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ON  DAVIDSON'S  PROBLEM 
IN  THE  COLLECTIVE  RISK  THEORY 

Elena Cardona* 
 
Abstract. In this paper Davidson's classic problem concerning the solution of an integro-

differential equation regarding the collective risk theory with the aim of examining the 
probability of the failure of an insurance company is further analysed. The validity of a new  
representation’s formula to the solution of the problem is demonstrated after having discussed 
the question of the existence of that solution. 

 
Keyword. Ruin probability. Integro-differential equation. 

1. Introduction. 

As it is well known, the collective risk theory, introduced by Lundberg and 
subsequently developed by various authors during the last hundred years, has been a 
fundamental contribution to questions concerning the probability of the failure of an 
insurance company in a finite time. 

The usual approach to such problems consists in examining the dynamic over 
time of the risk reserve’s fund, which the company assigns in the starting time to the 
management of non-life insurance portfolio with homogeneous policies covering 
repeatable accidents. The topic will now be briefly reviewed in order that the 
problem in question can then be discussed. 

2. Recalls on the collective point of view 

With reference to the period (0,t), +∈ Rt , we put 

W(t) =  size at time t of the risk reserve’s fund, which an insurance company 
above specified assigns to whole portfolio or its part; in particular: W(0) = x. 

iZ   =  random variable (r.v.) “ Company's outlay relative to i-th claim”; 
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 c =  flow of the company’s receipts without fund’s yield, assumed constant 
over time (Lundberg's  hypothesis, 1903); 

N(t) =  r.v. “number of claims in (0,t)”; 

S(t) =  r.v. “Company's total outlays relative to N(t) claims”. 

Therefore 
 

   ∑ == )(

1)( tN

i iZtS            (2.1)  

   W t x ct S t( ) ( )= + −            (2.2) 
 

In the sequel we assume the r.v . Zi independent and identically distributed (i.i.d.)  
with c.d.f. P(z)  absolutely continuous, and therefore with p.d.f.  p(z)  continuous, in 

+
0R . 

With these hypotheses and positions, the two factors which determine the net 
risk premiums flow are: 

i) the average outlay per claim, given by 
 

 i    dzzp z  zdP z  ZE i ∀===µ ∫∫
+∞+∞

,)()()(
001   (2.3) 

 
ii) the average number E[N(1)] of claims in the unit of time, which, in the 
hypothesis that N(t) follows Poisson distribution with parameter νt = E[N(t)], is 
given by intensity ν. 

In the same hypothesis, the r.v. S(t) follows compound-Poisson distribution with 
intensity  ν for the arrivals  process and its expected value is given by  
 

   t  tSE  νµ= 1)]([      (2.4) 

 
Owing to loading on the premiums with mean rate λ>0, the parameters must be 

fixed in such a way that  
 

   ) +(      = c λνµ 11            (2.5) 

 
For the sake of exposition’s simplicity, the unit of time (or operational time if the 

arrivals process were non-homogeneous) will be chosen in such a way that ν=1. 
Moreover, one will be assumed that the average outlay per claim is the unit of 
amounts, so µ1 = 1. Therefore (2.5), giving  µ1 ν = 1, becomes 

 
   c =   1+ λ      (2.5’) 
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 In the aforementioned paper [4] Davidson dealt with fundamental questions 
concerning the theory of risk and of ruin in the hypothesis that the safety loading is 
variable in function of the initial level x of the risk reserve’s fund. 

He introduces the following values: 

ψ(u, x) =  probability that the fund initially at x level falls below x-u 
(u³0); 

χ(u, v, x)dv  = probability that the fund, initially at x level, falls below x-u 
(u³0) and that, when it does so for the first time, its value is  between x-(u+v) e 
x-(u+v+dv). 

Therefore, 0≥∀ u  it results  
 

 ψ(u, x)  = ( ) vd xv,u,  
 ∫
+∞

χ
0

. 

 
That given, Davidson analyses all the mutually exclusive events whose 

probability is χ(u, v, x)dv. By means of differential arguments, he obtains the 
equation  

 

 ( ) ( ) ( ) ( )ux,v,   x,,u   x,v,u
v 

  x,v,u
u 

−χχ=χ
∂
∂

−χ
∂
∂

00          (2.6) 

 
By evaluating the risk reserve through the various possibilities about the number 

of claims in (0,t), Davidson demonstrates that the process is regulated  by the 
following differential equation  

0 = (v)p
x

+)x(v,  
x

-)x,( +)x(v, 
v  

+)x(v, 
x  )(1

1

)(1

1
0

λ+
ν









λ+
νν

∂
∂

ν
∂
∂

   (2.7) 

 
where ν(v, x) =χ(0, v, x)dv   and being λ(x) the safety loading rate, which is 
supposed a function of the initial level x of the risk reserve. 

Laurin and Lundberg (see [11], [14]) had already obtained (2.7) via other 
methods. From (2.7) the integro-differential equation in the unknown ψ(u, x) 

[ ] [ ] + )x,u( )x,u()x,u(    )x( xu ψ−ψ+ψλ+1 ( ) dz)z(pzx,zu
u

∫ −−ψ
0

+

  01  = )u(P + −              (2.8) 

follows. 
The (2.8), with the positions 
 
    u-x = ξ     (2.9) 
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         u)+(u, = ),u( ξψξψ    (2.10) 

 
becomes 

 

[ ∫ ⋅ξψξψ
ξλ

ξψ
u

0
u ),z( - )(u,  

u)+(+1

1
 = ),u( ] )P(u + 1 -dz  )zu(p −⋅         (2.11) 

 
that  Davidson, in the aforementioned work, resolved by means of a procedure based 
on the theory of integral equations, assuming the initial condition 

 

   )(0, = ξψξψ ),0(     (2.12) 

 
The (2.11) with the condition (2.12) is often cited in the literature as “Davidson's 
problem”. 

Let us remark that, put 
 

   )f(u, -  = u ξξψ 1),(    (2.13) 
 

(2.11) leads to 
 

[ ] = uf  )+(u+1  - u f u ),(),( ξξλξ ∫ ξ=
u

0

zd (z)p )z,-u(f      (2.14)  

with the initial condition 
 

   0f   -  = f ≡ξψξ ),0(1),0(    (2.15) 

 
in which f 0  is a constant suitably assigned . 

Moreover, the assignment of f0  gives rise to some difficulties. Really, 

remembering (2.9) and the meaning of ψ(u,x), if one puts u = x or ξ = 0, ψ(u,x) 
signifies the asymptotic probability of ruin in proper sense, or rather that the risk 
reserve, initially at x level, will sooner or later fall to zero. In such a case, let us 
write ψ in the form ψ(x,x)= ψ*(x)   and put f(x) = 1 - ψ*(x), that is the asymptotic 
probability of non-ruin when x is the initial fund. That stated, it results that the 
constant f0 , which appears in (2.11), supposing a variable loading, must be fixed in 

such a way as to satisfy the condition: f ( )+∞ =   1 (obviously non-ruin is assured if  

the initial reserve is infinitely large). Due to this problem, a resolving procedure has 
not yet been found in the case of an infinitely large initial fund. Algorithms of 
asymptotic calculus of the constant f0  can, however, be applied with reference to 

the similar problem f(k) = 1, for a sufficiently large k  (see [2], [10]). 
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3. New thoughts on Davidson's problem. 

Let us consider the following integro-differential problem 
 

[ ]
    

( ,  ) -   1 + ( +  )  
    

  
      

                                              

f u u
f u

u
f u z p z dz

f f f C R

u

o

ξ λ ξ
∂ ξ

∂
ξ

ξ

( , )
( , ) ( )

( , ) ( )

= −

= ∈









∫
+

0
1

00

 (3.1) 

 

where: 0 < f0 < 1, C R1
0( )+  is  the  class of continuous functions with continuous 

derivatives in R0
+  e P(z) , p(z)  are defined as in § 2. Besides, it results: 

 

    [ ]       =  11
0

−
∞

∫ P z dz( )  

  
taking as amount’s unit the mean outlay per claim.  

It is known that the integro-differential problem (3.1) admits only one solution. 
With the parameter ξ fixed, the existence of the solution can be demonstrated by 
using the successive approximation method, which however allows to find a 
representation’s formula for the solution, performed in the following  § 4. To this 
aim, we observe that  the first of (3.1) yields: 

 

∂ ξ
∂ λ ξ

ξ
λ ξ

  

   
  )  

 
     

f u

u u
f u

u
f u z p z dz

u( , )

( )
( ,

( )
( ) ( )=

+ +
−

+ +
−∫

1

1

1

1 0

         (3.2) 

 
which, integrated between 0 and u, becomes: 

 

[ ] + d  
f

   + f = uf
u

τ
ξ+τλ+

ξτ
ξ ∫0 )(1

),(
)0(),(       

   
( )[ ] ∫∫

τ

τξ−τ
ξ+τλ+

−
00

.)(),(
1

1
 d dz zp zf 

u

  (3.3) 

 
Putting: 
 

),0(0 ξf = f                (3.4) 

 

[ ] +  d  
f

   f = u f
u

n
n τ

ξ+τλ+

ξτ
+ξξ ∫ −

0

1

)(1

),(
),0(),(  
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[ ]∫ ∫
τ

− τξ−τ
ξ+τλ+

−
u

n d dz zp z f    
0 0

1 )(),(
)(1

1
; ,...)3,2,1( =n             (3.5) 

 
),(),(),( 1 ξξξβ − uf - uf = u nnn  ;   ,...)3,2,1( =n            (3.6) 

 

00 f = β   .             (3.7) 

 
one obtains 
 

),(...),(),(),0(),( 21 ξβ++ξβ+ξβ+ξξ uuuf = uf nn ; ( , , ,... )n = 1 2 3         (3.8) 

 
and also 

 

[ ] [ ]∫∫ ⋅
ξ+τλ+

−τ
ξ+τλ+

ξτβ
ξβ +

uu
n

n    d    = u
00

1 )(1

1

)(1

),(
),(  d dz zp z n∫

τ

τξ−τβ
0

)(),( ;     

( , , ,... )n = 1 2 3        (3.9) 
           

We now prove that: 
 

 ∫∫ ∫
−τ

−

τ

⋅
ξ+τλ+

⋅⋅⋅⋅
ξ+τλ

⋅
ξ+τλ+

ξβ
2

0 10 1
0 )(1

1

))(1

1
),(

n1

n

u

0 2
n (+1

1
f  =  u  

  [ ] 1121 )(1 τ⋅⋅⋅⋅τ⋅ττ−τ−⋅⋅⋅⋅ − ddd P nn         (3.10) 

 
Dim.: 
Proceeding by induction,  for n=1 one obtains 
 

 β ξ
λ τ ξ λ τ ξ

τ
τ

1
0

10 10
0 1

0

1

1

1

1
( , )

( ) ( )
( )u

f
f p z dz d

u u

           ==
+ +

−
+ +∫ ∫ ∫

 =
−

+ +∫    f
P

d
u

0
1

10
1

1

1

( )

( )

τ
λ τ ξ

τ          (3.11) 

 
being P(0) = 0.  

Let us now verify  that (3.10), supposed to be true for n=k , is also valid for 
n=k+1. In fact : 



 11 

= d dz zpzd  = u k

u

1

u
k

k ∫∫∫
τ

+ τξ−τβ
ξ+τλ+

−τ
ξ+τλ+

ξτβ
ξβ

1

0
11

0 10 1

1
1 )(),(

)(1

1

)(1

),(
),(

 
( ) ( ) ( ) ( )

⋅
ξ+τλ+

⋅⋅⋅⋅
ξ+τλξ+τλ+ξ+τλ+

= ∫∫∫∫
−τττ

    
+1

1
      f 

k

k

u

o

121

00 30 21
0 1

1

1

1

1

1

 ( )[ ] 11321 τ⋅⋅⋅τττ−τ−⋅⋅⋅ + d d d P kk    d d dk kτ τ τ+ ⋅ ⋅ ⋅1 1   −

    
d

1+ (
 

0

u 2

2

d
p z

zτ
λ τ ξ

τ
λ τ ξ

τ ττ1

1
0

1
0

2

0

1

1+ + +∫ ∫ ∫∫
−

( )
( )
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+− τ

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
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0
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we obtain 
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l t xk k
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Let us now prove 
 

  ( ) ( ),...3,2,1
!

, 0 =≤ξβ n                
n

u
 f  u

n

n    

 (3.15) 
Dim: 
Proceeding also here by  induction’s process, owing to (3.11) it results  

 

  ( ) ( )
β ξ

λ τ ξ
τ1 0

1
1 0

1

1
u f d f u,         

0

u

≤
+ +

≤∫     (3.16) 

 
Moreover  (3.15), supposed to be true for  n=k , is also valid for n=k+1. In fact, we 
obtain 
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1
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1
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Because of (3.15), the series       β ξn
n

u
=

∞

∑
1

( , ) for each fixed ξ  is absolutely and 

uniformly convergent in every limited interval +⊂ 0R  I  and therefore the succession 

{ } Nnn    uf ∈ξ ),(  converges uniformly to a function ),(    uf ξ . 

Considering now  in (3.5) the limit for ∞→n , one obtains 
 

( )
( ) ( )

⋅
ξ+τλ+

−τ
ξ+τλ+

τ
=ξ ∫∫   d 

f
 +f  uf

uu

00 1

1

1

)(
)0(, ( ) τξ−τ∫

τ

d dz zp zf 
o

)(,       (3.17) 

 
Then  the existence of the solution of (3.1)  (Davidson's problem) is proved.  

About the uniqueness of the solution, see [5].     

4. On the representation of the solution to Davidson's problem.  

A representation’s  formula for the function  f(u,ξ) of problem (3.1) and therefore 
for the asymptotic probability of non-ruin will now be evaluated. 

Substituting (3.10) into (3.8) we obtain: 
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Setting 
 

( )11 1 τα P -  =             (4.2) 

 
and, more generally, 
 

          [ ] ( )
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we observe that, being 

 
  ( )α τ τk                     1 10 0≥ ∀ ≥      (4.4) 

 
the  series ( )∑ τα

k
k 1  results to be regular and, according to the theorem of 

monotonous convergence, calculating the limit under the sign of integral in (4.1) one 
obtains the solution  

 

 ( ) ( )  d     f = uf
k

k

u












τγ

ξ+τλ+
+ξ ∑∫

∞

=1
1

0 1
0 1

1
1,           (4.5) 

 
The foregoing results can be summed up as follows. 
Theorem:  Let λ(z) be a continuous and positive function  in [0,+∞] and p(z)  be 

a continuous and non-negative function  in [0,+∞]. Given  

( )P z p t dt
z

( ) =   
0
∫   

the solution f  of the problem (3.1) is provided  by: 
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 ( ) ( ) ( )f u f dk
k

u

,ξ ξ
λ τ ξ
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1
10

1
1

1
+

+ +





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



=

∞

∑∫          (4.6) 

 
where αk  is given by (4.2) and (4.3). 
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