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Abstract  

In this study, a deterministic mathematical model of Typhoid fever 

dynamics with control strategies; vaccination, hygiene practice, 

sterilization and screening is studied. The model is first analyzed for 

stability in terms of the control reproduction number, Rc with 

constant controls. The disease-free equilibrium and endemic 

equilibrium of the model exist and is shown to be stable whenever 

Rc < 1 and  Rc > 1, respectively. The model by investigation shows 

a forward bifurcation and the sensitivity analysis conducted revealed 

the most biological parameters to be targeted by policy health 

makers for curtailing the spread of the disease. The optimal control 

problem is obtained through application of Pontryagin maximum 

principle with respect to the above-mentioned control strategies. 

Simulations of the optimal control system and sensitivity of the 

constant control system confirms that hygiene practice with 

sterilization could be the best strategy in controlling the disease. 
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1. Introduction  
Typhoid fever is a life-threatening infection that is usually caused by 

Salmonella enteric serovar Typhi (S. Typhi) and Salmonella enteric serovar 

Paratyphi (S. Paratyphi, that is Paratyphi A, B, and, uncommonly is S. Paratyphi 

C) [1].  Typhoid fever has been a public health challenge globally. However, the 

disease is endemic in most developing countries in Africa and South-East Asia 

where potable clean water, sanitation and hygiene are either grossly inadequate 

or non-existent.  

The transmission of S. Typhi and S. Paratyphi occur through the 

consumption of contaminated food or water resulting from inadequate 

environmental sanitation and hygiene practices [2]. People that are clinically ill 

from typhoid fever and those who have recovered from it pass out the bacteria 

in their stools (carriers) and urine [3]. A chronic carrier sheds Salmonella 

Typhoid more than 12 months after onset of illness. Human beings are the only 

known reservoir of Typhoid and the mode of transmission happens through food 

and water contaminated by acutely ill or chronic carriers of the bacteria [4]. 

Vaccine can be taken to prevent Typhoid fever but does not provide long-

term immunity [5]. On the other hand, educating travelers moving to typhoid 

endemic regions on the importance of sanitation and hygiene precautions as well 

as vaccination will help immensely to preventing the rapid spread of Typhoid 

disease [4].  

Mathematical models of infectious diseases are used to test and compare 

various intervention strategies especially when there are limited resources [6]. 

In controlling Typhoid fever, several mathematical models have been 

formulated. For instance, Mushayabas [7] considered the impact of education 

campaigns and treatment on the dynamics of Typhoid fever and Abboubakar 

and Racke [8] carried out a human and bacteria model without considering 

hygiene practice and individuals protected through vaccination in the 

population, while Karunditu et al. [9], Peter et al. [10], Nyerere et al. [11], Peter 

et al. [12], Edward and Nyerere [13], Kgosimore and Kelatlehegile [14] and Aji 

et al. [15] considered only human population without factoring in the bacteria 

concentration in the contaminated food and or water. Tilalum et al. [16], Okolo 

and Abu [17], Peter et al. [18], Abboubakar and Racke [19] and Awoke [20] 

studied the optimal control of typhoid transmission with control measures. None 

of the aforementioned works studied the combined control measures such as 

vaccination, hygiene practice, screening of carriers and sterilization of the 

bacteria in the environment as autonomous or non-autonomous system of 

equations. This study will bridge these gaps and form a novel contribution to the 

existing body of knowledge on the subject matter. 

Peter et al. [10] forms the motivation of this work. They considered 

Protected, Susceptible, Infected, Treated and Recovery model without the 

bacteria concentration and the effect of screening of infected carriers and 
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hygiene practice on transmission dynamics of Typhoid fever. They assumed that 

the protected class belongs to only individuals that have been vaccinated before 

entrance into Typhoid endemic population and also optimal control and 

numerical simulation were not considered in their work. Modifying the work of 

Peter et al. [10], we consider Protected, Susceptible, Infected individuals, 

Carriers, Recovery and Bacteria concentration model in which some susceptible 

individuals are protected through vaccination and population practices hygiene 

which reduces the transmission rate. Hygiene practices which include safe 

water, sanitation and personal hygiene are crucial in preventing and controlling 

the spread of Typhoid. In addition, the screening and treating of carriers who 

are silent spreaders of the disease due to their asymptomatic nature and the 

sterilization of bacteria concentration in the immediate environment are also 

important in elimination of typhoid fever in the population. This work will be 

the first to consider sterilization of the bacteria concentration as a control 

measure for typhoid fever. Also, the sensitivity analysis for the prediction of 

appropriate intervention strategies for the control of typhoid fever spread and 

the optimal control analysis are carried out in this work. 

Therefore, a modified version of the work of Peter et al. [10] is formulated 

in Section 2 and a comprehensive mathematical analysis of the model in Section 

3. The sensitivity analysis and optimal control strategies of the Typhoid fever 

dynamics are considered in Section 4 while the numerical simulations and 

discussion are given in Section 5. Section 6 is the conclusion of the work.  

 

2. Model description and formulation  

In this section, the work of Peter et al. [10] is modified by considering 

human population (infected carriers) as well as bacteria concentration. The 

human population at any time, 𝑡 is subdivided into five subpopulations namely; 

protected population, 𝑃(𝑡), susceptible population, 𝑆(𝑡), infected population, 

𝐼(𝑡), carrier population, 𝐼𝑐(𝑡) and recovered individuals, 𝑅(𝑡). The bacteria 

concentration is represented by 𝐵𝑐(𝑡). In this study, the protected population, 

𝑃(𝑡), are susceptible individuals that are vaccinated and individuals coming in 

from the population that is not at risk of Typhoid fever into typhoid fever 

endemic population. Infected population, 𝐼(𝑡), are infected individuals that are 

showing symptoms of the disease and are capable of spreading the bacteria in 

the environment while carrier population, 𝐼𝑐(𝑡), represents asymptomatic 

infected individuals that are treated but still carrying the Salmonella Typhi. 

Recovered individuals, 𝑅(𝑡), are individuals who have recovered from the 

disease by treatment or natural immunity. 

The protected population, 𝑃(𝑡), of the proportion, 𝛼 ∈ (0,1) is increased by 

birth or immigration at a rate, 𝛬, and also from susceptible individuals that are 

protected through vaccination at a rate,  ƞ. The protected population loses 
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immunity when the vaccine wanes at a rate, 𝛾. The susceptible population is 

increased at a rate, (1 − 𝛼)𝛬, of the unprotected population through birth or 

immigration and also from recovered population, 𝑅(𝑡), after losing their 

temporary immunity at a rate, ɸ. Susceptible population contract typhoid disease 

through food, water or environment contaminated by Salmonella bacteria as a 

result of inadequate hygiene practice measure at a rate, (1 − 𝑝)𝜆 and progress 

to infected population. Here, λ = 
𝛽𝐵𝑐

𝐾+𝐵𝑐
 is the force of infection, 𝛽 is the ingestion 

or consumption rate of the contaminated food, water or environment, 𝐾 is the 

carrying capacity of the bacteria in food, water or environment and 𝑝 ∈ (0,1) is 

the hygiene practice control measure. Infected individuals progress to carrier 

class at a rate, 𝜎 while some infected individuals recovered fully by treatment 

at rate 𝜏1 or they die of the disease (bacteria) at a rate, d. Carrier class, 𝐼𝑐(𝑡), 
recovered by natural immunity at a rate, 𝜏2 or by early treatment when they are 

screened at a rate, Ψ with 𝜃 as the treatment rate.  The natural death rate,  𝜇 is 

assumed for all the human population. 

For the bacteria concentration, 𝐵𝑐(𝑡), in the environment, they increased 

through the shedding from Carriers and symptomatic population, 𝐼𝑐(𝑡) and 𝐼(𝑡) 
at the rates, 𝜋1 and 𝜋2 respectively. The shedding rates, 𝜋1 and 𝜋2 are reduced 

by 𝑝, the level of hygiene practice the infected populations, 𝐼𝑐(𝑡) and 𝐼(𝑡), 
observed. The bacteria decays in the environment at a rate, 𝜇Bc. We assume that 

there is no human to human transmission but rather human aids in shedding the 

bacteria in the environment or contaminating the environment; neither there is 

immigration of infectious humans. Also, disease induced death does not occur 

in carrier class since they are asymptomatic, that is before the bacteria can cause 

death, it must have progressed to symptomatic stage. The systematic diagram of 

model is given in Figure 1. 
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Figure 1.  The systematic diagram for Typhoid fever model. 

 

 

The system of differential equation is derived using the Figure 1 as follows. 

 
𝑑𝑃

𝑑𝑡
 =  αɅ +  ƞS – (γ +  µ)P                                                  

𝑑𝑆

𝑑𝑡
 =  (1 − α)Ʌ +  γP +  ɸR – (ƞ +  µ +  (1 − p)λ)S

𝑑𝐼

𝑑𝑡
 =  (1 − p)λS – (σ + 𝜏1 +  µ + 𝑑)I                                  

𝑑𝐼𝑐

𝑑𝑡
 =  σ𝐼 – (𝜏2   +  Ѱ𝜃 + 𝜇)𝐼𝐶                                                

𝑑𝑅

𝑑𝑡
 =  𝜏1I + (𝜏2   +  Ѱ𝜃)𝐼𝐶  –  (µ +  ɸ)R                           

𝑑𝐵𝑐

𝑑𝑡
 =    𝜋2(1 − 𝑝)I + 𝜋1(1 − 𝑝)𝐼𝐶  −  µ𝐵𝐵𝑐                      }

 
 
 
 

 
 
 
 

     (1)               

 

with initial conditions, 𝑃(0) > 0, 𝑆(0) > 0, 𝐼𝐶(0) ≥ 0, I(0) ≥ 0, 𝑅(0) ≥ 0, 

𝐵𝐶(0) ≥ 0, where  λ= 
𝛽𝐵𝑐

(𝐾+𝐵𝑐)
 and the model parameters are assumed to be 

nonnegative. 
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3. Mathematical Analysis of the Model  

3.1 Invariant Region 
Invariant region is a region where the model solutions are uniformly 

bounded. 

 

Theorem 1. All feasible solutions of the model are uniformly bounded in a 

proper subset 𝐷 = 𝐷𝐻  𝑋 𝐷𝐵𝑐 , where  DH = {(P, S, I, 𝐼𝐶,R)  ∈ Ɍ+
5 : N(t) ≤   

Ʌ

µ
} is 

a subset for human population and 𝐷𝐵𝑐 = {𝐵𝑐  ∈ ℝ+: 𝐵𝑐 ≤ 
[(𝜋2 +  𝜋1)(1−𝑝)]Ʌ

µµ𝐵
} is 

a subset for bacteria concentration in environment.  

 

Proof. The total human population, 𝑁(𝑡) is given by 𝑁= 𝑃 + 𝑆 + 𝐼 + 𝐼𝑐 +
𝑅 with initial conditions 𝑁(0) =  𝑁0 and 𝐵𝑐(0) = 𝐵𝑐0 for the bacteria in the 

environment. This implies that from equation (1) that  
𝑑𝑁

𝑑𝑡
 = 𝛬 − 𝜇𝑁 − 𝑑𝐼. In the 

absence of disease-induced death rate, that is, 𝑑 = 0, we have 
𝑑𝑁𝐻

𝑑𝑡
 ≤ 𝛬 − 𝜇𝑁 

which by method of integrating factor and the initial condition, 𝑁(0) =
 𝑁0 gives   

𝑁(𝑡) ≤  
Ʌ

µ
 +  (𝑁0  −  

Ʌ

µ
) 𝑒−µ𝑡.                                                                                   (2)       

As 𝑡 → ∞ in equation (2), we have 𝑁(𝑡) ≤
Ʌ

µ
. This means that the feasible 

solutions of the model for the human population are in the region, DH =

 {(P, S, I, 𝐼𝐶,R)  ∈ Ɍ+
5 : N(t) ≤   

Ʌ

µ
}.  

For bacteria concentration since 𝑁(𝑡) ≤
Ʌ

µ
, it means that 𝐼 ≤

Ʌ

µ
  and 𝐼𝐶 ≤

Ʌ

µ
, 

we have from the last equation of (1) that 

 
𝑑𝐵𝑐

𝑑𝑡
= 𝜋2(1 − 𝑝)𝑁 + 𝜋1(1 − 𝑝)𝑁 − µ𝐵𝐵𝑐 ≤ 𝜋2(1 − 𝑝)

Ʌ

µ
+ 𝜋1(1 − 𝑝)

Ʌ

µ
−

µ𝐵𝐵𝑐  .                        (3) 

 

Solving equation (3) with 𝐵𝑐(0) = 𝐵𝑐0 as the initial condition yields 

𝐵𝑐 ≤
(𝜋2 +𝜋1)(1−𝑝)Ʌ

µµ𝐵
+ (𝐵𝑐0 − 

(𝜋2 +𝜋1)(1−𝑝)Ʌ

µµ𝐵
) 𝑒−µ𝐵𝑡.                         (4) 
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As t → ∞ in equation (4), we have 𝐵𝑐 ≤
(𝜋2 +𝜋1)(1−𝑝)Ʌ

µµ𝐵
. Therefore, the feasible 

solution of the bacterial population enters the region 𝐷𝐵𝑐 = {𝐵𝑐  ∈ ℝ+: 𝐵𝑐 ≤

 
[(𝜋2 +  𝜋1)(1−𝑝)]Ʌ

µµ𝐵
}. This completes the proof.  

Theorem 1 implies that the model is well posed mathematically and 

epidemiologically. Therefore, it is sufficient enough to study the dynamics of 

the model (1) in the region 𝐷 = 𝐷𝐻 × 𝐷𝐵𝑐 . 

 

3.2 Positivity of the Solutions  
Theorem 2. Let D = {𝑃, 𝑆, 𝐼, 𝐼𝐶,𝑅,  𝐵𝑐} ∈ ℝ+

6be solution set such 

that 𝑃(0) = 𝑃0, 𝑆(0) = 𝑆0, 𝐼𝐶(0) = 𝐼𝐶0, I(0) = 𝐼0, 𝑅(0) = 𝑅0 and 𝐵𝐶(0) =
𝐵𝐶0 are positive, then the elements of the solution set 𝐷 are all positive for 𝑡 ≥
0. 

Proof. From the first equation of the model equations (1), we have 

 
𝑑𝑃

𝑑𝑡
= 𝛼Λ + 𝜂𝑆 − (𝛾 +  µ)P ≥ −(𝛾 +  µ)P.     (5) 

Integrating equation (5) with initial conditions 𝑃(0) = 𝑃0 yields 

 

𝑃(𝑡) ≥ 𝑃0𝑒
– (γ + µ)t ≥ 0 . 

In a similar way, the rest of the equations of the model equation (1) with initial 

conditions, 𝑆(0) = 𝑆0, 𝐼(0) = 𝐼0𝐼𝐶 (0) = 𝐼𝑐0, 𝑅(0) = 𝑅0 and 𝐵𝑐(0) = 𝐵𝑐0 give 

 

𝑆(𝑡) ≥ 𝑆0exp (∫  – (ƞ +  µ + (1 − 𝑝)λ)
𝑡

0
)𝑑𝑢 ≥ 0, 

𝐼(𝑡) ≥ 𝐼0exp{−(σ + 𝜏1 +  µ + 𝑑)t} ≥ 0, 
𝐼𝐶 (𝑡) ≥ 𝐼𝑐0exp{− (𝜏2   +  Ѱ𝜃 + 𝜇)𝑡} ≥ 0, 

𝑅(𝑡) ≥ 𝑅0exp{– (µ +  ɸ)t} ≥0, 

𝐵𝑐(𝑡) ≥ 𝐵𝑐0exp(− µ𝐵𝑡) ≥ 0. 

 

Therefore, the solution set {𝑃(𝑡), 𝑆(𝑡), 𝐼(𝑡), 𝐼𝑐(𝑡),   𝑅(𝑡),  𝐵𝑐(𝑡)},  of the 

system (1) is positive for all 𝑡 ≥ 0 since exponential functions and their initial 

conditions are positive. 

 

3.3 Disease-free equilibrium point and Control 

Reproduction Number  
We compute the control reproduction number, 𝑅𝑐 , which is define as the 

average number of secondary cases reproduced when an infected person is 

introduced into a population where control measures like vaccination, screening, 

sanitation and hygiene are in place.  
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In obtaining this, we apply the next-generation matrix approach [21] at the 

disease-free disease (DFE). The disease-free equilibrium (DFE) is obtained by 

equating the right hand side of the equation (1) to zero and solve simultaneously 

for the disease-free equilibrium, 𝐸0 = (𝑃
0, 𝑆0, 𝐼0, 𝐼𝐶

0, 𝑅0, 𝐵𝐶
0). We have DFE,  

 

 𝐸0 = (
Ʌ(𝛼µ+ƞ)

µ(𝛾+ƞ+µ)
,
Ʌ(𝛾+𝜇(1−𝛼))

µ(𝛾+ƞ+µ)
, 0, 0, 0, 0).  

 

By the principle of next-generation matrix approach, we have 

 

𝐹 = (
0 0

a𝛽𝑆0

𝐾

0 0 0
0 0 0

),     𝑉 = (

k3 0 0
−𝜎 k4 0

− 𝜋2(1 − 𝑝) −𝜋1(1 − 𝑝) µ𝐵

),      (6) 

 

where 

𝑎 = (1 − p), 𝑘1 = (γ +  µ), 𝑘2 = (ƞ +  µ), 𝑘3 = (σ + 𝜏1 +  µ + 𝑑), 𝑘4 =
(𝜏2   +  Ѱ𝜃 + 𝜇), 𝑘5 = (µ +  ɸ).                    (7)                                                                             

 

Solving for the maximum eigenvalue of the matrix, 𝐹𝑉−1, we have 

 

𝑅𝑐 =
𝑎𝛽S0[(𝜎𝜋1+𝜋2𝐾4)(1−𝑝)]

𝐾µ𝐵𝐾3𝐾4
 .              (8) 

 

With the definition of equation (7), we have 

  

𝑅𝑐 =
𝛽𝛬(1−p)(𝛾+(1−𝛼)𝜇)[(𝜎𝜋1+𝜋2(𝜏2+ Ѱ𝜃+𝜇))(1−𝑝)]

𝜇𝐾𝜇𝐵(𝛾+ƞ+µ)(σ+𝜏1+ µ+𝑑)(𝜏2+ Ѱ𝜃+𝜇)
 .                           (9) 

 

The control reproduction number, 𝑅𝑐, can be written as 

 

𝑅𝑐=𝑅𝐼 + 𝑅𝐼𝐶 ,        (10) 

 

where 

 

 𝑅𝐼 =
𝛽(1−p)2𝜋2𝑆0

𝐾µ𝐵(σ+𝜏1+ µ+𝑑)
 ,  𝑅𝐼𝑐 =

𝛽(1−p)2𝜎𝜋1𝑆0

𝐾µ𝐵(𝜏2   + Ѱ𝜃+𝜇)(σ+𝜏1+ µ+𝑑)
   (11) 

 

denote the reproduction numbers which the infected population and carrier 

population contributed respectively through their shedding in the environment. 

 

3.4 Local stability of the disease-free equilibrium, 

𝑬𝟎  
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Theorem 3. If 𝐸0 is the DFE of the model, then 𝐸0 is locally 

asymptomatically stable if 𝑅𝑐 < 1, otherwise it is unstable if 𝑅𝑐 > 1. 

Proof. In proving this theorem, the Jacobian matrix of equation (1) at the 

disease-free equilibrium, 𝐸0 is given as 

 

𝐽(𝐸0) =

(

 
 
 
 
 

–k1 ƞ 0 0 0 0

γ −k2 0 0 ɸ
− a𝛽𝑆0

𝐾

0 0 – k3 0 0
a𝛽𝑆0

𝐾

0 0 σ – k4 0 0

0 0 𝜏1 (𝜏2   +  Ѱ𝜃) – k5 0

0 0 𝜋2(1 − 𝑝) 𝜋1(1 − 𝑝) 0 −µ𝐵 )

 
 
 
 
 

. (12) 

 

The eigenvalues of the Jacobian matrix (12) are −k5 and the solutions of the 

polynomial 

 

𝜆5 + 𝐴𝜆4 + 𝐵𝜆3 + 𝐶𝜆2 + 𝐷𝜆 + 𝐸 = 0               (13) 

 

where 

 

A = k1 + k2 + k3 + k4 + μB, 
𝐵 = (k1 + k2 )(k3 + k4 + μB) + k4(k3 + μB) + 𝜇(k2 + γ) + k3μB(1 − 𝑅𝐼), 

𝐶 = 𝜇(k4 + μB)(k2 + γ) + k1k2k3 + k3μB(k1 + k2 )(1 − 𝑅𝐼)
+ k3k4μB(1 − 𝑅𝐶) + k4(k1 + k2 )(k3 + μB), 

𝐷 = 𝜇k3μB(k2 + γ)(1 − 𝑅𝐼) + 𝜇k4(k3 + μB)(k2 + γ) + k3k4μB(k1 +
k2 )(1 − 𝑅𝐶), 

𝐸 = 𝜇(k2 + γ)k3k4μB(1 − 𝑅𝐶). 
 

Using the theorem in Heffernan et al. [22], the roots of the polynomial (13) have 

negative real part if 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 > 0. With the definition of 𝑅𝑐 in equation (10), 

we have 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 > 0 if 𝑅𝑐 < 1. Therefore, the Jacobian Matrix (12) has 

negative real eigenvalues if 𝑅𝐶 < 1. Hence, the disease-free equilibrium, 𝐸0, is 

locally asymptotically stable  if 𝑅𝐶 < 1. This ends the proof.                                                                                                    

 

3.5 Global stability of disease-free equilibrium 
Theorem 4. The disease-free equilibrium, 𝐸0, is globally asymptotically 

stable if  𝑅𝑐 < 1. 

Proof. We construct a Lyapunov function using the infected classes only 

and this is given by  
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𝐿 =
[𝜎𝜋1(1−𝑝)+𝜋2(1−𝑝)k4]

µ𝐵k4k3
𝐼 +

𝜋1(1−𝑝)

µ𝐵k4
 𝐼𝐶 +

1

µ𝐵
𝐵𝑐 .    (14) 

 

Differentiating (14) with respect to time, 𝑡, along the solutions of the model (1) 

gives 

 
𝑑𝐿

𝑑𝑡
= (

𝜎𝜋1(1−𝑝)+𝜋2(1−𝑝)k4

µ𝐵k4k3
) (

𝑎𝛽𝐵𝑐

(𝐾+𝐵𝑐)
S – k3I) +

𝜋1(1−𝑝)

µ𝐵k4
 (σ𝐼 – k4𝐼𝐶) +

1

µ𝐵
(𝜋2(1 − 𝑝)I + 𝜋1(1 − 𝑝)𝐼𝐶  −  µ𝐵𝐵𝑐).     (15) 

 

Expanding and simplifying (15) yields 

𝑑𝐿

𝑑𝑡
= (

𝑎𝛽𝐵𝑐

(𝐾+𝐵𝑐)
(
𝜎𝜋1(1−𝑝)+𝜋2(1−𝑝)k4

µ𝐵k4k3
) 𝑆 − 1)𝐵𝑐 = (

𝑅𝑐𝐾𝑆

(𝐾+𝐵𝑐) 𝑆0
− 1)𝐵𝑐 . 

Since 𝑆 ≤  𝑆0  and 
𝐾

(𝐾+𝐵𝑐)
≤ 1, we have 

𝑑𝐿

𝑑𝑡
≤ 𝐵𝑐(𝑅𝑐 − 1). 

Clearly, 
𝑑𝐿

𝑑𝑡
≤ 0 if 𝑅𝑐  ≤ 1. If 𝐵𝑐 = 0, 

𝑑𝐿

𝑑𝑡
= 0. By virtue of LaSalle’s Invariance 

Principle, the disease-free equilibrium, 𝐸0, is globally asymptotically stable 

(GAS) whenever 𝑅𝑐 < 1. 

3.6 Endemic Equilibrium State 
The Endemic equilibrium state 𝐸∗ is a state where the disease is present in 

the population. At 
𝑑𝑃

𝑑𝑡
 = 

𝑑𝑆

𝑑𝑡
 = 

𝑑𝐼

𝑑𝑡
 = 

𝑑𝐼𝑐

𝑑𝑡
 = 

𝑑𝑅

𝑑𝑡
 = 

𝑑𝐵𝑐

𝑑𝑡
= 0 , we obtain after solving 

simultaneously that  

 𝐼∗ =
k4𝑘5(Rc−1)

𝐵
,   𝐼𝑐

∗ =
𝜎𝑘5(Rc−1)

B
,    𝑅∗ =

(𝜏1k4+𝜎(𝜏2   +Ѱ𝜃))(Rc−1)

B
, 

 

 𝐵𝑐
∗ =

[𝜋2(1−𝑝)k4+𝜎𝜋1(1−𝑝)]𝑘5(Rc−1)

B𝜇𝐵
, 

𝑆∗ =
𝛬(k1−αμ)𝐵+k1[𝜎(𝜏2   +Ѱ𝜃)ɸ+ɸk4τ1−k3k4k5](Rc−1)

𝐵(k1k2−ƞ𝛄)
, 

𝑃∗ =
𝛼𝛬(B(k1k2−ƞ𝛄))+ƞ[𝛬(k1−αμ)𝐵+k1[𝜎(𝜏2   +Ѱ𝜃)ɸ+ɸk4τ1−k3k4k5](Rc−1)]

k1B(k1k2−ƞ𝛄)
. 

Then, 𝑃∗, 𝑆∗, 𝐼∗, 𝐼𝑐
∗, 𝑅∗, 𝐵𝑐

∗ are all positive if and only if Rc > 1, which 

established that the endemic equilibrium state, 𝐸∗ = (𝑃∗, 𝑆∗, 𝐼∗, 𝐼𝑐
∗, 𝑅∗,

𝐵𝑐
∗) exists for Rc > 1. 
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3.7 Global Stability of Endemic Equilibrium 
The global stability of endemic equilibrium, 𝐸∗, is established in the 

absence of disease induced death. 

Theorem 4.The endemic equilibrium, 𝐸∗, is globally asymptotically stable if 

Rc > 1 and 𝑑 = 0.  

Proof. We construct the Lyapunov function given by 

 

𝐿 =
1

2
[(𝑃 − 𝑃∗ ) + (𝑆 − 𝑆∗ ) + (𝐼 − 𝐼∗ ) + (𝐼𝑐 − 𝐼𝑐

∗) + (𝑅 − 𝑅∗ )]2 +

(𝐵𝑐   − 𝐵𝑐
∗ − 𝐵𝑐

∗ ln
𝐵𝑐

𝐵𝑐
∗). 

Taking the derivative of 𝐿 along the solutions of equation (1) yields  

 

𝐿′ = [(𝑃 − 𝑃∗) + (𝑆 − 𝑆∗) + (𝐼 − 𝐼∗) + (𝐼𝑐 − 𝐼𝑐
∗) + (𝑅 − 𝑅∗)]

𝑑

𝑑𝑡
(𝑃 + 𝑆 + 𝐼 + 𝐼𝑐 + 𝑅)

+(1 −
𝐵𝑐
∗

𝐵𝑐
)
𝑑𝐵𝑐

𝑑𝑡

̇

 

which upon substitution gives  

   

𝐿′ = [(𝑃 − 𝑃∗) + (𝑆 − 𝑆∗) + (𝐼 − 𝐼∗) + (𝐼𝑐 − 𝐼𝑐
∗) + (𝑅 − 𝑅∗)](𝛬

−𝜇(𝑃 + 𝑆 + 𝐼 + 𝐼𝑐 + 𝑅) − 𝑑𝐼)

+ (1 −
𝐵𝑐
∗

𝐵𝑐
) (𝜋2(1 − 𝑝)I + 𝜋1(1 − 𝑝)𝐼𝐶 − µ

𝐵
𝐵𝑐).

̇

       (16) 

 

Substituting at endemic equilibrium, 

 𝛬 = 𝜇(𝑃∗ + 𝑆∗ + 𝐼∗ + 𝐼𝑐
∗ + 𝑅∗) + 𝑑𝐼∗, µ

𝐵
=

𝜋2(1−𝑝)𝐼
∗

𝐵𝑐
∗ +

𝜋1(1−𝑝)𝐼𝑐
∗

𝐵𝑐
∗    

in equation (16) and simplify, we have   
 

𝐿′ = −𝜇[(𝑃 − 𝑃∗) + (𝑆 − 𝑆∗) + (𝐼 − 𝐼∗) + (𝐼𝑐 − 𝐼𝑐
∗) + (𝑅 − 𝑅∗)]2 + 𝜋2(1 −

𝑝)𝐼∗ [1 +
𝐼

𝐼∗
−

𝐵𝑐

𝐵𝑐
∗ −

𝐵𝑐
∗𝐼

𝐼∗𝐵𝑐
] + 𝜋1(1 − 𝑝)𝐼𝑐

∗ [1 +
𝐼𝑐

𝐼𝑐
∗
−

𝐵𝑐

𝐵𝑐
∗ −

𝐵𝑐
∗𝐼

𝐼∗𝐵𝑐
] − 𝑑(𝐼 − 𝐼∗)[(𝑃 −

𝑃∗) + (𝑆 − 𝑆∗) + (𝐼 − 𝐼∗) + (𝐼𝑐 − 𝐼𝑐
∗) + (𝑅 − 𝑅∗)].  

 

Using the hypothesis that 𝑑 = 0, we have  

 

𝐿′ = −𝜇[(𝑃 − 𝑃∗) + (𝑆 − 𝑆∗) + (𝐼 − 𝐼∗) + (𝐼𝑐 − 𝐼𝑐
∗) + (𝑅 − 𝑅∗)]2 + (𝜋2(1 − 𝑝)𝐼

∗ +

𝜋1(1 − 𝑝)𝐼𝑐
∗) [2 −

𝐵𝑐

𝐵𝑐
∗ −

𝐵𝑐
∗

𝐵𝑐
]  

 

with  
𝐼𝑐

𝐼𝑐
∗
≤ 1,

𝐼

𝐼∗
≤ 1. This implies that  𝐿′ ≤ 0  since 2 −

𝐵𝑐

𝐵𝑐
∗ −

𝐵𝑐
∗

𝐵𝑐
≤ 0, by 

arithmetic and geometric theorem and 𝐿 = 0 if 𝑃 = 𝑃∗ , 𝑆 = 𝑆∗ , 𝐼 = 𝐼∗ , 𝐼𝑐 =



C. E. Madubueze, R.I. Gweryina, and K. A. Tijani 

 

266 

 

𝐼𝑐
∗, 𝑅 = 𝑅∗ and 𝐵𝑐 = 𝐵𝑐

∗. This means that the endemic equilibrium, 𝐸∗, is 

globally asymptotically stable (GAS) whenever 𝑅𝑐 > 1 and 𝑑 = 0 according to 

LaSalle’s Invariance Principle. 

3.8 Local Stability of Endemic Equilibrium State  
Due to the mathematical complexity of the stability of endemic equilibrium, 

the Centre manifold theory approach is used to establish the local stability of 

endemic equilibrium by proving the existence of a forward bifurcation of the 

system. A forward bifurcation means that the endemic equilibrium is locally 

asymptotically stable if  𝑅𝑐 > 1 but near unity.  

Theorem 5. The endemic equilibrium is locally asymptotically stable 

whenever if  𝑅𝑐 > 1 but near unity.  

Proof. Using the approach of Centre manifold theory by Castillo-Chavez 

and Song [23],  let 𝛽 = 𝛽∗ be a bifurcation parameter at 𝑅𝑐 = 1 so that 𝛽 =

𝛽∗ =
𝐾µ𝐵𝑘3𝑘4

𝑎S0[(𝜎𝜋1+𝜋2𝑘4)(1−𝑝)]
. This implies that the Jacobian matrix of equation (12) 

has negative eigenvalues and a simple zero eigenvalue.  

The left and right eigenvectors associated with the Jacobian matrix (12) are 𝑤 =
(𝑤1, 𝑤2, 𝑤3,  𝑤4,  𝑤5, 𝑤6) and 𝑣 = (𝑣1, 𝑣2, 𝑣3,  𝑣4,  𝑣5, 𝑣6) respectively 

where 

𝑤1 =
ƞ(k3k4k5−ɸ𝜏1k4−𝜎ɸ(𝜏2   + Ѱ𝜃))𝑤3

k4k5(ƞ𝛾−𝑘1k2)
, 𝑤2 =

𝑘1(k3k4k5−ɸ𝜏1k4−𝜎ɸ(𝜏2   + Ѱ𝜃))𝑤3

k4k5(ƞ𝛾−𝑘1k2)
, 𝑤4 =

𝜎𝑤3

k4
, 𝑤5 =

(𝜏1k4+σ(𝜏2   + Ѱ𝜃))𝑤3

k4k5
, 𝑤6 =

k3𝑤3

𝑐
 , 𝑣1 = 𝑣2 = 𝑣5 = 0, 𝑣4 =

𝜋1(1−𝑝)c𝑣3

k4µ𝐵
, 𝑣6 =

𝑐𝑣3

µ𝐵
,𝑤3, 𝑣3 > 0, 𝑐 =

a𝛽𝑆0

𝐾
. 

Representing the state variables 𝑃 = 𝑥1, 𝑆 = 𝑥2, 𝐼 = 𝑥3,  𝐼𝑐 = 𝑥4, 𝑅 = 𝑥5,

𝐵𝑐 = 𝑥6 so that the system (1) becomes 
𝑑𝑋

𝑑𝑡
= 𝐹 = (𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6)

𝑇 with 

𝑓𝑖 = 𝑓𝑖(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6), we have the non-zero second order partial 

derivatives at 𝐸0 given as 
𝜕2𝑓3(𝐸0)

𝜕𝑥2𝜕𝑥6
=

(1−𝑝)𝛽∗

𝑘
,
𝜕2𝑓3(𝐸0)

𝜕𝑥6
2 = −

2(1−𝑝)𝛽∗𝑆0

𝑘2
,
𝜕2𝑓6(𝐸0)

𝜕𝑥6𝜕𝛽∗
=

(1−𝑝)𝑆0

𝑘
 . 

We compute the coefficients, 𝑚 and 𝑛 as follows 𝑚 = 𝑣3 (𝑤2𝑤6
𝜕2𝑓3

𝜕𝑥2𝜕𝑥6
+

𝑤6
2 𝜕

2𝑓3

𝜕𝑥6
2)  and 𝑛 = 𝑤3𝑣3

𝜕2𝑓3

𝜕𝑥3𝜕𝛽∗
> 0. Upon substituting, we have  

𝑚 = −
k3(1−𝑝)𝛽

∗𝑣3𝑤3
2

𝑐𝑘
(
𝑘1(k3k4k5−ɸ𝜏1k4−𝜎ɸ(𝜏2   + Ѱ𝜃))

k4k5(𝑘1k2−ƞ𝛾)
+
2k3𝑆0

𝑐𝑘
) < 0,  
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𝑛 =
𝑤3k3𝑣3(1−𝑝)𝑆0

𝑐𝑘
> 0 , 

which implies that a forward bifurcation exists. Thus, the endemic equilibrium 

is locally asymptotically stable if  𝑅𝑐 > 1 but near unity. This is shown 

graphically in Figure 2. 

 

Figure 2. Forward bifurcation for typhoid model.  

 

4. Sensitivity Analysis and Optimal Control 

Analysis 

4.1 Sensitivity Analysis of the Model Parameters  
Sensitivity analysis is used to examine the connection between uncertain 

parameters of a mathematical model and a property of the observable output 

[24]. It is used to determine the model parameters that have a great impact on 

reproduction number, 𝑅𝑐 for the purpose of targeting such by intervention 

strategies [25]. In carrying out the sensitivity analysis, we adopted normalized 

forward index method as used by Rodrigues et al. [25] and this is given by 𝑆𝑌
𝑅𝑐 =

𝜕𝑅𝑐

𝜕𝑌
×

𝑌

𝑅𝑐
, where 𝑌 is the parameters reflecting in the control reproduction 

number,  𝑅𝑐. The sensitivity indices of  𝑅𝑐 are given in Table 2 using the 

parameter values in Table 1. 
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Table 1. Parameter values of the model with their sources 

 

 

Table 2. Sensitivity index of the parameters values 

Parameter Index sign Index sign Sensitivity 
index values 

Parameter Index sign Sensitivity 
index values 

𝛾 + 0.66520217 𝑑 − 0.53789731 

𝛼 − 0.03617419 π1 + 0.161676646 

𝜎 − 0.08282213 π2 + 0.838323354 

𝜏1 − 0.01629918 μB − 0.999999999 

𝜏2 − 0.00027716 Ѱ − 0.138579983 

𝑝 − 1.99999999 𝜃 − 0.138579983 

Ƞ − 0.67891735 𝛽 + 1.00000000 

From Table 2, the parameters with positive indices (𝜋1, 𝜋2, 𝛾  ) indicate that 

they have impact on expanding the disease in the population if their values are 

increasing because the control reproduction number increases as their values 

increase. Also, the parameters in which their sensitivity indices are negative 

have influence in reducing the burden of the bacteria in the population as their 

values increase because the control reproduction number decreases as their 

values increase, which will lead to reducing the endemicity of the bacteria in the 

population. 

Parameter Value Source Parameter Value Source 

Λ 100 [16] 𝜇 0.0247 [16] 
𝛾 0.33 [26] 𝑑 0.066 [30] 
𝛼 0.5 [27] π1 0.9 [30] 
ɸ 0.000904 [28] π2 0.8 [16] 
𝜎 0.03-0.05 [28] μB 0.0345 [31] 
𝜏1 0.002 [16] Ѱ 0.75 [11] 
𝜏2 0.0003 [16] 𝜃 0.2 [16] 
p 
Ƞ 

0.3 
0.75 

Assumed 
[11] 

𝛽 
𝐾 

0.9 
500000 

[16] 
[29] 
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        (a)              (b) 

 

       (c)            (d) 

Figure 3. Simulations for the impact of model parameters on control 

reproduction number. 

According to the phase plane (Figure 3a), the value of 𝑅𝑐 decreases 

drastically as 𝜌 and 𝜇𝐵 increases. Also, the value of 𝑅𝑐 decreases sharply in 

Figure 3b as 𝜌 increases, but the change of 𝜂 has a significantly lower impact 

on 𝑅𝑐. The phase planes in Figures 3c and 3d illustrate similar results, which 

shows that 𝑅𝑐 is much sensitive  to 𝜇𝐵 than to 𝜂 and 𝜓, respectively. Therefore, 

from all cases, 𝜇𝐵 has shown to be a superior force in reducing the burden of 

Typhoid fever. However, the combination of 𝜌 and 𝜇𝐵 has proven to be the best 

control strategy as compared to the rest. 

4.2 Optimal Control Analysis 
The optimal control model is formulated from system (1) when the constant 

parameters, ƞ, p,Ψ, µ𝐵 are time dependent that is ƞ(t), p(t), Ѱ(t) and µ𝐵(t) 
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where ƞ(t) is vaccination control, p(t) is hygiene practice control, Ѱ(t) is the 

screening control and µ𝐵(t) is the sterilization control. 

 

The objective function to be minimized is given as  

 

𝐽(ƞ(t), 𝑝(t), Ѱ(t), µ𝐵(t)) = ∫ (𝐼 + 𝐼𝐶 + Bc + 
𝑚1ƞ

2(t)

2
+ 

𝑚2𝑝
2(t)

2
+

𝑡𝑓

0

𝑚3Ѱ
2(𝑡)

2
+
𝑚4𝜇𝐵

2 (t)

2
)        (18) 

 

subject to equation (1) with 

 

ƞ = ƞ(𝑡), p = p(t), Ψ = Ψ(t), µ𝐵 = µ𝐵(𝑡).     (19) 

 

The coefficients, 𝑎, 𝑏, 𝑐,are the weight constants for the infected, carriers and the 

bacteria concentration respectively whereas 𝑚𝑖, i = 1, 2, 3, 4 are cost of 

implementing these control measures. We assume a quadratic expression for the 

costs based on literature. The control measures, ƞ(t), 𝑝(t), Ѱ(t), µ𝐵(t) are 

Lebesgue measurable with 0 ≤ ƞ(t) < 0.9, 0 ≤ 𝑝(t) < 1, 0 ≤ Ѱ(t) < 1, 0 ≤
 µ𝐵(t) < 1 for 0 ≤ 𝑡 ≤ 𝑡𝑓 . 

We aimed to minimize the number of infectives, carriers, bacteria 

concentration and their costs of implementations, that is, 𝐽(ƞ(t)∗,

𝑝(t)∗, Ѱ(t)∗, µ𝐵(t)
∗) = 𝑚𝑖𝑛 𝐽(ƞ(t), 𝑝(t), Ѱ(t), µ𝐵(t)). The optimal control 

pair is obtained using Pontryagin maximum principle [32]. This principle 

converts equations (18) and (1)  with (19) into a problem of minimizing 

pointwise a Hamiltonian H with respect to ƞ(t), 𝑝(t), Ѱ(t), µ𝐵(t) such that; 

 

𝐻(𝑃, 𝑆, 𝐼, 𝐼𝐶 , 𝑅, 𝐵𝐶) =
𝑑𝐽

𝑑𝑡
+ 𝜆1

𝑑𝑃

𝑑𝑡
+ 𝜆2

𝑑𝑆

𝑑𝑡
+ 𝜆3

𝑑𝐼

𝑑𝑡
+ 𝜆4

𝑑𝐼𝑐

𝑑𝑡
+ 𝜆5

𝑑𝑅

𝑑𝑡
+ 𝜆6

𝑑𝐵𝐶

𝑑𝑡
 .  

 

Thus,  

𝐻(𝑃, 𝑆, 𝐼, 𝐼𝐶 , 𝑅, 𝐵𝐶) = (𝑎𝐼 + 𝑏𝐼𝐶 + 
𝑚1ƞ(t)

2

2
+ 

𝑚2𝑝(t)
2

2
+
𝑚3Ѱ(t)

2

2
+

𝑚4µ𝐵(t)
2

2
) + 𝜆1

𝑑𝑃

𝑑𝑡
+ 𝜆2

𝑑𝑠

𝑑𝑡
+ 𝜆3

𝑑𝐼

𝑑𝑡
+ 𝜆4

𝑑𝐼𝐶

𝑑𝑡
+ 𝜆5

𝑑𝑅

𝑑𝑡
+ 𝜆6

𝑑𝐵𝐶

𝑑𝑡
  

, 

where  𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5 and𝜆6 are the adjoint variable functions. 

So,  

𝐻 = (𝑎𝐼 + 𝑏𝐼𝑐 + 𝑐𝐵𝑐 + 
𝑚1ƞ(t)

2

2
+ 

𝑚2𝑝(t)
2

2
+
𝑚3Ѱ(t)

2

2
+
𝑚4µ𝐵(t)

2

2
) +

𝜆1(αɅ +  ƞ(t)S – (γ +  µ)P) + 𝜆2 ((1 − α)Ʌ +  γP +  ɸR – (ƞ(t)  +  µ +

  (1 − p(t))
𝛽𝐵𝑐

(𝐾+𝐵𝑐)
) S) + 𝜆3 ((1 − p(t))

𝛽𝐵𝑐

(𝐾+𝐵𝑐)
S – (σ + 𝜏1 +  µ + 𝑑)I ) +
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𝜆4(σ𝐼 – (𝜏2   +  Ѱ(t)𝜃 + 𝜇)𝐼𝑐) + 𝜆5(𝜏1I +  (𝜏2   +  Ѱ(t)𝜃)𝐼𝑐 – (µ +
 ɸ)R ) + 𝜆6(𝜋2(1 − 𝑝(t))I + 𝜋1(1 − 𝑝(t))𝐼𝑐  −  µ𝐵(t)𝐵𝑐).      (20) 

 

Theorem 5.  Given an optimal control ƞ(t)∗, 𝑝(t)∗, Ѱ(t)∗, µ𝐵(t)
∗ and 

corresponding state variables 𝑃, 𝑆, 𝐼, 𝐼𝐶 , 𝑅, 𝑎𝑛𝑑 𝐵𝐶 that minimize the objective 

function 𝐽(ƞ(t), 𝑝(t), Ѱ(t), µ𝐵(t)) over U, there exist adjoint functions 

𝜆1, … 𝜆6 satisfying; 

 
𝑑𝜆1

𝑑𝑡
= (𝜆1 − 𝜆2)𝛾 + μ𝜆2,

𝑑𝜆2

𝑑𝑡
= (𝜆2 − 𝜆1)ƞ(t) + μ𝜆2 + (𝜆2 − 𝜆3)(1 − p(𝑡))

𝛽𝐵𝑐

(𝐾+𝐵𝑐)
,

𝑑𝜆3

𝑑𝑡
= −𝑎 + (𝜆3 − 𝜆4)σ + (𝜆3 − 𝜆5)𝜏1 + 𝜆3(µ + 𝑑) − 𝜋2(1 − 𝑝(t))𝜆6 ,

𝑑𝜆4

𝑑𝑡
= −𝑏 + (𝜆4 − 𝜆5)(𝜏2 +Ѱ(t)𝜃) + 𝜆4𝜇 − 𝜋1(1 − 𝑝(t))𝜆6,

𝑑𝜆5

𝑑𝑡
= (𝜆5 − 𝜆4)ɸ + 𝜆5𝜇 ,

𝑑𝜆6

𝑑𝑡
= −𝑐 + (𝜆2 − 𝜆3)(1 − p(t))

𝛽

(𝐾+𝐵𝑐)
(1 −

𝐵𝑐

(𝐾+𝐵𝑐)
) + 𝜆6µ𝐵(t). }

 
 
 
 

 
 
 
 

(21) 

 

with the transversality condition, 𝜆𝑖(𝑡𝑓) = 0, for 𝑖 = 1(1)6 and the controls 

ƞ∗(t), 𝑝∗(t), Ѱ∗(t)and 𝜇𝐵
∗ (t) satisfying the optimality condition; 

 

ƞ∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 (1,
(𝜆2−𝜆1)𝑆

𝑚1
)} ,

p∗ = {0,𝑚𝑖𝑛 (1,
(𝜆3−𝜆2)𝛽𝐵𝑐𝑆+𝜆6𝜋2𝐼(𝐾+𝐵𝑐)+𝜆6𝜋1𝐼𝑐(𝐾+𝐵𝑐)

𝑚2(𝐾+𝐵𝑐)
)} ,

Ѱ∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 (1,
(𝜆4−𝜆5)𝜃𝐼𝑐

𝑚3
)} ,

µ𝐵
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 (1,   

𝜆6𝐵𝑐

𝑚4
)} . }

  
 

  
 

  (22) 

 

Proof. Using Pontryagin maximum principle, we obtained the adjoint 

equation and tranversality conditions by differentiating the Hamiltonian 

function with respect to state variables 𝑃, 𝑆, 𝐼, 𝐼𝐶 , 𝑅 and 𝐵𝐶 respectively which 

is evaluated at the optimal control functions ƞ(t), 𝑝(t), Ѱ(t), µ𝐵(t). So, the 

adjoint system (21) is obtained using the following derivatives 

 
𝑑𝜆1

𝑑𝑡
= −

𝜕𝐻

𝜕𝑃
 , 
𝑑𝜆2

𝑑𝑡
= −

𝜕𝐻

𝜕𝑆
 , 
𝑑𝜆3

𝑑𝑡
= −

𝜕𝐻

𝜕𝐼
 ,
𝑑𝜆4

𝑑𝑡
= −

𝜕𝐻

𝜕𝐼𝐶
 ,
𝑑𝜆5

𝑑𝑡
= −

𝜕𝐻

𝜕𝑅
 , 
𝑑𝜆6

𝑑𝑡
= −

𝜕𝐻

𝜕𝐵𝑐
 

 

while the interior of the control set of equation (22) is obtained by solving for 

ƞ(t), 𝑝(t), Ѱ(t), µ𝐵(t) in the respective equations 
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𝜕𝐻

𝜕ƞ(t)
= 0,

𝜕𝐻

𝜕p(t)
= 0,

𝜕𝐻

𝜕Ѱ(t)
= 0 ,

𝜕𝐻

𝜕µ𝐵(t)
= 0. 

This completes the proof. 

The optimality system involves equation (1) with (19), equations (21) and (22).  

 

5. Numerical Simulations and Discussion  
The numerical simulations of the optimality system involving equations (1) 

with (19), (21) and (22) are implemented using Runge-Kutta method with the 

aid of MATLAB R2007b. The simulations are carried out to examine the impact 

of the control measures on Typhoid fever. 

The parameter values used for the simulations are in Table 2 while the initial c

onditions are from Mushanyu et al. (2018) as follows; S(0) = 10000, I(0) =
10, Ic(0) = 10, R(0) = 0, Bc(0) = 100000. P(0) = 100 is assumed. The 

weight constants for simulation are given as m1 = 9 × 10
−1, m2 = 5 ×

105, m3 = 7 × 102 and m4 = 4 × 106.  

(a) Optimal and constant control. The importance of time-dependent control 

measures is considered in Figure 3. With optimal control, a typhoid-free 

population is attained within 200 days compared with constant control which 

shows the endemicity of the typhoid in the population. This is achieved when 

𝑢1 is at the upper bound for 150 days and 𝑢2, 𝑢3 and 𝑢4 are below a bound of 

0.3 for 175 days before they decline to their final time.  This implies that control 

measures should be implemented in time to achieve a typhoid free population. 

Figure 4.  Solutions of Typhoid model for the infected state variables with and 

without  control measures with control profile.  
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(b) Vaccination and hygiene practices. We minimize the objective function 

for vaccination and hygiene practices (𝑢1, 𝑢2 ≠ 0, 𝑢3 = 𝑢4 = 0) to assess their 

effect on the disease. The number of infected individuals and bacteria 

concentration are reduced when compared to without control (See Figure 5). 

This is obtained when 𝑢1 is at its upper bound for all the time 200 days and 𝑢2 

attains a bound of 0.9 and decline after 5 days (Figure 5D). However, typhoid 

disease still remains in the population.  

Figure 5.  Solutions of Typhoid model for the infected state variables without 

and with  vaccination (𝑢1) and hygiene practices (𝑢2) control measures only. 

W/o means without. 

 

(c) Vaccination and screening. We minimize the objective function for 

vaccination and screening (𝑢1, 𝑢3 ≠ 0, 𝑢2 = 𝑢4 = 0). They reduced the number 

of infected persons and bacteria concentration but not as in case (b) (see Figures 

5 and 6) as the number of carriers reduces in Figure 6B than Figure 5B. This 

may be as a result of screening in the combined control measures.  This is 

achieved when the control, 𝑢1, is maintain at the upper bound for all time (200 

days) while 𝑢3 decline after attaining upper bound for 110 days (Figure 6D).  
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Figure 6.  Solutions of Typhoid model for the infected state variables without 

and with  vaccination (𝑢1)  and screening (𝑢3) control measures only. W/o 

means without. 
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vaccination and sterilization (𝑢1, 𝑢4 ≠ 0, 𝑢2 = 𝑢3 = 0). The simultaneous 

implementation of 𝑢1 and 𝑢4 reduced the number of infected persons and 

bacteria concentration to zero after 70 days and 30 days respectively while the 

number of carriers in the population is almost zero as at 200 days.  The control, 

𝑢1, maintains an upper bound for 200 days while 𝑢4 attains a bound of 0.2 for 

190 days before decline to its final time.  
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Figure 7.  Solutions of Typhoid model for the infected state variables without 

and with  vaccination (𝑢1)  and sterilization (𝑢4) control measures only. Here, 

W/o means without.  
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days  while 𝑢2 of  a bound of 0.55 and declines immediately to final time.  The 
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Figure 8.  Solutions of Typhoid model for the infected state variables without 

and with  hygiene practices (𝑢2) and screening (𝑢3) control measures only. 

Here, W/o means without. 

 

(f) Hygiene practices and sterilization.  We minimize the objective function 

for hygiene practices and sterilization as control measures (𝑢2, 𝑢4 ≠ 0, 𝑢1 =
𝑢3 = 0). The combined implementation of 𝑢2 and 𝑢4 reduces the number of 

infected persons and bacteria concentration to zero after 110 days and 50 days 

respectively while there is still some infected carriers in the population after 200 

days. The hygiene practice 𝑢2, initially increases from 0.18 to 0.28 bound within 

8 days and declines after 120 days while 𝑢4 attains a bound of 0.2 for 195 days 

before declining to its final time.   
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Figure 9.  Solutions of Typhoid model for the infected state variables without 

and with  hygiene practices (𝑢2) and sterilization (𝑢4) control measures only. 

Here, W/o means without. 

 

(g) Screening and sterilization.  We minimize the objective function for 

screening and sterilization as control measures (𝑢3, 𝑢4 ≠ 0, 𝑢1 = 𝑢2 = 0). The 

simultaneous implementation of 𝑢3 and 𝑢4 behaves similar as cases (e) and (f). 

Here, the number of infected persons, carriers and bacteria concentration reduce 

to zero after 75 days, 100 days and 45 days respectively. This is achieved when 

𝑢3 and 𝑢4 are at bound 0.28 for 170 days and 0.19 for 190 days respectively 

before declining to their final time.  
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Figure 10.  Solutions of Typhoid model for the infected state variables without 

and with  screening (𝑢3) and sterilization (𝑢4) control measures only. Here, 

W/o means without. 

 

(h) Three combine control measures We minimize the objective function for 

three control measures that is 𝑢1, 𝑢2, 𝑢3, ≠ 0, 𝑢4 = 0 (123), 𝑢1, 𝑢2, 𝑢4, ≠ 0, 𝑢3 =
0 (124), 𝑢1, 𝑢3, 𝑢4, ≠ 0, 𝑢2 = 0 (134) and  𝑢2, 𝑢3, 𝑢4, ≠ 0, 𝑢1 = 0 (234). We 

notice from Figure (10) that bacteria clearance reduces the number of infected 

populations (𝐼(𝑡), 𝐼𝑐(𝑡)) and bacteria concentration. However, the combine 

implementation of vaccination, screening and sterilization gives a better result 

compared to 𝑢1, 𝑢2, 𝑢4,  and 𝑢1, 𝑢3, 𝑢4, as it achieves a typhoid-free population 

in shortest period of time than others.  
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Figure 11.  Solutions of Typhoid model for the infected state variables with 

optimal control. Here, 123 means 𝑢1, 𝑢2, 𝑢3 combine, 124 means 𝑢1, 𝑢2, 𝑢4 

combine, 134 means 𝑢1, 𝑢3, 𝑢4 combine, 234 means 𝑢2, 𝑢3, 𝑢4 combine.  

7.    Conclusion       
In this study, the mathematical model of Typhoid fever dynamics with 

protected human population and bacteria concentration is examined. The control 

measures such as vaccination, hygiene practice and screening are taken into 

consideration. The disease-free and endemic equilibrium states are both locally 

and globally stable whenever 𝑅𝑐 < 1 and 𝑅𝑐 > 1 respectively. The local 

stability of endemic equilibrium state is established using Centre manifold 

theorem in order to show existence of forward bifurcation while the global 

stability is done when disease-related death rate is neglected. The sensitivity 

analysis of the control reproduction number is carried out and the result indicates 

that the typhoid fever disease will be controlled in the population if susceptible 

people are vaccinated with high practice of personal hygiene as well as 

screening of the carriers are screened and also the bacteria in the environment is 

disinfect or sterilization.  

The optimal control analysis is carried out for time-dependent control 

functions to form non-autonomous system. The Pontryagin maximum principle 

is used to establish the optimality conditions for the system. This is solved 

numerically to establish that optimal control implementation achieved infection-

free population on time compare to constant control. Considering when there is 

limited resources to implement all the controls together, screening and bacteria 

sterilization should be adopted for two combined controls, while vaccination, 
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screening and bacteria sterilization should be implemented together for three 

combine controls. However, the combined implementation of all controls is 

more effective in eradicating the disease from the environment. It is therefore 

recommended that these preventive measures (vaccination, hygiene practice, 

screening and sterilization) should be adopted by the policy makers to eliminate 

the typhoid bacteria from the population.   
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