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Abstract

In this paper, we study linear codes capable of detecting and cor-
recting s-periodic errors. Lower and upper bounds on the number of
parity check digits required for codes detecting such errors are ob-
tained. Another bound on codes correcting such errors is also ob-
tained. An example of a code detecting such errors is provided.
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1 Introduction

Investigations in coding theory have been made in several directions but
one of the most important directions has been the detection and correction
of errors. It began with Hamming codes[9] for single errors, Golay codes[10,
11] for double and triple random errors and thereafter BCH codes[12, 13, 14]
were studied for multiple error correction. There is a long history towards
the growth of the subject and many of the codes developed have found appli-
cations in numerous areas of practical interest. One of the areas of practical
importance in which a parallel growth of the subject took place is that of
burst error detecting and correcting codes. It has also been observed that
in many communication channels, burst errors occur more frequently than
random errors. A burst of length b may be defined as follows:
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Definition 1.1. A burst of length b is a vector whose only non-zero com-
ponents are among some b consecutive components, the first and the last of
which is non zero.

Extending the work of Hamming[9], Abramson[1] developed codes which
dealt with the correction of single and double adjacent errors. The work due
to Fire[8] depicted a more general concept of burst errors.

Stone[19], and Bridwell and Wolf[4] considered multiple bursts. It was
noted by Chien and Tang[5] that in several channels errors do occur in the
form of a burst but not near the end of the vector. Channels due to Alexan-
der, Gryb and Nast[2] fall in this category. In this light, Chien and Tang
proposed a modification in the definition of a burst, now known as CT burst,
according to which a CT burst of length b is defined as follows:

Definition 1.2. A CT burst of length b is a vector whose only non zero
components are confined to some b consecutive positions, the first of which is
non-zero.

Recently a new kind of error, known as repeated burst, has been observed
by Berardi, Dass and Verma[3]. For further work on this type of error, one
may refer to [6, 7, 18] and references therein.

It is very clear that the nature of error differ from channel to channel
depending upon the behaviour of channels or the kind of errors which occur
during the process of transmission. There is a need to deal with many types
of error patterns and accordingly codes are to be constructed to combat
such error patterns. Though the errors are generally classified mainly in
two categories - random errors and burst errors, it has also been observed
that the occurrence of errors may follow a pattern, different from random
and burst. In certain communication channel like Astrophotography[21],
small mechanical error occurs periodically in the accuracy of the tracking
in a motorized mount that results small movements of the target that can
spoil long-exposure images, even if the mount is perfectly polar-aligned and
appears to be tracking perfectly in short tests. It repeats at a regular interval
- the interval being the amount of time it takes the mount’s drive gear to
complete one revolution. This type of error pattern is termed as periodic or
alternate pattern. It was in this spirit that the codes correcting s-alternate
errors were developed by Tyagi and Das [20]. An s-periodic error is defined
as follows:
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Definition 1.3. An s-periodic error is an n- tuple whose non zero compo-
nents are located at a gap of s positions where s = 1, 2, 3,....,(n− 1) and the
number of its starting positions is among the first s+ 1 components.

For s=1, the 1-periodic error vectors are the ones where error may occur
in 1st, 3rd, 5th...positions or 2nd, 4th, 6th,... positions. For example, in a
vector of length 8, 1-periodic error vectors are of the type 10101000, 00101000,
0010101, 10101010, 10001010, 01010101, 01000101, 00000101, 00000001 etc.

For s=2, the 2-periodic error vectors are those where error may occur
in 1st, 4th, 7th,... positions or 2nd, 5th, 8th,...positions or 3rd, 6th, 9th,...
positions. The 2-periodic error vectors may look like 10010010, 10000010,
00010010, 01000001, 01000000, 00001001, etc in a vector of length 8.

For s=3, in a code length 8, the 3-periodic errors are 10001000, 01000100,
00100010, 00010001, 10000000, 01000000 etc.

In what follows a linear code will be considered as a subspace of the space
of all n-tuples over GF(q). The distance between two vectors shall be con-
sidered in the Hamming sense.

The rest of the paper is organized as follows:
In section 2, we study the linear codes that detect any s-periodic error. We
obtain lower and upper bounds on the parity check digits for codes detecting
such errors. It is followed by an example of such a code. In second 3, we give
a bound (based on Reiger’s bound[16]) on codes correcting such errors .

2 Codes detecting s-periodic errors

We consider the linear codes that are capable of detecting any s-periodic
error. Clearly, the patterns to be detected should not be code words. In other
words we consider codes that have no s-periodic error as a code word. Firstly,
we obtain a lower bound over the number of parity-check digits required for
such a code. The proof is based on the technique used in theorem 4.13,
Peterson and Weldon [15].

Theorem 2.1. Any (n, k) linear code over GF(q) that detects any s-periodic

error must have at least

⌈
n

s+ 1

⌉
parity-check digits.

Proof. The result will be proved on the basis that no detectable error
vector can be a code word.
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Let V be an (n, k) linear code over GF(q). Consider a set X of all those
vectors such that the non-zero components are located at the first position
and thereafter a gap of s positions.
We claim that no two vectors of the set X can belong to the same coset of the
standard array; else a code word shall be expressible as a sum or difference
of two error vectors.
Assume on the contrary that there is a pair, say x1, x2 in X belonging to the
same coset of the standard array. Their difference viz. x1-x2 must be a code
vector. But x1-x2 is a vector all of whose non-zero components are located
at the 1st position or after a gap of s position and so is a member of X, i.e.,
x1-x2 is an s-periodic error, which is a contradiction. Thus all the vectors in
X must belong to distinct cosets of the standard array. The number of such

vectors over GF(q) is clearly qp, where p =

⌈
n

s+ 1

⌉
.

The theorem follows since there must be at least this number of cosets. 2

In the following, an upper bound on the number of check digits required
for the construction of a linear code discussed in theorem 2.1 is provided.
This bound assures the existence of such a linear code and has been obtained
by constructing a matrix under certain constraints. The proof is based on
the well known technique used in Varshomov-Gilbert Sacks bound (refer
Sacks[17], also theorem 4.7 Peterson and Weldon [15]).

Theorem 2.2. There exists an (n, k) linear code over GF(q) that has no
s-periodic error as a code word provided that

n− k ≥
⌈

n

s+ 1

⌉
.

Proof. The existence of such a code will be shown by constructing an
appropriate (n − k) × n parity-check matrix H. The requisite parity-check
matrix H shall be constructed as follows.
Select any non-zero (n− k)-tuples as the first j − 1 columns h1, h2,..., hj−1;
the jth(j > s+ 1) column hj is added provided that

hj ̸=
∑p

i=1 uihj−i(s+1)

where ui ∈ GF (q) and p =

⌈
j

s+ 1

⌉
− 1.

This condition ensures that no s-periodic error will be a code word. The
number of ways in which the coefficients ui can be selected is clearly qp.
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At worst, all these linear combinations might yield a distinct sum.

Therefore a column hj can be added to H provided that

qn−k > qp.

or,

n− k ≥
⌈

j

s+ 1

⌉
.

For a code of length n, replacing j by n gives the result. 2

Remark: The above two theorems can be combined as follows:

For detecting s-periodic errors in a linear code of length n,

⌈
n

s+ 1

⌉
parity

check symbols are necessary and sufficient.

Example 2.1. Consider a (7, 4) binary code with parity check matrix

H =

 1 1 1 0 0 1 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1


This matrix has been constructed by the synthesis procedure, outlined in the
proof of Theorem 2.2, by taking s = 2 and n =7. It can be seen from Table
1 that the syndromes of the different 2-periodic errors are nonzero, showing
thereby that the code that is the null space of this matrix can detect all
2-periodic errors.

Table 1

Error patterns Syndromes
1000000 100
0001000 010
0000001 001
1001000 110
1000001 101
0001001 011
1001001 111
0100000 110
0000100 011
0100100 101
0010000 101
0000010 111
0010010 010
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3 Codes correcting s-periodic errors

The following theorem gives a bound on the number of parity-check dig-
its for a linear code that corrects s-periodic errors. The proof is based on
the technique used to establish Reiger’s bound[16] (also refer Theorem 4.15,
Peterson and Weldon [15]) for correction of s-periodic errors.

Theorem 3.1. An (n, k) linear code over GF(q) that corrects all t-periodic

errors, t = 2s+ 1 must have at least

⌈
n

s+ 1

⌉
parity-check digits.

Proof. Any vector that has the form of an s-periodic error can be ex-
pressible as a sum or difference of two vectors, each of which is an t-periodic
error. These component vectors must belong to different cosets of the stan-
dard array because both such errors are correctable errors. Accordingly, such
a vector viz. s-periodic error can not be a code vector. In view of Theorem

2.1, such a code must have at least

⌈
n

s+ 1

⌉
parity-check digits.
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