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Abstract

Wavelet packets have the capability of partitioning the higher-frequency
octaves to yield better frequency localisation. Ahmad and Kumar
[2000] have obtained the pointwise convergence of the wavelet packet
series. But till now no work seems to have been done to obtain Cesàro
summability of order 1 of wavelet packet series. In an attempt to make
an advanced study in this direction, a novel theory on (C, 1), Cesàro
summability of order 1 of wavelet packet series is obtained in this
study.
Keywords: Multiresolution analysis, (C, 1) summability, wavelet pack-
ets, periodic wavelet packets, wavelet packet expansions.
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1 Introduction
Several researchers, including S. E. Kelly and Raphael [1994a], S. E. Kelly

and Raphael [1994b], Kumar and Lal [2013], Meyer [1992], Walter [1992], Wal-
ter [1995], Wickerhauser [1994], have investigated the problem of wavelet packet
series convergence and demonstrated that wavelet packets are a basic yet effective
wavelet and multiresolution analysis extension. Wavelet packet functions are a
collection of functions that can be used to create other functions. Wavelet packet
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functions are still time-localized, but they have more versatility in describing di-
verse types of signals than wavelets. Wavelet packets, in particular, are better at
encoding signals with periodic behaviour. Wavelet packets can partition higher-
frequency octaves, resulting in more accurate frequency localization.

Working in slight different directions, Ahmad and Kumar [2000] have ob-
tained the pointwise convergence of the wavelet packet series. But till now no
work seems to have been done to obtain Cesàro summability of order 1 of wavelet
packet series. It is important to note that Cesàro summability is a strong tool to
obtain the convergence than that of ordinary convergence. This work establishes
a new theory on Cesàro summability of order 1 of wavelet packet series in an
attempt to make a more advanced study in this field.

2 Definitions and Preliminaries
Let L2(R) be the space of measurable and square integrable functions over

set of real numbers R . If a function φ ∈ L2(R) generates nested sequences of
closed subspaces, it is said to produce an MRA (multiresolution analysis), Qı =
span{φı, : ı,  ∈ Z}, where φı,(t) = 2ı/2φ(2ıt − ) and Z is the set of integers ,
satisfying the following conditions

(i) ... ⊂ Q−2 ⊂ Q−1 ⊂ Q0 ⊂ Q1 ⊂ Q2 ⊂ ..., i.e. Qı ⊂ Qı+1, ı ∈ Z;

(ii) (∪ı∈ZQı) = L2(R);

(iii) ∩ı∈ZQı = {0};

(iv) λ(t) ∈ Qı ⇔ λ(2t) ∈ Qı+1, ı ∈ Z

such that φ0, form a Riesz basis of {Q0}. A function φwhich generates a multires-
olution analysis, is called a scaling function . Wavelet packets can be constructed
with the help of multiresolution analysis. We know that if H is a Hilbert space
with ONB (orthonormal basis) {ε}∈Z then,

λ2k =
√

2
∑
∈Z

α2k−ε, λ2k+1 =
√

2
∑
∈Z

β2k−ε,

where {αk}k∈Z and {βk}k∈Z are in l2(Z), are orthonormal bases of two orthogonal
closed subspaces H1 and H0 respectively, such that H = H1 ⊕H0.

Using the foregoing decomposition strategy, we now build the fundamental
wavelet packets connected with the scaling function φ ∈ L2(R) which is already
defined in multiresolution analysis.
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Let {ξk, k = 0, 1, 2, ..., } denote a wavelet packet family that corresponds to
the scaling function φ which is orthonormal. Consider ξ0 = φ. Recursively, the
wavelet packets ξk, k = 0, 1, 2, ..., are defined by

ξ2k(t) =
√

2
∑
∈Z

hξk(2t− )

ξ2k+1(t) =
√

2
∑
∈Z

gξk(2t− ).
(1)

As a result, the {ξk} family is a generalisation of the orthonormal wavelet ξ1 = ψ,
often known as the mother wavelet. For the Hilbert spaceL2(R), the set {ξk(t−) :
k = 0, 1, 2, ...,  ∈ Z} form an ONB.

Consider the family of subspaces of L2(R) as

P k
ı = span{2ıξk(2ıt− ) :  ∈ Z}, ı ∈ Z, (2)

formed by the family of wavelet packets {ξk} for each k = 0, 1, 2, ....
Observe that P 0

ı = Qı and P 1
ı = Wı, where {Qı} is the multiresolution

analysis of L2(R) produced by ξ0 = φ and {Wı} is the sequence of orthogo-
nal complimentary subspaces generated by the wavelet ξ1 = ψ. The orthogonal
decomposition Qı+1 = Qı ⊕Wı, ı ∈ Z can then be expressed as

P 0
ı+1 = P 0

ı ⊕ P 1
ı . (3)

As follows, this orthogonal decomposition can be extended from k = 0 to any
k = 1, 2, 3, ... in the form of

P k
ı+1 = P 2k

ı ⊕ P 2k+1
ı , ı ∈ Z. (4)

Now we’ll state a result that will be employed in the theorem’s proof.
The decomposition trick (4) produces

Wı = P 1
ı = P 2

ı−1 ⊕ P 3
ı−1

= P 4
ı−2 ⊕ P 5

ı−2 ⊕ P 6
ı−2 ⊕ P 7

ı−2
...

= P 2

ı− ⊕ P 2+1
ı− ⊕ ...⊕ P 2+1−1

ı−
...

= P 2ı

0 ⊕ P 2ı+1
0 ⊕ ...⊕ P 2ı+1−1

0 , (5)

for each ı = 1, 2, ...,where (2) declares P k
ı . Furthermore, the family

{
2
ı−
2 ξr(2

ı−t− l) : l ∈ Z
}

is an ONB of P r
ı−, where r = 2 + µ for each µ = 0, 1, 2, ..., 2 − 1,  = 1, 2, ...ı;
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and ı = 1, 2, .... All of the elements of this base, however, have the same basic
shape:

ξı,k,(t) = 2ı/2ξk(2
ıt− ). (6)

Let λ ∈ L2(R), then the function λ can be approximated by a wavelet packet
series as follows:

λ(t) ∼
∑
ı∈Z

2r+1−1∑
k=2r

∑
∈Z

Cl,k,ξl,k,(t), (7)

where l = ı− r, r = 0 if ı < 0 and r = 0, 1, 2, ..., ı if ı ≥ 0; and the coefficients
Cl,k, defined by

Cl,k, = 〈λ, ξl,k,〉 , (8)

are called the wavelet packet coefficients.
Wavelet packets are a scalable time signal analysis method that combines the

advantages of windowed Harmonic and wavelet processing. Wavelet bundles,
which are periodic as well, offer a fascinating supplement to Fourier series.

Using the periodization techniques for period 1 on the basis functions, an
MRA for L2(R) can be transformed into an MRA for L2(0, 1). Let {ξk : k ∈ Z}
denote the family of wavelet packets presented previously which is nonstationary
in nature. Define general periodic wavelet packets ξperk,ı, by

ξperk,ı, =
∑
l∈Z

2ı/2ξk(2
ı(t+ l)− )

for 0 ≤  < 2ı and k, ı = 1, 2, 3, · · · .
With ξperk , We now define an operator Sνλ as follows:

(Sνλ)(t) =
2r+1−1∑
k=2r

ν∑
=0

〈
λ, ξperl,k,

〉
ξperl,k,(t). (9)

Let sk =
k∑
ν=0

aν be the kth partial sum of an infinite series
∞∑
k=0

ak.

If σk = 1
k+1

k∑
ν=0

sν → s as k →∞ then the series
∞∑
k=0

ak is called summable to s

by (C, 1) i.e. Cesàro means of order 1 (Titchmarsh Titchmarsh [1939]).
Let Dµ(µ = 1, 2, 3, · · · ) be the collection of constant dyadic step functions on

the intervals [2−µ, (+1)2−µ); 0 <  ≤ 2µ. LetD = ∪∞µ=1Dµ. Let B be a Banach
space and σζ be a bounded linear functional on B which must be generated by any
function ζ ∈ D as

σζλ =
∫ 1

0
λζ for λ ∈ B.
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We have
|σζλ| ≤ ‖ζ‖∞ ‖λ‖B .

Now if we take B = Lq and define

‖ζ‖r = ‖σζ‖ = sup
‖λ‖q≤1

∫ 1

0

λζ for any ζ ∈ D. (10)

Then clearly ∣∣∣∣∫ 1

0

λζ

∣∣∣∣ ≤ ‖λ‖q ‖ζ‖r , λ ∈ Lq, ζ ∈ D. (11)

Let us write

Πıλ(t) =
2ı−1∑
µ=0

(
1

µ+ 1

µ∑
ν=0

(Sνλ)(t)

)
δ[µ2−ı,(µ+1)2−ı)

=
2ı−1∑
µ=0

σµλ(t)δ[µ2−ı,(µ+1)2−ı)

and

Aı =
2ı−1∑
µ=0

Cper
l,k,δ[µ2−ı,(µ+1)2−ı),

where (9) defines Sνλ and δI is the characteristic function on I ⊂ R.
We’re going to define an operator now

Tı(t, x) = 2−ı
2ı−1∑
=0

Cper
l,o,φ

per
ı, (t)φperı, (x)

= 2−ı
2r+1−1∑
k=2r

∑
µ<ı

2ı−1∑
=0

ξperl,k,(t)ξ
per
l,k,(x),

where l = µ− r, r = 0 if µ < 0 and r = 0, 1, 2, ..., µ if 0 ≤ µ < ı.
In this paper, an estimate for the Cesàro summability of wavelet packet series

has been determined in the following form:

Theorem 2.1. Let λ be 1-periodic continuous function. Then∥∥∥∥∥∥
(

2−ı
2ı−1∑
µ=0

∣∣∣∣∣ 1

µ+ 1

µ∑
ν=0

Sνλ

∣∣∣∣∣
r)1/r

∥∥∥∥∥∥
∞

≤ C ‖λ‖∞ (12)

if and only if
‖Tı‖1 ≤ C ‖Aı‖q , (13)
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where C > 0, a constant and 1 < r <∞.

Furthermore,

lim
ı→∞
‖Πıλ(t)− λ(t)‖r = 0

uniformly in [0, 1].

Proof. By equation 12 we have

(
2−ı

2ı−1∑
µ=0

∣∣∣∣∣ 1

µ+ 1

µ∑
ν=0

Sνλ

∣∣∣∣∣
r) 1

r

= ‖Πıλ (t)‖r = sup
‖Aı‖q≤1

2−ı
2ı−1∑
µ=0

Cper
l,k,σµλ (t)

= sup
‖Aı‖q≤1

2−ı
2ı−1∑
µ=0

1

µ+ 1

µ∑
ν=0

Cper
l,k,Sνλ (t)

= sup
‖Aı‖q≤1

∫ 1

0

2−ı
2ı−1∑
µ=0

1

µ+ 1

µ∑
ν=0

Cper
l,k,Kν (t, x)λ(x)dx

≤ ‖λ‖∞ sup
‖Aı‖q≤1

1

µ+ 1

µ∑
ν=0

‖Tν(t, x)‖1

≤ ‖λ‖∞ sup
‖Aı‖q≤1

1

µ+ 1

µ∑
ν=0

(
C ‖Aı‖q

)
, by (13)

= ‖λ‖∞ sup
‖Aı‖q≤1

C ‖Aı‖q ≤ C ‖λ‖∞ ,

where

Kı (t, x) =
2ı−1∑
=0

φperı, (t)φperı, (x) =
2r+1−1∑
k=2r

∑
µ<ı

2ı−1∑
=0

ξperl,k,(t)ξ
per
l,k,(x).

If, on the other hand, (12) is true, we have
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‖Tı(t, x)‖1 = sup
‖λ‖∞≤1

∫ 1

0

2−ı
2ı−1∑
µ=0

1

µ+ 1

µ∑
ν=0

Cper
l,k,Tν(0, x)λ(x)dx

= sup
‖λ‖∞≤1

∫ 1

0

2−ı
2ı−1∑
µ=0

1

µ+ 1

µ∑
ν=0

Cper
l,k,(2

−ν
2r+1−1∑
k=2r

2ν−1∑
=0

ξperl,k,(0)ξperl,k,(x))λ(x)dx

= sup
‖λ‖∞≤1

2−ı
2ı−1∑
µ=0

1

µ+ 1

µ∑
ν=0

Cper
l,k,(2

−ν
2r+1−1∑
k=2r

2ν−1∑
=0

ξperl,k,(0))

∫ 1

0

λ(x)ξperl,k,(x)dx

= sup
‖λ‖∞≤1

2−ı
2ı−1∑
µ=0

1

µ+ 1

µ∑
ν=0

Cper
l,k,(2

−ν
2r+1−1∑
k=2r

2ν−1∑
=0

〈
λ, ξperl,k,

〉
ξperl,k,(0))

= sup
‖λ‖∞≤1

2−ı
2ı−1∑
µ=0

1

µ+ 1

µ∑
ν=0

Cper
l,k,(Sνλ)(0)

= sup
‖λ‖∞≤1

2−ı
2ı−1∑
µ=0

Cper
l,k,(σµλ)(0)

= sup
‖λ‖∞≤1

∫ 1

0

Πıλ(0)Aı

≤ sup
‖λ‖∞≤1

‖Aı‖q ‖Πıλ(0)‖r

≤ ‖Aı‖q sup
‖λ‖∞≤1

∥∥∥∥∥∥
(

2−ı
2ı−1∑
µ=0

∣∣∣∣∣ 1

µ+ 1

µ∑
ν=0

(Sνλ)(0)

∣∣∣∣∣
r)1/r

∥∥∥∥∥∥
∞

= ‖Aı‖q sup
‖λ‖∞≤1

∥∥∥∥∥∥
(

2−ı
2ı−1∑
µ=0

|(σµλ)(0)|r
)1/r

∥∥∥∥∥∥
∞

, by (12)

≤ ‖Aı‖q sup
‖λ‖∞≤1

C ‖λ‖∞

≤ C ‖Aı‖q .

Now

Πlλ(t)− λ(t) =
M∑
µ=0

((σµλ)(t)− λ(t)) δ[µ2−l,(µ+1)2−l)

=
M∑
µ=0

1

µ+ 1

µ∑
ν=0

((Sνλ)(t)− λ(t)) δ[µ2−l,(µ+1)2−l)
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for any l ≥M ≥ 2ı. As a result,

‖Πlλ(t)− λ(t)‖ ≤
M∑
µ=0

∥∥∥∥∥ 1

µ+ 1

µ∑
ν=0

((Sνλ)(t)− λ(t))

∥∥∥∥∥
∞

∥∥∥δ[0,2−l)∥∥∥r
≤

M∑
µ=0

1

µ+ 1

µ∑
ν=0

‖Sνλ− λ‖∞
∥∥∥δ[0,2−l)∥∥∥r ,

since the limit of the characteristic function of [0, 2−ı) in all Lr-space
(1 < r <∞) is 0 and thus the ultimate result is fallowed.

The theorem’s proof is now complete.2

3 Conclusions
The estimate for the Cesàro summability of order 1 of wavelet packet series

has been determined in the form of

lim
ı→∞
‖Πıλ(t)− λ(t)‖r = 0

uniformly in [0, 1].
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