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Abstract 

This manuscript analyses a retrial queueing system with working 

vacation, interruption, feedback, and setup time with the perfect 

repair. In the proposed model, the server takes vacation whenever 

the system gets empty but it still serves the customers at a relatively 

lower rate. To save power, the concept of setup time is included in 

the model. At vacation completion instant, the server is immediately 

turned off as soon as the system gets empty. The customer, who 

arrives during the closed-down state, activates the server and waits 

for his turn till the server is turned on. The unreliable server may 

sometimes fail to activate during setup. The failed server will resume 

service on being repaired. In the paper, explicit expressions for 

system size, sojourn times, and probabilities of various states of the 

server are obtained and results are analyzed graphically using 

MATLAB software. 
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1. Introduction 
Retrial queueing systems with vacations and feedback of customers have 

attracted many researchers due to their widespread applications in real-life 

situations such as cellular networks, call centers, computer systems, inventory 

systems, and production management. In such systems, the customer, who finds 

the server busy, joins the orbit (free pool) and after a random period, it retries 

for the service. The retrials may follow a constant or classical retrial policy. In 

a constant retrial policy, the customer at the head in retrial orbit can reattempt 

for the service, but in a classical one, all the customers can retry for their turn 

independent of all others in the orbit. Many researchers analyzed the 

applications of retrial queueing systems. Falin and Templeton [6] did pioneering 

work on retrial queues. A good survey on the retrial queueing system was done 

by Artalejo et al. [2] and Yang et al. [20]. 

Queueing systems with vacations play a vital role in many real-life systems. The 

vacations may be due to many reasons. In classical vacation policy, no service 

is provided to the customers during vacation. Servi and Finn [18] introduced a 

new vacation class i.e., working vacation, in which service is provided to 

customers but at a comparatively lower rate. Readers may refer Do [5], 

Arivudainambi et al. [1] and Chandrasekaran et al. [3] for reference. 

Furthermore, the concept of vacation interruption has been widely used in 

queueing systems. In this policy, at service completion instant, the server 

interrupts the ongoing vacation and returns to a normal working state on finding 

waiting customers. Keeping in view the importance of the concept, many 

researchers have analyzed the queueing systems with vacation interruption. Li 

and Tian [12] analyzed M/M/1 queueing system with working vacation and 

interruption using the matrix geometric method. A pioneer work on M/G/1 

queueing model with vacation interruption was done by Zhang and Hou [21]. 

Later, Gupta and Kumar [7, 8, 9] studied retrial queues with different vacation 

policies, impatient behaviour of customers and obtain closed-form expressions 

for important performance measures. 

The retrial queueing system with Bernoulli feedback of customers is 

characterized by the feature that the unsatisfied customers may rejoin the system 

with some probability until they receive satisfactory service. Choi et al. [4] 

analyzed a retrial queueing model with geometric loss and feedback.  Kumar et 

al. [10,11] studied M/G/1 retrial queueing model with feedback and starting 

failure. Mokaddis [15] analyzed feedback queueing systems with vacations and 

system failure. Varalakshmi et al. [19] discussed a single server queue with 
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immediate feedback and server breakdown. The concept of power saving is very 

important in today's scenario. To save power, the system should be turned off 

when not in use. Realizing the need for power saving, many researchers studied 

queueing model with setup time.  Phung- Duc [16, 17] incorporated the concept 

of setup time to retrial queueing system.  We may refer the reader to [13, 14] for 

the related works.  

In this manuscript, a single server retrial queueing system with feedback, setup 

time, working vacation, and interruption under perfect repair is analyzed. If 

setup time is taken as zero, the model reduces to M/M/1 feedback retrial 

queueing system with working vacation and interruption. Further, the model 

changes to a retrial queueing system with feedback and setup time with perfect 

repair if vacation time tends to zero. Thus, our model generalizes some of the 

retrial queueing models existing in queueing literature.  

 

2.  Practical application of the model 

Consider a manufacturing system consisting of an iron re-rolling mill, a 

Foreman(server), and a worker(assistant) to operate the mill. The foreman will 

operate the mill if the raw material is available and produce the products i.e., 

iron angles, iron rods, etc. If the raw material is not available due to transport 

issues, an increase in the price of raw material, etc., then the foreman may go on 

vacation(rest). During the vacation period of the foreman, if raw material 

becomes available then the worker will operate the mill, but the production will 

be relatively at a slow speed. When a batch of the product is completed, then the 

worker will call the foreman to resume the production at a higher speed by 

interrupting the vacation of the foreman.  

In another situation, if the foreman’s vacation period completes, he will return 

to the production to operate the mill. If the raw material is available then he will 

manage the production at a higher speed otherwise, if the raw material is not 

available, to save power, he may turn off the mill.  Again, the availability of new 

raw material will initiate the setup of the machine (re-rolling mill) and 

production starts again if setup occurs successfully otherwise the machine will 

be sent for repair, and during this period there will be no production. 
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3. Model description and assumptions 
We considered a Markovian retrial queueing system with working vacation, 

interruption, feedback, and setup time under perfect repair. The following 

assumptions are taken for the proposed model. 

1. The arrival of customers is by the Poisson process with rate λ. The customer 

who finds the server busy; joins the free pool (orbit) and waits for his turn. 

The customers in the orbit are assumed to follow classical retrial policy. The 

retrial time is exponentially distributed with parameter ξ. 

2. The service time in the normal state of the server is assumed to be 

exponentially distributed with rate µ. When all the customers are served, the 

server goes to a working vacation state in which it still provides service to 

customers with a slow rate θ. The vacation time and service time in vacations 

again follow an exponential distribution with vacation rate ϕ.  

3. The unsatisfied customers may rejoin the orbit as feedback customers with 

probability ‘f’ or may leave the system with complementary probability 𝑓=̅ 

(1-f). 

4. On completion of vacation, if customers are found still waiting for their turn, 

the normal service period resumes otherwise, the server is turned off 

immediately to save power. 

5. The customer who arrives in the off-state of the server; waits for his turn in 

front of the server till it is turned on. The setup time is required to restart the 

server. The setup time is assumed to follow an exponential distribution with 

a mean of 1/s.  The customers arriving in the setup state, have to join the 

orbit. 

6. The server is assumed to be unreliable i.e., during the set-up state, activation 

of the server may fail with probability 𝑝̅ = (1-p). The failed server is sent for 

repair and repair time is exponentially distributed with parameter r. 

7. The inter-arrival time, service time, vacation time, retrial time, and setup 

time are all mutually independent. 

Taking N(t) as the number of customers in the orbit at time t and J(t) as the 

state of the server. 

where, 
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𝐽(𝑡) =

{
  
 

  
 

   

0,   𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑏𝑢𝑠𝑦 𝑖𝑛 𝑎 𝑛𝑜𝑟𝑚𝑎𝑙 𝑠𝑡𝑎𝑡𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡   

1, 𝑡ℎ𝑒 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖𝑠 𝑓𝑟𝑒𝑒 𝑖𝑛 𝑎 𝑛𝑜𝑟𝑚𝑎𝑙 𝑠𝑡𝑎𝑡𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡     
2, 𝑡ℎ𝑒 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖𝑠 𝑏𝑢𝑠𝑦 𝑖𝑛 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑣𝑎𝑐𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑡𝑒  

3, 𝑡ℎ𝑒 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖𝑠 𝑓𝑟𝑒𝑒 𝑖𝑛 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑣𝑎𝑐𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑡𝑒  
4,   𝑡ℎ𝑒 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖𝑠 𝑖𝑛 𝑠𝑒𝑡𝑢𝑝 𝑜𝑟 𝑐𝑙𝑜𝑠𝑒 − 𝑑𝑜𝑤𝑛 𝑠𝑡𝑎𝑡𝑒      

5, 𝑡ℎ𝑒 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖𝑠 𝑢𝑛𝑑𝑒𝑟 𝑟𝑒𝑝𝑎𝑖𝑟 𝑠𝑡𝑎𝑡𝑒                           

 

{N(t), J(t)} represents a Markov process with following state-space  

{(n, j), n ≥ 0, j=0,1,2,4,5} U {(0,3)}. 

Here (n, 0), n ≥ 0 represents that server is busy in a regular service period with 

n customers waiting in the orbit. The state (0, 1) represents that system is in a 

close-down period. States (n, 1), n ≥1 shows that system is free in the regular 

service period. States (n, 2), n ≥0 represents the state that the system is busy in 

the working vacation period. The state (0, 3) represents that the server is free 

during the vacation period. States (n, 3), n≥1 do not exist due to the inclusion of 

the concept of vacation interruption. States (n, 4), n≥0 represent that system is 

in a setup state with n customers in the orbit and one customer waiting in the 

service area for successful set up of the system. States (n, 5), n≥0, show that the 

system is under repair due to sudden breakdowns with n customers waiting in 

the orbit for their turn. 

 

4. Steady-state equations and stationary 

probabilities 

Denoting by  𝑝𝑛 𝑗, the probability of n customers waiting in the orbit when the 

system is in state j and using Markov process for the quasi-birth death model, 

the stationary state equations governing the model are 

(𝜆 + 𝜇)𝑝0 0 = 𝜙𝑝0 2 + 𝜉𝑝1 1 + 𝑠𝑝𝑝0 4 + 𝑟𝑝0 5                                                    (1) 

(𝜆 + 𝜇)𝑝𝑛 0 = 𝜆𝑝𝑛−1 0 +  𝜙𝑝𝑛 2 + (𝑛 + 1)𝜉𝑝𝑛+1 1 + 𝜆𝑝𝑛 1 + 𝑠𝑝𝑝𝑛 4 + 𝑟𝑝𝑛 5, 

                                                                                 𝑛 ≥ 1                                            (2) 

𝜆𝑝0 1 = 𝜙𝑝0 3                                                                                                              (3) 

(𝜆 + 𝜉)𝑝𝑛 1 = 𝑓𝜃̅𝑝𝑛 2 + 𝑓𝜃𝑝𝑛−1 2 + 𝑓𝜇𝑝𝑛−1 0 + 𝑓𝜇̅𝑝𝑛 0   ,     𝑛 ≥ 1              (4) 

(𝜆 + 𝜃 + 𝜙)𝑝0 2 = 𝜆𝑝0 3                                                                                           (5) 

(𝜆 + 𝜃 + 𝜙)𝑝𝑛 2 = 𝜆𝑝𝑛−1 2,                𝑛 ≥ 1                                                          (6) 
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(𝜆 + 𝜙)𝑝0 3 = 𝜇𝑓𝑝̅0 0 + 𝑓𝜃̅𝑝0 2                                                                              (7) 

(𝜆 + 𝑠)𝑝0 4 = 𝜆𝑝0 1                                                                                                     (8) 

(𝜆 + 𝑠)𝑝𝑛 4 = 𝜆𝑝𝑛−1 4,      𝑛 ≥ 1                                                                             (9) 

(𝜆 + 𝑟)𝑝0 5 = 𝑠𝑝̅𝑝0 4                                                                                                (10) 

(𝜆 + 𝑟)𝑝𝑛 5 = 𝑠𝑝̅𝑝𝑛 4 + 𝜆𝑝𝑛−1 5   ,           𝑛 ≥  1                                                 (11) 

Defining probability generating functions 

𝐺𝑖(𝑧) = ∑𝑝𝑛 𝑖𝑧
𝑛

∞

𝑛=0

  ,         𝑖 = 0, 1, 2, 4, 5                                                            (12) 

Multiplying equations (1) and (2) with appropriate power of z and taking 

summation for all possible values of n and using above-defined generating 

functions, 

(𝜆 + 𝜇 − 𝜆𝑧)𝐺0(𝑧) 

= 𝜙𝐺2(𝑧) + 𝜆𝐺1(𝑧) + 𝜉𝐺1
′(𝑧) + 𝑠𝑝𝐺4(𝑧) + 𝑟𝐺5(𝑧) − 𝜆𝑝0 1          (13) 

Multiplying equations (3) and (4) with appropriate power of z and taking 

summation for all possible values of n and using generating functions we get, 

(𝜆 + 𝜉)𝐺1(𝑧) = (𝑓𝑧 + 𝑓 ̅)𝜇𝐺0(𝑧) + (𝑓̅ + 𝑓𝑧)𝜃𝐺2(𝑧) − 𝐴 𝑝0 1                    (14) 

𝑤ℎ𝑒𝑟𝑒 𝐴 =
𝑓𝜃̅𝑝0 2 + 𝜇𝑓𝑝̅0 0 − 𝜉𝑝0 1 − 𝜙𝑝0 3

𝑝0 1
                                                 (15) 

𝑝0 2 =
𝜆2

𝜙(𝜆 + 𝜃 + 𝜙)
𝑝0 1                                                                                      (16) 

𝑝0 3 =
𝜆

𝜙
𝑝0 1                                                                                                             (17) 

𝑝0 0 = (
𝜆(𝜆 + 𝜙)

𝜇𝜙𝑓̅
−

𝜆2𝜃

𝜇𝜙(𝜆 + 𝜃 + 𝜙)
)𝑝0 1                                                       (18) 

Again using probability generating functions along with equations (5) and (6) 

(𝜆 + 𝜃 + 𝜙 − 𝜆𝑧)𝐺2(𝑧) = 𝜆𝑝0 3 

=
𝜆2

𝜙
𝑝0 1 
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𝐺2(𝑧) =
𝜆2

𝜙(𝜆 + 𝜃 + 𝜙 − 𝜆𝑧)
𝑝0 1                                                                    (19) 

Using equations (8), (9), and (12) together 

(𝜆 + 𝑠)𝐺4(𝑧) = 𝜆𝑧𝐺4(𝑧) + 𝜆𝑝0 1 

𝐺4(𝑧) =
𝜆

(𝜆 + 𝑠 − 𝜆𝑧)
𝑝0 1                                                                                 (20) 

Similar calculations in equations (10) and (11) yield 

(𝜆 + 𝑟 − 𝜆𝑧)𝐺5(𝑧) = 𝑠(1 − 𝑝)𝐺4(𝑧) 

Makin use of equation (19) in the above equation, we obtain  

𝐺5(𝑧) =
𝜆𝑠(1 − 𝑝)

(𝜆 + 𝑟 − 𝜆𝑧)(𝜆 + 𝑠 − 𝜆𝑧)
𝑝0 1                                                         (21 

Using the value of 𝐺0(𝑧) from equation (14) in equation (13), and rearranging 

the terms we get the following differential equations 

𝐺1
′(𝑧) +

1

𝜉
(𝜆 −

(𝜆 + 𝜉)(𝜆 + 𝜇 − 𝜆𝑧)

𝜇(𝑓̅ + 𝑓𝑧)
)𝐺1(𝑧) = 𝐵(𝑧)                                (22) 

𝑤ℎ𝑒𝑟𝑒 𝐵(𝑧) =
1

𝜉
[(𝜆 +

𝐴(𝜆 + 𝜇 − 𝜆𝑧)

𝜇(𝑓̅ + 𝑓𝑧)
) 𝑝0 1 − (𝜙 +

𝜃(𝜆 + 𝜇 − 𝜆𝑧)

𝜇
)𝐺2(𝑧)

− (𝑠𝑝𝐺4(𝑧) + 𝑟𝐺5(𝑧))]                                                            (23) 

To solve the differential equation we first find integrating factor, 

𝐼. 𝐹 = 𝑒
𝜆𝑧
𝜉
(1+

𝜆+𝜉
𝜇𝑓

)
((𝑓̅ + 𝑓𝑧)

−
(𝜆+𝜉)(𝜆+𝜇𝑓)

𝜇𝜉𝑓2 )                                                     (24) 

The solution of the differential equation (23) is  

𝐺1(𝑧) = 𝑒
−𝜆𝑧
𝜉
(1+

𝜆+𝜉
𝜇𝑓

)
((𝑓̅ + 𝑓𝑧)

(𝜆+𝜉)(𝜆+𝜇𝑓)

𝜇𝜉𝑓2 )          

∫𝑒
𝜆𝑧
𝜉
(1+

𝜆+𝜉
𝜇𝑓

)
((𝑓̅ + 𝑓𝑧)

−
(𝜆+𝜉)(𝜆+𝜇𝑓)

𝜇𝜉𝑓2 )

𝑧

0

𝐵(𝑧)𝑑𝑧         (25) 

𝐺0(𝑧) is obtained from equation (14) as follows 
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𝐺0(𝑧) =
(𝜆 + 𝜉)𝐺1(𝑧) − (𝑓̅ + 𝑓𝑧)𝜃𝐺2(𝑧) + 𝐴𝑝0 1

(𝑓𝑧 + 𝑓 ̅)𝜇
                                        (26) 

 

Taking limit 𝑧 → 1 in equations (19), (20), (21), (25), and (26) we obtain the 

expressions  

𝐺2(1) =
𝜆2

𝜙(𝜃 + 𝜙)
𝑝0 1                                                                                          (27) 

𝐺4(1) =
𝜆

𝑠
𝑝0 1                                                                                                           (28) 

𝐺5(1) =
𝜆(1 − 𝑝)

𝑟
𝑝0 1                                                                                             (29) 

𝐺1(1) = 𝑒
−𝜆
𝜉
(1+

𝜆+𝜉
𝜇𝑓

)
∫𝑒

𝜆𝑧
𝜉
(1+

𝜆+𝜉
𝜇𝑓

)
((𝑓̅ + 𝑓𝑧)

−
(𝜆+𝜉)(𝜆+𝜇𝑓)

𝜇𝜉𝑓2 )

1

0

𝐵(𝑧)𝑑𝑧           (30) 

𝐺0(1) =
(𝜆 + 𝜉)𝐺1(1) − 𝜃𝐺2(1) + 𝐴𝑝0 1

𝜇
                                                         (31) 

Differentiating equations (19), (20), (21) and taking limit 𝑧 → 1we get 

𝐺2
′(1) =

𝜆3

𝜙(𝜃 + 𝜙)2
𝑝0 1                                                                                        (32) 

𝐺4
′(1) =

𝜆2

𝑠2
𝑝0 1                                                                                                        (33)  

𝐺5
′(1) =

𝜆2(1 − 𝑝)(𝑟 + 𝑠)

𝑠𝑟2
𝑝0 1                                                                            (34) 

Equation (23) on taking limit 𝑧 → 1 implies 

𝐺1
′(1) =

1

𝜉
[𝜉𝐺1(1) − (𝜃 + 𝜙)𝐺2(1) − 𝑠𝑝𝐺4(1) − 𝑟𝐺5(1) + (𝜆 + 𝐴)𝑝0 1](35) 

Similarly differentiating equation (26) and taking limits we obtain 

𝐺0
′(1) =

1

𝜇
[(𝜆 + 𝜉)𝐺1

′(1) − 𝜃𝐺2
′(1) − 𝑓𝜃𝐺2(1) − 𝜇𝑓𝐺0(1)]                       (36) 
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We observe that all the closed-form expressions for 𝐺𝑖(𝑧) and their derivatives 

for i=0, 1, 2, 4, 5 are implicitly expressed in terms of 𝑝0 1. 

𝑝0 1 may be obtained by using the normalization condition 

𝐺0(1) + 𝐺1(1) + 𝐺2(1) + 𝐺4(1) + 𝐺5(1) = 1                                              (37) 

                                                                                             

5. Performance measures  

In the present section, we obtain some important system performance 

measures of our proposed model as follows. 

Expected orbit length 𝐸[𝐿𝑂] = 𝐺0
′(1) + 𝐺1

′(1) + 𝐺2
′(1) 

+𝐺4
′(1) + 𝐺5

′(1)               (38) 

Expected sojourn time in orbit 𝐸[𝑊𝑂] 

=  𝐸[𝐿𝑂]/𝜆 

=
 𝐺0
′(1) + 𝐺1

′(1) + 𝐺2
′(1) + 𝐺4

′(1) + 𝐺5
′(1)

𝜆
           (39) 

Expected system length 𝐸[𝐿𝑆] =  𝐸[𝐿𝑂] + 𝐺0(1) + 𝐺2(1)                          (40) 

Expected sojourn time in system 𝐸[𝑊𝑆] =  𝐸[𝐿𝑆]/𝜆 

=
𝐸[𝐿𝑂] + 𝐺0(1) + 𝐺2(1)

𝜆
          (41) 

Probability of server being in off state = 𝑝0 1 

Probability of server being in working vacation state (𝑃𝑟𝑤𝑣) 

= 𝐺2(1) +
𝜆

𝜙
𝑝0 1 

= 
𝜆2

𝜙(𝜃 + 𝜙)
𝑝0 1 +

𝜆

𝜙
𝑝0 1                         (42) 

Probability of server being in setup state (𝑃𝑟𝑆) = 𝐺4(1) 

=
𝜆

𝑠
𝑝0 1                                (43) 

Probability of server in repair state (𝑃𝑟𝑅) = 𝐺5(1) 
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=
𝜆(1 − 𝑝)

𝑟
𝑝0 1                            (44) 

 

6. Numerical and graphical analysis  

In the present section, the numerical and graphical interpretation of derived 

closed-form expressions of various system performance measures, for the 

proposed mathematical model is performed. For this purpose, some of the 

system parameters are assumed to be fixed as λ=3, μ=7, ξ=1.8, ϕ=2, θ=3, f=0.7, 

p=0.7, r=0.8, s=0.6, unless otherwise mentioned. The behaviours of important 

performance measures, for a different set of values of one or more of the 

parameters is analyzed in the below-plotted graphs.  

 

 

Figure1: Off-state probability versus setup rate for different values of p 

From figure 1 we see that with an increase in setup rate, the probability of the 

server being in off-state increases. This is due to the reason that with an increase 

in the setup rate, the setup time decreases which causes early return in a normal 

state of the server hence increasing the probability of the server being in an off 

state. This probability of off-state increases with an increase in p, for a fixed 

value of set up rate; this is again due to an increase in chances of successful set 

up of server that further increases the off state probability. 
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Figure2: Off-state probability versus repair rate for different values of p 

We observe from figure 2 that the off-state probability of server increases with 

repair rate r, for a fixed value of p. This is due to a reduction in repair time with 

an increase in repair rate which leads to quick repair hence faster return to 

normal service thereby increasing the off-state probability. 

 

Figure3: Effect of setup rate on mean orbit length for different repair rates 

Figure 3 reveals that the expected orbit length decreases with an increase in 

setup rate. This is because with an increase in setup rate, the time required for 

set up of server decreases which results in a quick return to normal service 
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period of server thereby reducing the orbit length. For the same reason, mean 

orbit length decreases with a decrease in repair time. 

 

 

Figure 4: Effect of repair rate on mean orbit length for different arrival rates 

We see from figure 4, the expected orbit length decreases with an increase in 

repair rate. As expected the mean orbit length increases with an increase in 

arrival rate, for a fixed repair rate. This is due to a reduction in inter-arrival time 

which increases mean orbit length. 

 

Figure 5: Effect of repair rate on repair state probability of server for different 

values of p 
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Figure 5 depicts that with an increase in repair rate, the probability of the server 

being in repair state decreases. This agrees with our expectations. As the repair 

rate increases, the repair is done in a lesser time that makes a faster return to the 

normal state from the repair state hence the probability of the server being in the 

repair state decreases. Again with an increase in p, for a fixed repair rate, the 

chances of successful activation (set up) of server raise hence the probability of 

server being in repair state decreases. 

 

Figure 6: Probability of server in vacation versus vacation rate for different 

service rates 

We observe from figure 6 that the probability of the server being in vacation 

state decreases with an increase in the rate of working vacation. The reason 

behind the observation is a decrease in the duration of vacation with an increase 

in the vacation rate. Further, the probability of the server in vacation state 

increases with service rate μ; this is due to faster service which promotes server 

vacations. 
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Figure 7: Probability of server in set up versus service rate for different setup 

rates 

Figure 7 depicts that with an increase in service rate, the probability of the server 

being in setup state increases, this is as expected intuitively. For fixed service 

rate, as set up rate s increases, the probability decreases; this is due to faster 

activation of server with reduced setup time. 

 

Figure 8: Variation in Expected system length with setup and repair rate 
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Figure 9: Variation in off state probability of server with setup and repair rate 

Figures 8 and 9 represent the graphical behaviour of mean system length and 

off-state probability with setup and repair rate respectively. As expected, the 

mean system length decreases whereas off-state probability increases with an 

increase in the setup rate, for a fixed value of repair rate.  

 

7.  Conclusion and future scope 

This paper analyses a single server retrial queueing system with working 

vacation, vacation interruption, Bernoulli feedback and setup time under perfect 

repair. The closed-form expressions for expected system size along with the 

probability of various system state probabilities, closed-down state have been 

obtained via the probability generating functions approach. The variation of the 

derived expressions against some of the system parameters is graphically 

studied by using MATLAB software. The observed graphical results are 

analyzed and are found to agree with the theoretically expected behaviour. The 

retrial queueing model with imperfect repair and multiple waiting servers can 

be considered for future investigations. 
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