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Abstract
This paper investigates a stock-dependent arrival process(SDAP) and queue-
dependent service process(QDSP) in the stochastic queueing-inventory sys-
tem(SQIS). The arriving units in the system generated from the finite source
population. The arrival process holds the properties of quasi-random pro-
cess and its intensity rate is defined based on the two-component demand
rate(TCDR). The customers departure time is exponentially distributed. The
concepts of non-SDAP and SDAP, non-QDSP and QDSP are to be gener-
alized. The inventory system may have the perishable quality of the prod-
ucts. It adopts the (s,Q) reordering policy whenever the replenishment is
required. Further, the join probability distribution of a Markov process is
derived and necessary system performance measures are computed. The
comparative discussion is presented to improve the quality of this model.
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1 Introduction
As the continuous increment in the population growth, the demand of the people

such as foods, cloths and public service etc are also skyrocketed in this century. So
the analysis of queueing-inventory management is inevitable in this current situation,
especially in that food items related queueing-inventory systems. The results can be
applied effectively in queue and inventory management systems and the optimum cost
will increase the economy also. This model consists of a perishable inventory system
with queue-dependent service rate and customers from a finite source. Due to the decay
of the food items after some certain period, its must to reorder it at some fixed inventory
level to avoid economical loss. The arrival rate of customer is dependent on the number
of items available in the shops. Also service rate is dependent on the mood of server.
The following illustration will give the exact model idea.

In the shopping malls and theaters, some stores are used to sell snack items for the
customers. The possibility of customer occurrence is dependent on inventory level and
also service rate can be dependent on the queue length. Here the population size is
finite, since the only possible customers to purchase the snacks are from theater or the
mall. Though there are many shops are available, most of the customers are interested to
purchase from the shop where many items are available comparing to the shops where
less items are available. Here the customer arrival depends on the inventory level. When
a small queue is formed in the shop, server may serve slowly, speaking with someone
or using mobile phone. Also server would provide a quick service if the queue length is
big, in order to decrease the customer loss. Though the formed queue is bigger, customer
won,t leave the queue as the service rate is high. This realistic situation motivates the
author to develop the proposed model. In this model, stocks are replenished according
to (s,Q) policy.

2 Literature review
As many researchers show their interest of research on the Stochastic Queueing

Inventory modeling, this area has developed enormously in certain period. Queuing in-
ventory systems with retrial is in-fusible in all walk of life. Reshmi and Jose studied the
Queuing inventory model, considering perishable items and customer retrial on Reshmi
and Jose [2019]. Periyasamy considered a finite population perishable inventory system
where server is looking for the customers from the orbit to provide service after com-
pleting service to each primary customer on Periyasamy [2017]. Berman and Sapna
Berman and Sapna [2002] discussed the rate of optimal service with perishable inven-
tory in which instantaneous reordering policy was assumed. Considering the negative

10.23755/rm.v42i0.715. ISSN: 1592-7415. eISSN: 2282-8214. ©K Lakshmanan et al.. This paper is
published under the CC-BY licence agreement.
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exponential rate for the life time of stocks, Kalpagam and Arivagam Kalpakam and Ari-
varignan [1988] analyzed the (s, S) inventory system in which stock one is evicted from
the inventory whenever the demand or failure of item occurs. Sangeetha investigated the
production optimal control of production time of perishable inventory system with finite
source in order to get the minimal total cost on N. Sangeetha and Arivarignan [2015].

Alfres introduced the concept of occurring demand rate depends upon the stock level
in the inventory system on Alfares [2007] and determined the total cost by variable hold-
ing cost assuming holding cost per unit item to be a monotonically increasing function
of spending time in the storage. Diana Tom Varghese and Dhanya Shajin Varghese and
Shajin [2018] studied the state dependent demand on the continuous review M/M/1/S
inventory model. K. Venkata Subbaiah et al. K. Venkata Subbaiah and Satyanarayana
[2004] developed the perishable inventory model with stock dependent demand rate.
Rathod and Bhathawala Rathod and Bhathawala [2013] analyzed the inventory system
with stock dependent demand having variable holding cost and shortages. The effect
of demand rate depending on stock level was discussed through the proposed logistical
growth model of Tsoularis Tsoularis [2014]. A shortage free inventory model with stock
dependent demand was analyzed by Datta and Pal on Datta and Pal [1990]. Sudhir Ku-
mar Sahu et al. Sudhir Kumar Sahu and Sahoo [2008] developed an inventory system
with stock dependent demand rate and constant deterioration with the possibilities of
partial or complete backlog and without it. Shib Sankar Sana Sana and Sankar [2010]
proposed an EOQ model for the perishable inventory item with discount rate and the
demand depending on stock level. Mandal Mandal and S. [1989] derived an inventory
system with consumption rate depending on stock level.

For analyzing the local area management, Falin and Artalejo Falin and Artalejo
[1998] proposed a retrial queue with finite source customer. Shophia Lawrence et al. A.
Shophia Lawrence and Arivarignan [2013] discussed the perishable queueing-inventory
system with demands from finite homogeneous source. Attahiru Sule Alfaa and Sapna
Isotupa ? discussed an M/PH/k retrial queue with the finite source. K. Jeganathan K. Je-
ganathan and Vigneshwaran [2015] analyzed the perishable inventory system with the
possibility of server interruption and the multiple server vacation and customer is pro-
vided service only when customer level reaches to a particular N and no customer is left
behind the system after service started. Jeganathan Jeganathan [2015] discussed finite
source inventory system with an additional service for some customers which is called
bonus service. Artalejo and Lopez-Herrero investigated retrial queue involving finite
population with an BSDE approach on Artalejo and Lopez-Herrero [2012]. Sivakumar
analyzed the perishable inventory system with retrial demand from finite source without
service on Sivakumar [2009].

Shanthikumar and Yao Shanthikumar and Yao [1988] studied the upper and lower
bounds on a closed queuing network with the queue dependent service rate. Menich
ronald Ronald [1987] derived the optimal of shortest queue routing to the queue depen-
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dent service station considering a general Markovian system. Avhishek Chatterjee et
al. Avhishek Chatterjee and varshney lav [2017] studied the information-theoretic limit
of reliable information processing using queue dependent service facility. Jeganathan
et al.[2021] proposed a finite inventory single server system and analyzed the queue
dependent service rate.

Though the large number of researches have been done in this area, there is a re-
search gap in analyzing stock dependent demand rate on the finite source queuing inven-
tory system with the queue dependent service rate and retrial customer. As the demand
rate depending upon stock level on the inventory and service rate depends on the queue
length, this model simulates the realistic situation.

3 Model Developing

3.1 Mathematical Formulation of the model

This model deals the state dependent arrival and queue dependent service processes
in a single server Markovian queueing-inventory system(SSMQIS) in a finite source
environment. The system holds maximum of S units of inventory product in its storage
place. It allows the customers to buy the product from a finite source, N only. It admits
the arriving customers into the finite waiting hall of size N . There is only two possible
choice of a customer such that they must be either free or in the waiting hall at any time.

The appearance of arrival process generates a output process called quasi-random
process; that is, the probability that any particular customer generates a request for
demand in any interval (t, t+dt) is θrdt+ o( dt)(r ∈ BS

0 ) as d t → 0 if the customer is
free at time t and zero if the customer is in waiting hall at time t, independently of the
behavior of any other customers. The arrival process of any individual customer is non-
homogeneous, since the generation of arrivals must dependent upon the current stock
level of the system. This non-homogeneous arrival streams come under the category
of state dependent arrival stream. Next, the service pattern is processed following a
first come and first serve(FCFS) service discipline. The service time of any customer at
time t is non-homogeneous and exponentially distributed. That is, µs (s ∈ BN

1 ) is the
service rate of an individual at any time. This service process comes under the category
of state dependent service processes. After each service completion, there will be one
unit dropped in the storage place.

The stored products in the system does not have any guarantee about its life time
till it will be sold. It may have the deteriorating quality. So this deterioration process
follows exponential distribution and have the intensity rate rα1 where r ∈ BS

1 . The
service and deterioration processes cause the depletion of an inventory product unit by
unit. At one fine stage, the current number of product in the storage system will reach
the predetermined value s. As and when the maximum inventory level reduced to s or
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less than s, then the replenishment process will be triggered immediately. Each time
there are Q = (S − s) items will be replaced whenever the reorder required. This
policy is known as (s,Q) reordering policy and this processing time is exponentially
distributed with an intensity rate α.

The defined arrival and service rates are ordered, θ0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θS and
µ1 ≤ µ2 ≤ · · · ≤ µN as an increasing manner. When the case θ1 = θ2 = · · · = θS = θ,
the considered model comes under the category of two component demand rate. That
is the arrival rate is homogeneous in the positive stock period and during the stock out
period, it is θ0. When the case µ1 = µ2 = · · · = µN = µ means that the service rate
become homogeneous.

Remark 3.1. • For a numerical computation θr can be defined by θr rβ1 , 0 <
β1 ≤ 1 and r ∈ BS

1 .
• For a numerical computation µs can be defined by µs s

β2 , 0 ≤ β2 ≤ 1 and s ∈
BN

1 .
• The case β1 = 0 and β2 = 0 explores the result of non-stock dependent arrival

process and non- queue dependent service process of the proposed model.

4 Analytical Discussion of the Model

Let { (R1(t), R2(t)) ; t ≥ 0 } be a stochastic process having state space {(r1, r2) : r1 ∈
BS

0 and r2 ∈ BN
0 } satisfies the Markov process, where R1(t) denotes the level of inven-

tory at time t and R2(t) denotes the number of customers in the orbit at time t. The
transition from any state (r1, r2) to other state (r′1, r

′
2) at any interval is denoted by

P ((r1, r2) , (r
′
1, r

′
2)). Any y items in the inventory perish alone at the rate of r1γ and the

occurrence of primary demand is (N − r2) θr1 from any one of the sources (N − r2).
Hence, the probability of transition is

P ((r1, r2) , (r1 − 1, r2)) = r1α1 r1 ∈ BS
1 and r2 ∈ BK

0 . Since the service rate is
queue dependent service rate P ((r1, r2) , (r1 − 1, r2 − 1)) = µr2 where r1 ∈ BS

1 and
r2 ∈ BK

1 . If the arrival rate is dependent on inventory, arriving customers enter into
the waiting hall. So the probability of the transition from the state (r1, r2) to the state
(r1, r2 + 1) is P ((r1, r2) , (r1, r2 + 1)) = (K − r2) θr1 where r1 ∈ BS

0 , r2 ∈ BK−1
0 .

When Q items are ordered, the probability of transition from the state (r1, r2) to state
(r1+Q, r2) for all r2 and r1 ∈ Bs

0 is given by P ((r1, r2) , (r1 +Q, z)) = α. The rate of
other transitions is zero. The sum of each row of this matrix should be zero. Hence, the
diagonal entry is multiplied by a negative sign after summing all the entries from the
row.

All the possible transitions are given below.
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R ((r1, r2) , (r
′
1, r

′
2)) =



r1α1, r′1 = r1 − 1, r1 ∈ BS
1 ,

r′2 = r2, r2 ∈ BK
0 ,

µr2 , r′1 = r1 − 1, r1 ∈ BS
1 ,

r′2 = r2 − 1, r2 ∈ BK
1 ,

(K − r2)θr1 , r′1 = r1, r1 ∈ BS
0 ,

r′2 = r2 + 1, r1 ∈ BK−1
0 ,

α, r′1 = r1 +Q, r1 ∈ Bs
0,

r′2 = r2, r2 ∈ BK
0 ,

−(δ̄K,r2(K − r2)θr1 + α), r′1 = r1, r1 ∈ B0
0 ,

r′2 = r2, , r2 ∈ BK
0 ,

−(δ̄K,r2(K − r2)θr1 + α + δ̄0,r2µr2 + r1α1), r′1 = r1, r1 ∈ Bs
1,

r′2 = r2, , r2 ∈ BK
0 ,

−(δ̄K,r2(K − r2)θr1 + δ̄0,r2µr2 + r1α1), r′1 = r1, r1 ∈ BS
s+1,

r′2 = r2, , r2 ∈ BK
0 ,

0, Otherwise.

The block partitioned matrices of the proposed model is structured as follows:

R =


Ly, r′1 = r1, r1 ∈ BS

0 ,

My, r′1 = r1 − 1, r1 ∈ BS
1 ,

N, y′ = Q+ r1 r1 ∈ Bs
0,

0, Otherwise.

For r1 ∈ BS
1 ,

Mr1 =


r1α1, r′2 = r2, r2 ∈ BK

0 , ,

µr2 r′2 = r2 − 1, r2 ∈ BK
1 ,

0, Otherwise.

For r1 ∈ Bs
0,

N =

{
α, r′2 = r2, r2 ∈ BK

0 ,

0, Otherwise.

For r1 = 0,

Lr1 =


(K − r2)θ0, r′2 = r2 + 1, r2 ∈ BK−1

0 ,

−((K − r2)θ0 + α), r′2 = r2, r2 ∈ BK−1
0 ,

−α, r′2 = r2, r2 ∈ BK
K ,

0, Otherwise.
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For r1 ∈ Bs
1,

Lr1 =


(K − r2)θr1 , r′2 = r2 + 1, r2 ∈ BK−1

0 ,

−(δ̄K,r2(K − r2)θr1 + α + δ̄0,r2µr2 + r1α1), r′2 = r2, r2 ∈ BK
0 ,

0, Otherwise.

For r1 ∈ BS
s+1,

Lr1 =


(K − r2)θr1 , r′2 = r2 + 1, r2 ∈ BK−1

0 ,

−(δ̄K,r2(K − r2)θr1 + δ̄0,r2µr2 + r1α1), r′2 = r2, r2 ∈ BK
0 ,

0, Otherwise.

4.1 Steady state analysis
The structure of the homogeneous Markov process {(R1(t), R2(t); t ≥ 0} with finite

state space indicates that it is irreducible. Hence, the limiting distribution is

ξ(r1,r2) = lim
t→∞

Pr {(R1(t) = r1, R2(t) = r2)|(R1(0), R2(0))}

Let ξ = (ξ(0), ξ(1), . . . , ξ(S))

where each ξ(r1) = (ξ(r1,0), ξ(r1,1), . . . , ξ(r1,K)) for r1 ∈ BS
0 which satisfies

ξP = 0 and ξe = 1 (1)

From the above we get the following equation

ξ(r1)Lr1 + ξ(r1+1)Mr1+1 = 0 r1 ∈ BQ−1
0 , (2)

ξ(r1)Lr1 + ξ(r1+1)Mr1+1 + ξ(r1−Q)N = 0 r1 = Q (3)

ξ(r1)Lr1 + ξ(r1+1)Mr1+1 + ξ(r1−Q)N = 0 r1 ∈ BS−1
Q+1, (4)

ξ(r1)Lr1 + ξ(r1−Q)N = 0 r1 = S (5)

Except the r1 = Q case, solving other equations recursively, we get,

ξ(r1) = ξ(Q)∆r1 , r1 ∈ BS
0 ,

where

∆i =



(−1)(Q−r1)(MQMQ−1 . . .Mr1+1)(L
−1
Q−1L

−1
Q−2 . . . L

−1
r1
), r1 ∈ BQ−1

0 ,

I r1Q,

(−1)2Q+1−r1
C−r1∑
j=0

(MQMQ−1 . . .Ms+1−j)(L
−1
Q−1L

−1
Q−2 . . . L

−1
s−j)NL−1

S−j

(MS−jMS−j−1 . . .Mr1+1)(L
−1
S−j−1L

−1
S−j−2 . . . L

−1
r1
) r1 ∈ BS

Q+1,
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ξ(Q) can be yield solving

ξ(Q)

[
(−1)2Q+1−r1

S−r1∑
j=0

[
(MQL

−1
Q−1MQ−1 . . .Ms+1−jL

−1
s−j)NL−1

S−j(MS−jL
−1
S−j−1MS−j−1 . . .

. . .MQ+2L
−1
Q+1)

]
MQ+1 + LQ + (−1)QMQL

−1
Q−1MQ−1 . . .M1L

−1
0 N

]
= 0

ξ(Q)

[
S∑

r1=Q+1

(
(−1)2Q−r1+1

S−r1∑
j=0

[
(MQL

−1
Q−1MQ−1 . . .Ms+1−jL

−1
s−j)NL−1

S−j(MS−jL
−1
S−j−1

MS−j−1 . . .Mr1+1L
−1
r1
)

]
MQ+1

)
+

Q−1∑
r1=0

(
(−1)Q−r1MQL

−1
Q−1 . . .Mr1+1L

−1
r1

)
+I

]
e =

1.

5 System Performance Measures
To make a detailed investigation of the proposed model, some significant system

characteristics are to be computed as follows:

1. Expected present stock level E[psl] =
∑S

r1=1

∑K
r2=0 r1ξ

(r1,r2).

2. Expected reorder level E[reorder] =
∑K

r2=1 µr2ξ
(s+1,r2)+

∑K
r2=0(s+1)α1ξ

((s+1),r2).

3. Expected perishable rate E[perishable] =
∑S

r1=1

∑K
r2=0 r1α1ξ

(r1,r2).

4. Expected number of customers in the waiting hall E[CWH] =
∑S

r0=1

∑K
r2=1 r2ξ

(r1,r2).

5. Expected number of customers enter into the waiting hall E[CEWH] =
∑S

r1=0

∑K−1
r2=0(K−

r2)θr1ξ
(r1,r2).

6. Expected waiting time of a customer in the waiting hall E[WT ] =
E[CWH]

E[CEWH]

7. Probability that the server is busy P (busy) =
∑S

r0=1

∑K
r2=1 ξ

(r1,r2).

8. Probability that the server is idle P (idle) = 1− P (busy)

9. The total expected cost value of the proposed model is defined as TCV = caE[psl]+
cbE[reorder] + ccE[perishable] + cdE[WT ]

where
ca− Holding cost per unit, cb− Setup cost per unit, cc− Perishable cost per unit and cd−
Waiting cost per customer.
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Table 1: TCV for the case of SDAP and QDSP
s

7 8 9 10 11 12 13
S
58 2.805974 2.805623 2.806103 2.807504 2.809919 2.813445 2.818190
59 2.806534 2.805602 2.805445 2.806146 2.807788 2.810462 2.814264
60 2.807988 2.806522 2.805778 2.805835 2.806769 2.808661 2.811598
61 2.810287 2.808327 2.807044 2.806509 2.806792 2.807966 2.810111
62 2.813383 2.810970 2.809190 2.808110 2.807794 2.808309 2.809726
63 2.817234 2.814403 2.812165 2.810584 2.809717 2.809625 2.810374
64 2.821800 2.818583 2.815924 2.813880 2.812506 2.811856 2.811991

6 Simulation Analysis
In this section, the optimum cost analysis, monotonic behavior of some system char-

acteristics are to be discussed by the numerical illustrations. This will be helpful to
deliver a effective decision making polices for every inventory business tycoons. For
knowing such curious results of our proposed model, we need to fix the value of the
parameters and the cost values such that θ = 5, θ0 = 2, µ = 9, α = 0.9, γ = 0.07, β1 =
0.5, β2 = 0.5, S = 61, s = 10, N = 10, ca = 0.05, cb = 0.9, cc = 0.1, and cd = 7.

Example 6.1. Optimum cost analysis

This example briefly investigate the minimum optimal TCV for the category of both
arrival and service processes of homogeneous and non-homogeneous cases as shown
in Table (1)-(2). In Table (1), S ∈ B64

58 and s ∈ B13
7 are used to find the minimal

optimum TCV under the case of discussion between SDAP and QDSP. In this case, the
TCV ∗ = 2.805445 and corresponding optimum S∗ = 59 and s∗ = 9 are obtained.

Next, the output values of the case non-SDAP and non-QDSP are given in Table
(2). Here, S ∈ B63

57 and s ∈ B16
10 are varied to get an optimum TCV. In this case, the

TCV ∗ = 8.966159 and corresponding optimum S∗ = 60 and s∗ = 13 are obtained.
As we expected due to the assumption of the proposed model, the case non-SDAP

and non- QDSP have a higher TCV ∗ than the SDAP and QDSP case. That is, the
minimal optimum TCV obtained in the case of SDAP and QDSP. Hence the arrival and
service rates influence the cost value become a minimum one.

k1 = 0, k2 = 0
k1 = 0, k2 = 0.6

Example 6.2. The variation of TCV under the parameter variation

In this example, we describe the path of TCV with each parameter considered in
the model. In such a way, the major objective of this example is discussed with the
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Table 2: TCV for the case of non-SDAP and non-QDSP
s

10 11 12 13 14 15 16
S
57 8.986034 8.976046 8.970983 8.970903 8.975952 8.986375 9.002534
58 8.985814 8.975121 8.969166 8.967979 8.971672 8.980449 8.994615
59 8.986685 8.975367 8.968613 8.966432 8.968907 8.976202 8.988575
60 8.988575 8.976700 8.969232 8.966159 8.967537 8.973497 8.984257
61 8.991414 8.979048 8.970942 8.967068 8.967457 8.972214 8.981518
62 8.995143 8.982342 8.973667 8.969073 8.968572 8.972242 8.980232
63 8.999705 8.986521 8.977338 8.972097 8.970793 8.973483 8.980284

scaling factors β1 and β2, because they are deciding factors whether the arrival and
service processes are non-SDAP and non-QDSP or not respectively. In Table (3), the
scaling factor β1 increases the total cost if it is increasing. That is, β1 increases means,
the arriving customers in the system is increased. Subsequently, the sales of number of
product in the inventory is raised. So the management is often ready to store or making
reorder for their requirement. These jobs cause the increase of total cost. The same
characteristics are holds the parameter θ. Simultaneously, when we are focusing the
another scaling factor β2, more interestingly it reduces the TCV. If β2 increases means
that the service time of an individual become reduced. So the number of customers
leaves the system after a successful service completion of them is increasing. This
helps to reduce the mean service time of a customer. So this is the reason for TCV
is reduced if β2 increases. If β2 and µ are directly proportional to each other µ holds
the same behavior as β2. Then the perishable parameter α1 affects the item life time.
If α1 raises, the number of current stock level starts falling down. If it happens, the
management has to store more number of products which cause the extra expenditure
to maintain the system. So this expenditure cause the increase of total cost. Finally,
the reorder intensity rate α minimize the total cost when it is increasing. The successive
mean reorder time reduced means the number of available product of the system become
positive. Therefore, the service completion will be done as soon as possible. Hence, all
the parameters involved in Table (3) and Table (4) are satisfies their own properties.

Example 6.3. Graphical Analysis

• The scaling factors β1 and β2 shows the increasing/decreasing path due to its
SDAP and non-SDAP, QDSP and non-QDSP. We observe that 0.2 ≤ β1 ≤ 1 the β2

curves deviation is high and 0.5 ≤ β2 ≤ 1.0 the β2 curves deviation is low for all
β1 ∈ (0.2, 1).

• The graph of expected waiting time is shown in Figure (2) when β1 and β2 are
varying together. Here, the deviation of β2 curves coincides with the characteristics as
we said in Figure (1).
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Table 3: The variation of TCV under the parameter variation

β2 θ α1

β1 0 0.5 1
µ

7 9 11 7 9 11 7 9 11
α

0

4.5

0.05
0.70 11.08 8.92 7.55 44.64 35.40 29.67 136.60 104.43 85.33
0.90 10.83 8.66 7.28 44.78 35.11 29.13 145.45 109.22 87.88
1.10 10.71 8.52 7.14 45.25 35.24 29.04 154.70 114.88 91.46

0.07
0.70 11.18 9.02 7.64 44.31 35.24 29.60 132.94 102.29 83.98
0.90 10.92 8.74 7.36 44.40 34.91 29.03 141.43 106.85 86.36
1.10 10.79 8.60 7.21 44.86 35.02 28.92 150.45 112.34 89.81

0.09
0.70 11.29 9.12 7.73 44.01 35.10 29.54 129.67 100.36 82.73
0.90 11.01 8.82 7.43 44.06 34.73 28.93 137.82 104.70 84.96
1.10 10.87 8.68 7.28 44.50 34.82 28.80 146.61 110.02 88.30

5

0.05
0.70 11.21 9.06 7.69 44.81 35.59 29.87 137.00 104.88 85.82
0.90 10.95 8.79 7.41 44.93 35.28 29.31 145.74 109.58 88.28
1.10 10.83 8.65 7.27 45.38 35.38 29.20 154.89 115.16 91.78

0.07
0.70 11.31 9.15 7.78 44.48 35.43 29.80 133.34 102.75 84.46
0.90 11.04 8.87 7.49 44.55 35.08 29.20 141.73 107.21 86.76
1.10 10.91 8.73 7.34 44.98 35.16 29.08 150.65 112.62 90.14

0.09
0.70 11.42 9.25 7.86 44.19 35.29 29.74 130.08 100.82 83.22
0.90 11.13 8.95 7.57 44.21 34.90 29.11 138.12 105.06 85.36
1.10 10.99 8.80 7.41 44.63 34.96 28.96 146.81 110.30 88.62

5.5

0.05
0.70 11.31 9.17 7.80 44.95 35.74 30.03 137.33 105.26 86.22
0.90 11.06 8.89 7.52 45.04 35.41 29.45 145.97 109.87 88.61
1.10 10.93 8.76 7.38 45.48 35.50 29.33 155.04 115.37 92.04

0.07
0.70 11.42 9.26 7.89 44.62 35.59 29.96 133.68 103.13 84.87
0.90 11.14 8.98 7.60 44.67 35.21 29.35 141.96 107.50 87.09
1.10 11.01 8.83 7.45 45.08 35.28 29.21 150.80 112.84 90.40

0.09
0.70 11.52 9.36 7.97 44.33 35.45 29.91 130.41 101.20 83.63
0.90 11.23 9.06 7.67 44.33 35.03 29.26 138.36 105.35 85.69
1.10 11.09 8.91 7.52 44.73 35.08 29.10 146.97 110.52 88.89

0.5

4.5

0.05
0.70 2.02 1.83 1.70 5.58 4.87 4.41 18.73 16.13 14.48
0.90 2.04 1.85 1.73 5.31 4.61 4.16 17.71 15.08 13.43
1.10 2.06 1.88 1.76 5.16 4.48 4.03 17.18 14.51 12.85

0.07
0.70 2.06 1.87 1.74 5.640 4.92 4.46 18.78 16.19 14.54
0.90 2.08 1.89 1.76 5.36 4.66 4.21 17.75 15.13 13.48
1.10 2.10 1.92 1.80 5.22 4.53 4.08 17.21 14.55 12.89

0.09
0.70 2.10 1.90 1.77 5.69 4.98 4.50 18.83 16.25 14.59
0.90 2.12 1.93 1.80 5.42 4.71 4.25 17.79 15.17 13.52
1.10 2.15 1.96 1.84 5.27 4.58 4.12 17.23 14.59 12.93

5

0.05
0.70 2.02 1.83 1.70 5.60 4.89 4.44 18.80 16.21 14.56
0.90 2.04 1.85 1.73 5.33 4.63 4.18 17.773 15.15 13.50
1.10 2.06 1.88 1.76 5.18 4.50 4.05 17.22 14.57 12.91

0.07
0.70 2.06 1.86 1.73 5.66 4.95 4.48 18.85 16.27 14.62
0.90 2.08 1.89 1.76 5.38 4.68 4.23 17.80 15.19 13.55
1.10 2.11 1.92 1.80 5.24 4.55 4.10 17.25 14.61 12.95
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Table 4: The variation of TCV under the parameter variation

β2 θ α1

β1 0 0.5 1
µ

7 9 11 7 9 11 7 9 11
α

0.09
0.70 2.106 1.904 1.769 5.719 5.003 4.532 18.908 16.327 14.678
0.90 2.125 1.931 1.801 5.441 4.737 4.276 17.845 15.242 13.596
1.10 2.154 1.967 1.843 5.294 4.600 4.148 17.283 14.649 12.999

5.5

0.05
0.70 2.029 1.832 1.699 5.618 4.918 4.460 18.860 16.278 14.637
0.90 2.046 1.855 1.727 5.347 4.656 4.205 17.818 15.205 13.562
1.10 2.071 1.888 1.765 5.202 4.519 4.076 17.266 14.616 12.965

0.07
0.70 2.068 1.868 1.733 5.678 4.970 4.506 18.913 16.335 14.693
0.90 2.087 1.893 1.763 5.403 4.706 4.250 17.854 15.250 13.609
1.10 2.114 1.928 1.803 5.256 4.568 4.121 17.293 14.655 13.008

0.09
0.70 2.107 1.903 1.766 5.737 5.022 4.552 18.966 16.392 14.749
0.90 2.127 1.931 1.798 5.457 4.755 4.294 17.891 15.296 13.656
1.10 2.156 1.967 1.840 5.309 4.617 4.165 17.321 14.695 13.051

1.0

4.5

0.05
0.70 1.021 0.981 0.957 1.290 1.190 1.124 3.460 3.200 3.026
0.90 1.124 1.086 1.064 1.329 1.228 1.160 3.231 2.976 2.805
1.10 1.207 1.173 1.153 1.382 1.282 1.215 3.129 2.882 2.716

0.07
0.70 1.045 1.004 0.979 1.313 1.210 1.142 3.489 3.224 3.047
0.90 1.152 1.113 1.090 1.355 1.251 1.181 3.261 3.001 2.827
1.10 1.239 1.203 1.183 1.410 1.307 1.239 3.160 2.908 2.739

0.09
0.70 1.069 1.027 1.002 1.335 1.230 1.161 3.518 3.248 3.068
0.90 1.179 1.140 1.116 1.380 1.274 1.202 3.290 3.026 2.849
1.10 1.270 1.233 1.212 1.438 1.333 1.262 3.191 2.935 2.763

5

0.05
0.70 0.998 0.955 0.929 1.283 1.182 1.114 3.469 3.209 3.036
0.90 1.101 1.060 1.035 1.322 1.219 1.150 3.239 2.985 2.814
1.10 1.185 1.147 1.125 1.374 1.272 1.204 3.136 2.890 2.725

0.07
0.70 1.022 0.978 0.951 1.306 1.202 1.132 3.498 3.234 3.057
0.90 1.129 1.086 1.061 1.347 1.241 1.170 3.269 3.010 2.836
1.10 1.216 1.177 1.154 1.402 1.297 1.227 3.167 2.916 2.748

0.09
0.70 1.045 1.000 0.973 1.328 1.221 1.150 3.527 3.258 3.078
0.90 1.156 1.113 1.087 1.372 1.264 1.191 3.298 3.035 2.858
1.10 1.247 1.207 1.183 1.429 1.322 1.250 3.198 2.942 2.771

5.5

0.05
0.70 0.978 0.932 0.904 1.277 1.175 1.106 3.477 3.218 3.045
0.90 1.081 1.037 1.010 1.315 1.211 1.141 3.246 2.992 2.822
1.10 1.166 1.125 1.100 1.367 1.264 1.194 3.143 2.897 2.732

0.07
0.70 1.001 0.955 0.926 1.300 1.194 1.124 3.506 3.242 3.066
0.90 1.108 1.063 1.036 1.340 1.233 1.161 3.276 3.017 2.844
1.10 1.197 1.154 1.129 1.395 1.289 1.217 3.174 2.923 2.755

0.09
0.70 1.024 0.977 0.947 1.322 1.214 1.142 3.534 3.266 3.086
0.90 1.135 1.089 1.060 1.365 1.256 1.181 3.305 3.042 2.866
1.10 1.227 1.183 1.157 1.423 1.314 1.240 3.204 2.949 2.778
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Figure 1: Impact of TCV on β1 vs β2

• Figure (3) explores expected present stock level of the system on the combination
of β1 vs β2. Both β1 vs β2 reduce the E[psl] when they are increasing. Here, the
deviation of β2 curves is high when 0.2 ≤ β1 ≤ 1.

• The parameters α and α1 are affects the E[WT ] as shown in Figure 4. In this
graph, the beta curve has the high deviation with themselves and low deviation with α1.

• The E[WT ] is shown in Figure 5 if θ and µ are increasing together. The θ curves
are decreasing when µ is increasing and it means that the increased service rate cause
less mean service time of an individual.Therefore, the E[WT ] is decreased. If θ and µ
are inversely proportional each other, θ reacts against µ.

• The average waiting time of a customer is discussed for the case of θ vs K in
Figure 6 and µ vs K in Figure 7. As we have enough discussion about θ and µ on the
E[WT ], we shall move to analyses the impact of K.When the number of finite source
population is increases, for the E[WT ], the θ curve will be straight line.

Example 6.4. Impact of E[psl], E[reorder] and E[perishable] with the parameter
variation

This example describes the important system performance measures, E[psl], E[reorder]
and E[perishable] are to be discussed with the parameter analysis of α, α1, θ, µ and β2

as shown in Table 5-7. As per the scaling factor, β2 = 0, β2 = 0.5 and β2 = 1 are to be
explored in Table 5, 6 and 7 respectively. If we increase the reorder rate, the expected
present stock level increases. For every replenishment, there are Q items replaced as it
reaches the system. So it makes the E[psl] is increasing when it is increase. When α
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Figure 2: Impact of E[WT ] on β1 vs β2

Figure 3: Impact of E[psl] onβ1 vs β2
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Figure 4: Impact of E[WT ] on α vs α1

Figure 5: Impact of E[WT ] on µ vs θ
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Figure 6: Impact of Impact of E[WT ] on K vs θ

Figure 7: Impact of E[WT ] on µ vsK
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is increasing, for the value of µ = 7 E[reorder] behaves first increasing and then de-
creasing but at µ = 11 it is increasing only. Further, for both µ, the E[perishable] will
increase. Here, the perishable quality of the products depends on the number of present
stock level of the system.

The parameter α1 affects the E[psl] to fall down if it is increasing. Perishable prod-
ucts starts deterioration process depending the existing current stock level. So it is
decreased. Since the items in the inventory storage system are perished, the system
requires more number of products to provides the sales service. Hence the expected
reorder level is increased. Here the raise of a perishable rate obviously influence the
increase of E[perishable] . Then the parameter θ changes the E[psl] and E[reorder] by
direct variation where as with E[perishable] it varies by indirect variation. For every
arrival, there will be an unit in the system getting down when they leave the system.
To fulfill such required number of items, there must be a reorder needed. Since the in-
ventory reduces by the more sales, there must be less number of items remaining in the
inventory storage place. This cause the E[perishable] become less.

More interestingly, as we predicted earlier, the intensity rate µ is inversely propor-
tional to each E[psl], E[perishable]. If we increase µ, each of them starts falling down.
If mean service time of individual customer too short, number of inventory falls down
fast and less inventory requires more reorder and less number of perishable items.
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Table 5: Impact of E[psl], E[reorder and E[perishable] with the parameter variation

β2 θ α1

E[stock] E[reorder] E[perishable]
µ

7 11 7 11 7 11
α

0

4.5

0.05
0.70 24.9645 22.6523 0.3136 0.4386 1.2482 1.1326
0.90 26.3157 24.3173 0.3138 0.4543 1.3158 1.2159
1.10 27.2531 25.5090 0.3089 0.4602 1.3627 1.2755

0.07
0.70 24.4147 22.2220 0.3277 0.4503 1.7090 1.5555
0.90 25.8047 23.9103 0.3293 0.4679 1.8063 1.6737
1.10 26.7722 25.1230 0.3252 0.4751 1.8741 1.7586

0.09
0.70 23.9075 21.8168 0.3408 0.4614 2.1517 1.9635
0.90 25.3337 23.5268 0.3439 0.4809 2.2800 2.1174
1.10 26.3299 24.7591 0.3408 0.4893 2.3697 2.2283

5

0.05
0.70 24.9645 22.6523 0.3188 0.4503 1.2482 1.1326
0.90 26.3157 24.3173 0.3191 0.4665 1.3158 1.2159
1.10 27.2531 25.5090 0.3142 0.4726 1.3627 1.2755

0.07
0.70 24.4147 22.2220 0.3330 0.4621 1.7090 1.5555
0.90 25.8047 23.9103 0.3347 0.4803 1.8063 1.6737
1.10 26.7722 25.1230 0.3307 0.4877 1.8741 1.7586

0.09
0.70 23.9075 21.8168 0.3463 0.4733 2.1517 1.9635
0.90 25.3337 23.5268 0.3495 0.4934 2.2800 2.1174
1.10 26.3299 24.7591 0.3464 0.5022 2.3697 2.2283

5.5

0.05
0.70 24.9645 22.6523 0.3211 0.4553 1.2482 1.1326
0.90 26.3157 24.3173 0.3214 0.4718 1.3158 1.2159
1.10 27.2531 25.5090 0.3165 0.4780 1.3627 1.2755

0.07
0.70 24.4147 22.2220 0.3353 0.4672 1.7090 1.5555
0.90 25.8047 23.9103 0.3371 0.4856 1.8063 1.6737
1.10 26.7722 25.1230 0.3330 0.4932 1.8741 1.7586

0.09
0.70 23.9075 21.8168 0.3486 0.4785 2.1517 1.9635
0.90 25.3337 23.5268 0.3519 0.4988 2.2800 2.1174
1.10 26.3299 24.7591 0.3488 0.5078 2.3697 2.2283
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Table 6: Impact of E[psl], E[reorder and E[perishable] with the parameter variation

β2 θ α1

E[stock] E[reorder] E[perishable]
µ

7 11 7 11 7 11
α

0.5

4.5

0.05
0.70 18.5347 15.4582 0.2337 0.2938 0.9267 0.7729
0.90 20.5232 17.5264 0.2533 0.3280 1.0262 0.8763
1.10 22.0246 19.1546 0.2662 0.3532 1.1012 0.9577

0.07
0.70 18.2647 15.2755 0.2384 0.2973 1.2785 1.0693
0.90 20.2574 17.3398 0.2589 0.3323 1.4180 1.2138
1.10 21.7661 18.9683 0.2725 0.3582 1.5236 1.3278

0.09
0.70 18.0051 15.0982 0.2430 0.3007 1.6205 1.3588
0.90 20.0014 17.1583 0.2644 0.3366 1.8001 1.5442
1.10 21.5169 18.7869 0.2787 0.3631 1.9365 1.6908

5

0.05
0.70 18.2833 15.0507 0.2366 0.2977 0.9142 0.7525
0.90 20.2883 17.1217 0.2573 0.3339 1.0144 0.8561
1.10 21.8085 18.7631 0.2712 0.3609 1.0904 0.9382

0.07
0.70 18.0201 14.8771 0.2412 0.3009 1.2614 1.0414
0.90 20.0281 16.9432 0.2628 0.3380 1.4020 1.1860
1.10 21.5549 18.5840 0.2773 0.3657 1.5088 1.3009

0.09
0.70 17.7668 14.7084 0.2456 0.3041 1.5990 1.3238
0.90 19.7774 16.7695 0.2681 0.3420 1.7800 1.5093
1.10 21.3101 18.4095 0.2834 0.3705 1.9179 1.6569

5.5

0.05
0.70 18.1713 14.8689 0.2379 0.2993 0.9086 0.7434
0.90 20.1830 16.9399 0.2591 0.3364 1.0092 0.8470
1.10 21.7112 18.5861 0.2733 0.3642 1.0856 0.9293

0.07
0.70 17.9110 14.6992 0.2424 0.3025 1.2538 1.0289
0.90 19.9254 16.7649 0.2644 0.3404 1.3948 1.1735
1.10 21.4596 18.4102 0.2794 0.3689 1.5022 1.2887

0.09
0.70 17.6605 14.5342 0.2468 0.3056 1.5894 1.3081
0.90 19.6770 16.5946 0.2697 0.3443 1.7709 1.4935
1.10 21.2168 18.2387 0.2854 0.3736 1.9095 1.6415
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Table 7: Impact of E[psl], E[reorder and E[perishable] with the parameter variation

β2 θ α1

E[stock] E[reorder] E[perishable]
µ

7 11 7 11 7 11
α

1

4.5

0.05
0.70 12.2895 10.2694 0.1562 0.1954 0.6145 0.5135
0.90 14.2804 12.1335 0.1792 0.2281 0.7140 0.6067
1.10 15.9157 13.7102 0.1973 0.2549 0.7958 0.6855

0.07
0.70 12.1776 10.1919 0.1586 0.1974 0.8524 0.7134
0.90 14.1615 12.0488 0.1822 0.2306 0.9913 0.8434
1.10 15.7933 13.6209 0.2007 0.2578 1.1055 0.9535

0.09
0.70 12.0681 10.1157 0.1610 0.1994 1.0861 0.9104
0.90 14.0450 11.9654 0.1851 0.2330 1.2640 1.0769
1.10 15.6733 13.5331 0.2041 0.2606 1.4106 1.2180

5

0.05
0.70 11.2674 9.0422 0.1473 0.1796 0.5634 0.4521
0.90 13.2040 10.7934 0.1709 0.2123 0.6602 0.5397
1.10 14.8221 12.3059 0.1899 0.2400 0.7411 0.6153

0.07
0.70 11.1733 8.9823 0.1494 0.1812 0.7821 0.6288
0.90 13.1024 10.7265 0.1734 0.2144 0.9172 0.7509
1.10 14.7161 12.2343 0.1928 0.2424 1.0301 0.8564

0.09
0.70 11.0811 8.9232 0.1514 0.1828 0.9973 0.8031
0.90 13.0026 10.6606 0.1759 0.2164 1.1702 0.9594
1.10 14.6120 12.1636 0.1958 0.2448 1.3151 1.0947

5.5

0.05
0.70 10.7714 8.4426 0.1426 0.1709 0.5386 0.4221
0.90 12.6732 10.1258 0.1662 0.2033 0.6337 0.5063
1.10 14.2751 11.5941 0.1856 0.2311 0.7138 0.5797

0.07
0.70 10.6852 8.3903 0.1445 0.1723 0.7480 0.5873
0.90 12.5794 10.0669 0.1686 0.2051 0.8806 0.7047
1.10 14.1766 11.5305 0.1883 0.2332 0.9924 0.8071

0.09
0.70 10.6007 8.3388 0.1464 0.1738 0.9541 0.7505
0.90 12.4872 10.0088 0.1709 0.2069 1.1239 0.9008
1.10 14.0798 11.4676 0.1910 0.2354 1.2672 1.0321
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7 Conclusion
The finite source population is considered to explore the non-SDAP and non-QDSP

in the SQIS. The generalization of homogeneous and non-homogeneous arrival and
service processes are given in the steady state of the model. Also, the comparative dis-
cussion is made in the numerical investigations.The illustrations given in the examples
enhance minimum optimal total cost for the QDSP category. The SDAP will increase
the number of units arriving to the inventory system. This increased units of arrival will
produce the more sales of the inventory. When we are focusing the development of the
inventory business, the first step has to be initialized to attract the customers towards the
system. For such process, displayed stock level will assure the increase of customers
in the inventory system. And Maintaining the sufficient current stock level will play
the crucial role for the development of an inventory system. Simultaneously, the QDSR
contribute the reduce of waiting time of a customer in the system. If a management pro-
vides some polices to reduce the waiting time of an individual in the servicing system,
the customers are impressed and they will come to the same system often. In such a
way that, the proposed model will applicable in a economically.
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