unique integer n satisfying 1 < n < ord(a)
such that a™ = b. This unique integer is called the discrete logarithm of b with
base a and denote it by log, b. Discrete Logarithm Problem plays important role
in the Diffie-Hellman key agreement and the ElGamal public key cryptosystem,
the digital signature algorithm and ElGamal’s signature scheme. Currently the
multiplicative group (Z/pZ)* of integers modulo n where 7 is a prime is widely
used as the platform group.

Protocol 2.1. (Diffie-Hellman Key Exchange Protocol) Let G be a group.
1. Alice and Bob publicly agree on an element g € G.

2. Alice chooses n € N and computes g" . Alice’s private key is n, her public
key is g".

3. Bob chooses m € N and computes g . Bob’s private key is m, his public
key is g™.

4. Their common secret key is then g"".

The ElGamal public key cryptosystem works as follows:

Alice chooses n € N, a,b € G where b = a™. The private key of Alice is
(a,b,n), the public key is (a,b). Bob chooses a random integer » € N and he
applies the encryption function

v:G—>GxG

m — (c1,¢2) = (a”,mb")

Alice computes m from the ciphertext (cy, c2) by m = co(c) L.

3 Construction of a semigroup from a (p, ¢)- graph

Let GG be a finite (p, ¢)-graph and H be a subgraph of GG. Let xy denote a
vector corresponding to H such that x5 = (1, 29, ..., z,) where

1 ifeisin H
T, = .
0 otherwisef
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Figure 1: Graph G

Let S be a set of such vectors. Then S is a semigroup under the operation
defined by

THYK = (xlax% s axq)<ylay23 s ayq)

= (96191, T2Y2y - - aquq)

We shall illustrate this with the following example.

Example 3.1. Consider the graph G with p = 6 and q = 10 given in Figure
1. Let us consider seven subgraphs of G, which are displayed in Figure 2. Let
T, TH,, .- L[, be the vectors corresponding to the subgraphs Hy, Ho, ..., H7
respectively. Let S = {xy,,xm,,...,xq, . Then

(1,0,1,0,0,1,0,0,1,1)
(1,1,0,0,0,1,1,0,0,0)
(1,1,1,0,0,0,0,0,1,0)
(1,0,0,0,0,1,0,0,0,0)
( )
( )
( )

1,0,1,0,0,0,0,0,1,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0

«le
$H2
ZL‘H3
LHy
L H
ZL’HG
T H,
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Figure 2: Subgraphs of the graph G
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Now,

THTHy, = THy, TH,TH, = THs, THTHy = THy, TH TH, = THs,
TH\YHg = THyp, TH TH, = THy, THy,UH3 = T Hg, THyTHy = THy,
T,y = THyy THyUHs — THgy THTH, = THyy, TH3UH, = THy
TH3XH; = THy, TH; T Hg = THg» TH3XH; = THy, TH,TH, = THq,
Ty YHy = YHyy LTH4TH; — THyy, TH;THg — THy, THsTH, = THy
THsLH; = THy,

Also,
vy (rm2n,) = (Tar)r,, 4,5,k =1,2,...,7.

Hence S is a semigroup.

4 Key Exchange using S-action

Let 7" be a ¢ dimensional vector space over F5. Define the left action of .S on
T, :SxT — T such that p(z,t) = xt. We call this action as an S-action on
the vector space 7'. The right action is similarly defined.

Let G be a (p, ¢)-graph, S an abelian semigroup associated with the graph G,
T be a ¢ dimensional vector space over F5, and an S-action on 7" as defined above.

Diffie-Hellman key exchange using S-action is as follows:

1. Alice and Bob agree on an element ¢t € 7.

2. Alice chooses € S and computes xt. Alice’s private key is x, her public
key is zt.

3. Bob chooses y € S and computes yt. Bobss private key is y, his public key
is yt.

4. Their common secret key is then z(yt) = (zy)t = (yz)t = y(xt).

Example 4.1. Consider the semigroup S in the example 3.1. Let T be a 10 di-
mensional vector space over F5. Suppose Alice and Bob want to agree on a key.
Suppose they chooset = (0,1,1,0,1,0,1,1,0,0) € T. Then Alice chooses xp, =
(1,0,1,0,0,1,0,0,1,1) € S and computes xg,t = (0,0,1,0,0,0,0,0,0,0).
Then send it to Bob. Similarly, Bob chooses vy, = (1,1,0,0,0,1,0,0,1,1) € S
and computes xy,t = (0,1,0,0,0,0,0,0,0,0). Then send it to Alice. Their com-
mon key is xy, (xyt) = (0,0,0,0,0,0,0,0,0,0).
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S-action Problem

Let G be a (p, ¢)-graph and S be a semigroup associated with the graph G,
acting on a ¢ dimensional vector space 1" over F5.
Given elements t € T'and y € S, find x € S such that 2t = y.

4.1 Diffie-Hellman Problem using S-action

Let G be a (p, q)-graph, S be a semigroup associated with the graph G, 7" be
a ¢ dimensional vector space over F; and  be an S-action on 7.
Given r,s,t € T with s = zr and t = yr for some x,y € S, find (zy)r € T.

5 Cryptosystem using S-action

Let G be a (p, ¢)-graph, S be a semigroup associated with the graph G, 7" be a
q dimensional vector space over Fy, T'is an additive abelian group and an action
on 7" as defined above.

ElGamal cryptosystem using S-action is as follows:

1. Alice chooses elements ¢ € T"and = € S. Alice’s public key is (¢, zt).

2. Bob chooses a random element y € S and encrypts a message m using the
encryption function (m,y) — (yt, (y(zt)) + m) = (c1, ¢2).

3. Alice can decrypt the message using

m = (y(xt)) " + (y(at)) + m

= (zc1) '+ e

Note: Message m is also represented as vectors. Each letter in the message repre-
sents a vector (x1, T, ..., %), ¢ > 26 such that
1 if the corresponding letter is in i*" position of the alphabet
T = .
0 otherwise
Example 5.1. Let G be any (p, q)-graph with ¢ = 26. Let T be a 26 dimensional
vector space over Iy, T be an additive abelian group and S be the semigroup

associated with the graph G. The action of S on T is as defined earlier. Suppose
Alice wants to receive a message.
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1. Alice chooses t = (0,1,1,0,1,0,1,1,0,...,0) € T. Then chooses x =
(1,0,1,0,1,0,1,0,1,0,...,0) € S corresponding to one subgraph H; of
G and compute xt = (0,0,1,0,1,0,1,0,0,...,0). Her public key is (t,tx).

2. Bob wishes to send a message m = MEET ME TOMORROW to Alice. He
send it letter by letter. So, first he wants to send the letter M = my(m) =
(0,0,...,0,0,1,0,0,...,0,0).

For, he choosesy = (0,0,1,0,1,0,0,1,1,0,0,...,0,0) € S that is a vector
corresponding to one subgraphH, of G and compute
yt =(0,0,1,0,1,0,0,1,0,0,...,0,0) =4
y(xt) = (0,0,1,0,1,0,0,...,0,0)
and
y(xt) = (0,0,1,0,1,0,0,0,0,0,0,0,1,0,...,0,0) = o
Then he sends (c1, c2) to Alice.

3. After receiving this, Alice decrypt the message by computing (zc1)™! + cs.

ver = (0,0,1,0,1,0,0,...,0,0)
(ze1)™' = (0,0,1,0,1,0,0,...,0,0)
(ze1) ™ + ¢ = (0,0,0,...,0,0,1,0,...,0,0)
=my(m) =M

Similarly, they transfer each letter in the message.
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