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Abstract

In this paper, we mainly study connections between ideals of the
semisimple EMV-algebra M and filters on some nonempty set Ω. We
show that there is a bijection between the set of all closed ideals of
M and the set of all filters on Ω. We get that this correspondence also
holds between the set of all closed prime ideals of M and the set of
all weak ultrafilters on Ω. We prove that the topological space of all
closed prime ideals of M and the topological space of all weak ultra-
filters on Ω are homeomorphic.
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1 Introduction
An MV-algebra is an algebra (M ;⊕, ∗, 0) of type (2, 1, 0, 0) which has the

top element 1. The study of MV-algebras is very in-depth and comprehensive,
which has important applications in other areas of mathematical research. There
are close connections between ideals of a semisimple MV-algebra and filters on
some associated nonempty set. Moreover, there exists a bijection between the set
of all closed ideals of a semisimple MV-algebra and the set of all filters on some
nonempty set. For more details about it, we recommend the monographs Cignoli
et al. [2013], Lele et al. [2021].

An EMV-algebra is an algebra (M ;∨,∧,⊕, 0) of type (2, 2, 2, 0), which is a
new class of algebraic structures. EMV-algebras cannot guarantee the existence
of the top element 1, which are the generalizations of MV-algebras. MV-algebras
are termwise equivalent to EMV-algebras with the top element, Dvurečenskij and
Zahiri [2019].

We shall mainly study connections between ideals of a semisimple EMV-
algebra M and filters on Ω, where M ⊆ [0, 1]Ω and [0, 1]Ω is an EMV-clan of
fuzzy functions on some nonempty set Ω. This paper is organized as follows. In
Section 2, we give some basic notions and theorems on EMV-algebras, which will
be used in the paper. In Section 3, we start by introducing the limits of f ∈ M
along a filter F on Ω. We study the connections between ideals of M and filters
on Ω. In Section 4, we define a closure operation on M. We exhibit a one-to-one
correspondence between the set of all closed ideals of M and the set of all filters
on Ω. We show that there is a homeomorphism between the topological space of
all closed prime ideals of M and the topological space of all weak ultrafilters on
Ω. In addition, there is an example of an ideal that is a non-closed ideal, and some
properties of closed ideals are listed.

2 Preliminaries
In this section, we introduce some basic notions and theorems on an EMV-

algebra, which will be used in the following sections.
A filter F on a nonempty set Ω is a collection of subsets of Ω satisfying (i)

the intersection of two elements in F again belongs to it and (ii) for all S ∈ F ,
S ⊆ T ⊆ Ω implies that T ∈ F . By (ii), we have Ω ∈ F for any filter F on
Ω. A filter F is called proper if ∅ /∈ F . It is obvious that if F1 and F2 are filters
on Ω, F1 ∩ F2 is also a filter of Ω. In fact, for all S1, S2 ∈ F1 ∩ F2, we get
S1 ∩ S2 ∈ F1 ∩ F2. Moreover, for any S ∈ F1 ∩ F2 and S ⊆ T ⊆ Ω, which
implies T ∈ F1 and T ∈ F2. So T ∈ F1 ∩ F2. We have shown that F1 ∩ F2 is a
filter on Ω.
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Definition 2.1. ([Cignoli et al., 2013, Definition 1.1.1]) An MV-algebra is an
algebra (M ;⊕, ∗, 0, 1) of type (2, 1, 0, 0) such that (M ;⊕, 0) is a commutative
monoid, and for all x, y ∈M satisfying the following axioms:
(MV1) x∗∗ = x;
(MV2) x⊕ 0∗ = 0∗;
(MV3) (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x.

For all x, y ∈ [0, 1], the real interval [0, 1] with the operations x⊕y = min{x+
y, 1} and x∗ = 1 − x is an MV-algebra. Let (M ; +, 0) be a monoid. An element
a ∈ M is called idempotent if it satisfies the equation a + a = a. We denote
the set of all idempotent elements of M by I(M). We recommend Cignoli et al.
[2013] for MV-algebras.

EMV-algebras as the generalizations of MV-algebras have many important
properties. We recommend Dvurečenskij and Zahiri [2019] for EMV-algebras.

Definition 2.2. ([Dvurečenskij and Zahiri, 2019, Definition 3.1]) An EMV-algebra
is an algebra (M ;∨,∧,⊕, 0) with type (2, 2, 2, 0) satisfying the followings:
(EMV1) (M ;∨,∧, 0) is a distributive lattice with the least element 0;
(EMV2) (M ;⊕, 0) is a commutative ordered monoid with the neutral element 0;
(EMV3) for all a, b ∈ I(M) with a ≤ b and for each x ∈ [a, b], the element
λa,b(x) = min{y ∈ [a, b] | x ⊕ y = b} exists in M , and ([a, b];⊕, λa,b, a, b) is an
MV-algebra;
(EMV4) for any x ∈M , there is a ∈ I(M) such that x ≤ a.

EMV-algebras cannot guarantee the existence of the top element 1. An ideal I
of an EMV-algebraM is a nonempty subset satisfying (i) for all x, y ∈ I , x⊕y ∈ I
and (ii) for each y ∈ I and x ∈ M , x ≤ y can deduce x ∈ I . Let Ideal(M) to
denote the set of all ideals of M . An ideal I of M is proper if I 6= M . A proper
ideal I is called prime if for any x, y ∈ M , x ∧ y ∈ I implies that x ∈ I or
y ∈ I . We use P(M) to denote the set of all prime ideals of M . An ideal I of M
is maximal if for all x ∈M\I , we have 〈I ∪ {x}〉 = M , where 〈I ∪ {x}〉 = {z ∈
M | z ≤ a⊕ n.x for some a ∈ I and some n ∈ N}. The set of all maximal ideals
of M is denoted byMaxI(M). It is well known that any maximal ideal ofM must
be prime ([Dvurečenskij and Zahiri, 2019]). An EMV-algebra M is semisimple if
and only if Rad(M) = {0}, where Rad(M) , ∩{I | I ∈ MaxI(M)}. The set
Rad(M) is called the radical of M .

For two EMV-algebras (M1;∨,∧,⊕, 0) and (M2;∨,∧,⊕, 0), a mapping Φ :
M1 −→ M2 is called an EMV-homomorphism if Φ preserves the operations
∨,∧,⊕ and 0, and for each b ∈ I(M1) and for each x ∈ [0, b], we have Φ(λb(x)) =
λΦ(b)(Φ(x)). Every MV-homomorphism is also an EMV-homomorphism, but the
converse is not necessarily true ([Dvurečenskij and Zahiri, 2019]). A mapping s :
M −→ [0, 1] is said a state-morphism on M if s is an EMV-homomorphism from
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the EMV-algebra M into the EMV-algebra of the real interval ([0, 1];∨,∧,⊕, 0)
with top element, such that there exists an element x ∈ M with s(x) = 1. The
set Ker(s) = {x ∈ M | s(x) = 0} is called the kernel of the state-morphism s
([Dvurečenskij and Zahiri, 2019]).

Theorem 2.1. ([Dvurečenskij and Zahiri, 2019, Theorem 4.2 (ii)]) Let M be an
EMV-algebra and s be a state-morphism on M. Then Ker(s) is a maximal ideal
of M. In addition, there is a unique maximal ideal I of M such that s = sI , where
sI : x 7−→ x/I for all x ∈M .

Definition 2.3. ([Dvurečenskij and Zahiri, 2019, Definition 4.9]) Let Ω be a
nonempty set. A system T ⊆ [0, 1]Ω is called an EMV-clan if it satisfies the fol-
lowing conditions:
(1) 0 ∈ T such that 0(w) = 0 for all w ∈ Ω;
(2) if a ∈ T is a 0-1-valued function, then a − f ∈ T for each f ∈ T with
f(w) ≤ a(w) for all w ∈ Ω, and if f, g ∈ T with f(w), g(w) ≤ a(w) for all
w ∈ Ω, then f ⊕ g ∈ T , where (f ⊕ g)(w) = min{f(w) + g(w), a(w)} for all
w ∈ Ω;
(3) for each f ∈ T , there exists a 0-1-valued function a ∈ T such that f(w) ≤
a(w) for all w ∈ Ω;
(4) for given w ∈ Ω, there exists f ∈ T such that f(w) = 1.

From Dvurečenskij and Zahiri [2019, Proposition 4.10], we see that any EMV-
clan can be organized into an EMV-algebra. That is, every EMV-clan on some
Ω 6= ∅ is an EMV-algebra, see Dvurečenskij and Zahiri [2019].

3 Ideals of semisimple EMV-algebras and filters on
associated nonempty sets

Let M be a semisimple EMV-algebra. By Dvurečenskij and Zahiri [2019,
Theorem 4.11], there is an EMV-clan [0, 1]Ω on some Ω 6= ∅ such that M is
an EMV-subalgebra of [0, 1]Ω. In this section, for a semisimple EMV-algebra
M ⊆ [0, 1]Ω, we shall define the notion of limits along a filter. The connections
between ideals ofM and filters on Ω are studied. For each f ∈ M and for all ε > 0,
we denote D(f, ε) = {x ∈ Ω | f(x) < ε}.
Definition 3.1. Let M be a semisimple EMV-algebra and F be a filter on Ω such
that M ⊆ [0, 1]Ω. For any f ∈ M and t ∈ [0, 1], we call that f converges to t
along F if for every ε > 0, there is S ∈ F such that | f(S)− t |< ε.

Proposition 3.1. Let M be a semisimple EMV-algebra and F be a proper filter on
Ω such that M ⊆ [0, 1]Ω. Then for each f ∈M , there has at most one limit along
F.
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Proof. The proof is similar to Lele et al. [2021, Proposition 2.2].2
For any f ∈M , the limit of f along a proper filter F on Ω does not necessarily

exist. But it would be unique if it exists by Proposition 3.1. We denote it by
limFf .

Let I be an ideal of M and F be a filter on Ω. We define
FI = {S ⊆ Ω | D(f, ε) ⊆ S for some f ∈ I and ε > 0}

and
IF = {f ∈ M | f converges to 0 along F}={f ∈ M | D(f, ε) ∈ F for all

ε > 0}.

Proposition 3.2. Let M be a semisimple EMV-algebra and F be a filter on Ω such
that M ⊆ [0, 1]Ω. For all f, g ∈M :
(1) If limFf and limFg exist, then limF (f⊕g) exists and limF (f⊕g) = limFf⊕
limFg.
(2) If limFf exists, then limFλa(f) exists and limFλa(f) = λa(limFf), where a
is an idempotent element of M such that f ∈ [0, a].

Proof. (1) Suppose that f, g ∈ M , limFf and limFg exist. There exist-
s an idempotent element a ∈ I(M) such that f, g ∈ [0, a]. Also, we have
limFf, limFg ≤ a(x) for all x ∈ Ω. In the MV-algebra ([0, a];⊕, λa, 0, a), limFf
and limFg also exist. By Lele et al. [2021, Lemma 2.4], we have limF (f ⊕ g)
exists and limF (f ⊕ g) = limFf ⊕ limFg.

(2) Recall that λa(f) = min{z ∈ [0, a] | z ⊕ f = a}, where a ∈ I(M) with
f ∈ [0, a]. Since ([0, a];⊕, λa, 0, a) is an MV-algebra, the result follows from Lele
et al. [2021, Lemma 2.4].2

Recall that an ultrafilter U on Ω is a filter which is maximal, in other words,
any filter that contains it is equal to it. An ultrafilter U on Ω is equally a collection
of subsets of Ω satisfying (i) U is proper, (ii) the intersection of two subsets in the
collection belongs to it and (iii) for any subset V , V ∈ U if and only if Ω\V /∈ U ,
see Garner [2020, Definition 2]. From (iii), we see that Ω ∈ U for any ultrafilter
U on Ω. We shall show that the limits along an ultrafilter exist.

Proposition 3.3. Let M be a semisimple EMV-algebra and U be an ultrafilter on
Ω such that M ⊆ [0, 1]Ω. Then, for any f ∈M , there has a unique limit along U.

Proof. Suppose that there is no t ∈ [0, 1] such that limUf = t. That is, for any
t ∈ [0, 1], there exists ε0 > 0 such that f−1(Ot) /∈ U , where Ot = (t− ε0, t+ ε0).
In fact, if for all ε > 0, there exists t0 ∈ [0, 1] such that f−1(Ot0) ∈ U , where
Ot0 = (t0 − ε, t0 + ε). It follows that limUf = t0, which is a contradiction.
Since [0, 1] is compact, for each open covering {Ot | t ∈ [0, 1]} of [0, 1], where
Ot = (t − ε, t + ε), there exists a finite subset {Ot1 , Ot2 , ......, Otn} such that
[0, 1] =

⋃n
i=1 Oti . Since U is an ultrafilter on Ω, we have

⋃n
i=1 f

−1(Oti) =
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f−1(
⋃n
i=1Oti) = f−1([0, 1]) = Ω ∈ U . By Garner [2020, Definition 2], there

is j ∈ {1, 2, ......, n} such that f−1(Otj) ∈ U , which is a contradiction. Hence, f
has at least one limit along U .

By Proposition 3.1, the uniqueness of the limit is clear.2

Theorem 3.1. Let M be a semisimple EMV-algebra and U be an ultrafilter on
Ω such that M ⊆ [0, 1]Ω. Consider the mapping ΦU : M −→ [0, 1] given
by ΦU(f) = limUf , where f ∈ M . Then ΦU is an EMV-homomorphism with
Ker(ΦU) = IU .

Proof. Let ΦU : M −→ [0, 1] be a mapping defined by ΦU(f) = limUf ,
where f ∈ M . By Proposition 3.3, the limit of f along U is unique. So ΦU

is well-defined. For all f, g ∈ M , there is a ∈ I(M) such that f, g ∈ [0, a]
and ([0, a];⊕, λa, 0, a) is an MV-algebra. Now we consider the restriction of ΦU

on [0, a]. From Lele et al. [2021, Proposition 2.6] we see that ΦU |[0,a] is an MV-
homomorphism. Clearly, ΦU(0) = 0. Also, we have ΦU(f⊕g) = ΦU(f)⊕ΦU(g),
ΦU(f ∨ g) = ΦU(f)∨ΦU(g) and ΦU(f ∧ g) = ΦU(f)∧ΦU(g). That is, ΦU is an
EMV-homomorphism. In addition, Ker(ΦU) = {f ∈M | limUf = 0} = IU .2

Theorem 3.2. Let M be a semisimple EMV-algebra such that M ⊆ [0, 1]Ω. We
have the followings:
(1) For each ideal I of M, FI is a filter on Ω. Moreover, if I is proper, then FI is
proper.
(2) For each filter F on Ω, IF is an ideal of M. Moreover, if F is proper, then IF is
proper.

Proof. (1) Let I be an ideal of M.
(i) For all ε > 0 and f ∈ I , we have D(f, ε) = {x ∈ Ω | f(x) < ε} ⊆ Ω.

Then Ω ∈ FI .
(ii) Let S1 ⊆ S2 ⊆ Ω and S1 ∈ FI . There exist f ∈ I and ε > 0 such that

D(f, ε) ⊆ S1 ⊆ S2. This implies that S2 ∈ FI .
(iii) Suppose that S1, S2 ∈ FI . There exist f, g ∈ I and ε, δ > 0 such that

D(f, ε) ⊆ S1 and D(g, δ) ⊆ S2. It follows that D(f, ε) ∩D(g, δ) ⊆ S1 ∩ S2. In
addition, since D(f ⊕ g,min(ε, δ)) ⊆ D(f, ε) ∩D(g, δ) and f ⊕ g ∈ I , we have
D(f, ε)∩D(g, δ) ∈ FI . By (ii), it now follows that S1∩S2 ∈ FI . So FI is a filter
on Ω.

Let I be a proper ideal. Suppose that FI is not proper. Then ∅ ∈ FI . So there
exist f ∈ I and ε > 0 such that f(x) ≥ ε for all x ∈ Ω. We choose N ≥ 1 such
that f(x) ≥ ε ≥ 1

N
. Then Nf ∈ I and Nf(x) ≥ 1. It implies that 1 ∈ I and

I = M , which is a contradiction. Therefore, FI is proper.
(2) Let F be a filter on Ω.
(i) Since 0 ∈ IF , we have IF 6= ∅.
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(ii) For all f, g ∈ IF , by Proposition 3.2, we have limF (f ⊕ g) = limFf ⊕
limFg = 0. So f ⊕ g ∈ IF .

(iii) Suppose that f ∈ M , g ∈ IF and f ≤ g. We have limFf ≤ limFg = 0.
Then f ∈ IF . Therefore, IF is an ideal of M.

Let F be a proper filter. If IF is not proper, then IF = M . For all f ∈ IF = M ,
for all ε > 0, we have D(f, ε) ∈ F . There exists a ∈ I(M) such that f ≤ a and
a ∈ M = IF . So for any x ∈ Ω, there is g(x) > 0 such that a(x) ≥ g(x), where
g ∈ [0, a]. It follows that ∅ = D(a, g(x)) ∈ F , which is a contradiction. Hence,
IF is proper.2

Proposition 3.4. Let M be a semisimple EMV-algebra such that M ⊆ [0, 1]Ω.
Then we have the followings:
(1) For each ideal I of M, I ⊆ IFI

.
(2) For each filter F on Ω, FIF ⊆ F .
(3) For each filter F on Ω, FIF = F if {0, 1}Ω ⊆M .

Proof. The proof is similar to Lele et al. [2021, Proposition 2.8].2

Proposition 3.5. Let M be a semisimple EMV-algebra such that M ⊆ [0, 1]Ω. We
have the followings:
(1) If {0, 1}Ω ⊆ M , then for each maximal ideal K of M, FK is an ultrafilter on
Ω.
(2) IU is a maximal ideal of M if U is an ultrafilter on Ω.
(3) If {0, 1}Ω ⊆M , the converse of (2) is true.

Proof. (1) Let K be a maximal ideal of M and S ⊆ Ω. Suppose S /∈ FK . We
will show that Ω\S ∈ FK .

We define f ∈M by

f(x) =

{
0 x ∈ S,
1 x /∈ S.

Then we have D(f, 0.5) = S /∈ FK . It follows that f /∈ K. Let b ∈ I(M) such
that f ∈ [0, b]. It follows from f /∈ K that f /∈ Kb, where Kb = K ∩ [0, b]. Since
K is a maximal ideal of M , by Dvurečenskij and Zahiri [2019, Proposition 3.22],
Kb is a maximal ideal of the MV-algebra ([0, b];⊕, λb, 0, b). By the maximality
of Kb, there exists n ≥ 1 such that λb(nf) ∈ Kb. Then λb(nf) ∈ K. Notice
that nf = f , which follows that λb(f) = λb(nf) ∈ K. In addition, we also have
Ω\S = Ω\D(f, 0.5) = D(λb(f), 0.5) ∈ FK . Hence, by Freiwald [2014, Chapter
IX, Theorem 3.5], FK is an ultrafilter on Ω.

(2) Let U be an ultrafilter on Ω. From Theorem 3.1, there is an EMV-homomor-
phism ΦU : M −→ [0, 1] defined by ΦU(f) = limUf . Since M ⊆ [0, 1]Ω is
semisimple, for given w ∈ Ω, there is f ∈ M such that f(w) = 1. So for
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{w} ⊆ Ω ∈ U and all ε > 0, we have f({w}) ⊆ (1 − ε, 1 + ε), which im-
plies that there exists f ∈ M such that ΦU(f) = limUf = 1. Hence, ΦU is a
state-morphism on M . By Theorem 2.1, Ker(ΦU) = IU is a maximal ideal of M.

(3) If IU be a maximal ideal of M. Then FIU is an ultrafilter on Ω by (1). By
Proposition 3.4 (3), U = FIU is an ultrafilter.2

Proposition 3.6. Let M be a semisimple EMV-algebra and F be a filter on Ω such
that {0, 1}Ω ⊆M ⊆ [0, 1]Ω. Then for any f ∈M , F is an ultrafilter if and only if
f has a unique limit along F.

Proof. ⇒: If F is an ultrafilter. By Proposition 3.3 we see that f has a unique
limit along F.
⇐: Suppose that f has a unique limit along F , where f ∈ M . Consider the

mapping ΦF : M −→ [0, 1] defined by ΦF (f) = limFf . We have that ΦF is
well-defined. By the proof of Proposition 3.5, ΦF is a sate-morphism on M . So
Ker(ΦF ) = IF is a maximal ideal of M by Theorem 2.1. Therefore, F is an
ultrafilter on Ω by Proposition 3.5 (3).2

4 Closed ideals of semisimple EMV-algebras
In this section, we introduce the notions of closure operations and c-closed

ideals on EMV-algebras. We get a bijection between the set of all closed ideals
of M and the set of all filters on Ω. We exhibit a homeomorphism between the
topological space of all closed prime ideals of M and the topological space of all
weak ultrafilters on Ω.

Definition 4.1. A closure operation on an EMV-algebra M is a mapping c :
Ideal(M) −→ Ideal(M) satisfying the following conditions: for all I, J ∈
Ideal(M),
(C1) I ⊆ Ic;
(C2) if I ⊆ J , then Ic ⊆ J c;
(C3) Icc = Ic; where Ic=c(I).

Proposition 4.1. Let M be a semisimple EMV-algebra and M ⊆ [0, 1]Ω. For each
ideal I of M, we denote Ic = IFI

. Then c is a closure operation on M.

Proof. The proof is similar to Lele et al. [2021, Proposition 3.1].2
An ideal I of M is called c-closed if Ic = I . We frequently prefer to call an

ideal is closed instead of c-closed. The set of all closed ideals of M is denoted
by C(M). In the subsequent sections, we shall mainly study closed ideals of M ,
where the closure operation is given by Proposition 4.1. Now we show that any
maximal ideal must be contained in C(M).
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Proposition 4.2. Let M be a semisimple EMV-algebra and M ⊆ [0, 1]Ω. Every
maximal ideal of M is a closed ideal.

Proof. Let I be a maximal ideal of M . IFI
is a proper ideal by Theorem 3.2.

By Proposition 3.4 (1), we have I ⊆ IFI
. Suppose I & IFI

. For any f ∈ IFI
\I ,

by the maximality of I , we have M = 〈I ∪ {f}〉 ⊆ IFI
, which is a contradiction.

So I = IFI
. We have shown that I is closed.2

Theorem 4.1. Let M be a semisimple EMV-algebra such that {0, 1}Ω ⊆ M ⊆
[0, 1]Ω. Then there is a bijection between the set of all closed ideals of M and the
set of all filters on Ω.

Proof. Let F (Ω) to denote the set of all filters on Ω. Define two mappings:
Θ : C(M) −→ F (Ω) by Θ(I) = FI and Υ : F (Ω) −→ C(M) by Υ(F ) = IF .

By Theorem 3.2 and Proposition 3.4(3), Θ and Υ are well-defined. For any I ∈
C(M) and F ∈ F (Ω), we get ΘΥ(F ) = Θ(IF ) = FIF = F and ΥΘ(I) =
Υ(FI) = IFI

= I . So ΘΥ and ΥΘ are identical mappings. Hence, Θ is a
bijection.2

Remark 4.1. From Theorem 4.1, we get a one-to-one correspondence between
the set of all closed ideals of M and the set of all filters on Ω. We shall study
the restriction of this correspondence. We define CM(M) = {I ∈ C(M) | I ∈
MaxI(M)} and FU(Ω) = {F | F is an ultrafilter on Ω}. Suppose that {0, 1}Ω ⊆
M ⊆ [0, 1]Ω. It is easy to verify that there is also a bijection between CM(M) and
FU(Ω).

In fact, define two mappings Ψ : FU(Ω) −→ CM(M) given by Ψ(U) = IU
and Ψ′ : CM(M) −→ FU(Ω) given by Ψ′(I) = FI . From Proposition 3.4 (3) and
Proposition 3.5 we see that Ψ and Ψ′ are well-defined. Similar to Theorem 4.1,
we can prove that Ψ is a bijection.

Next, we will study a special class of filters on Ω, which corresponds to closed
prime ideals of M . A filter F on Ω is called a weak ultrafilter if IF is a prime ideal
of M. We denote the set of all weak ultrafilters on Ω by W (Ω).

Proposition 4.3. Let M be a semsimple EMV-algebra and M ⊆ [0, 1]Ω. Every
ultrafilter on Ω is a weak ultrafilter.

Proof. Let F be an ultrafilter on Ω. Then IF is a maximal ideal of M by
Proposition 3.5 (2). So IF is prime ([Dvurečenskij and Zahiri, 2019]). Hence, F
is a weak ultrafilter.2

Proposition 4.4. Let M be a semisimple EMV-algebra and M ⊆ [0, 1]Ω. If I is a
prime ideal of M , FI is a weak ultrafilter on Ω.
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Proof. Let I be a prime ideal of M . Then FI is proper. It follows that IFI

is a proper ideal by Theorem 3.2. Suppose that f ∧ g ∈ IFI
for f, g ∈ M . We

get D(f ∧ g, ε) ∈ FI for all ε > 0. Since D(f, ε), D(g, ε) ⊆ D(f ∧ g, ε) ∈ FI ,
we have that at least one of D(f, ε) and D(g, ε) is nonempty. That is, f ∈ IFI

or
g ∈ IFI

. In fact, suppose that D(f, ε) and D(g, ε) are empty sets. It follows that
∅ = D(f ∧ g, ε) ∈ FI , which is a contradiction. We have shown that FI is a weak
ultrafilter on Ω.2

Theorem 4.2. Let M be a semisimple EMV-algebra such that {0, 1}Ω ⊆ M ⊆
[0, 1]Ω. Then there is a bijection between the set of all closed prime ideals of M
and the set of all weak ultrafilters on Ω.

Proof. Let Pc(M) to denote the set of all closed prime ideals of M . Define
two mappings:

Φ : Pc(M) −→ W (Ω) defined by Φ(I) = FI and Γ : W (Ω) −→ Pc(M)
defined by Γ(F ) = IF .
The mappings Φ and Γ are well-defined by Proposition 4.4, Proposition 3.4 (3)
and the definition of weak ultrafilters.

For any I ∈ Pc(M) and F ∈ W (Ω), we have ΓΦ(I) = Γ(FI) = IFI
= I and

ΦΓ(F ) = Φ(IF ) = FIF = F . So ΦΓ and ΓΦ are identical mappings. Hence, Φ is
a bijection.2

Lemma 4.1. Let M be a semisimple EMV-algebra such that M ⊆ [0, 1]Ω. Then
there is a topology on the space W (Ω) which has Bw , {Uw(f) | f ∈ M} as a
basis, where Uw(f) = {F ∈ W (Ω) | f /∈ IF} for f ∈M .

Proof. For any F ∈ W (Ω), there is f ∈ M\IF such that F ∈ Uw(f) ∈ Bw
since IF is prime.

Furthermore, for all f, g ∈ M , suppose that F ∈ Uw(f) ∩ Uw(g). Then
f /∈ IF and g /∈ IF . We have f ∧ g /∈ IF since IF is a prime ideal of M , which
follows that Uw(f) ∩ Uw(g) ⊆ Uw(f ∧ g). For any F ∈ Uw(f ∧ g), we have
f ∧ g /∈ IF . It implies that D(f ∧ g, ε0) /∈ F for some ε0 > 0. It follows from
D(f, ε0), D(g, ε0) ⊆ D(f ∧ g, ε0) /∈ F and F ∈ W (Ω) that f /∈ IF and g /∈ IF .
Then Uw(f ∧ g) ⊆ Uw(f) ∩ Uw(g). So Uw(f ∧ g) = Uw(f) ∩ Uw(g). That is, for
any F ∈ Uw(f) ∩ Uw(g), there is Uw(f ∧ g) ∈ Bw such that F ∈ Uw(f ∧ g) ⊆
Uw(f) ∩ Uw(g).

We have shown that the sets Uw(f) form a basis of the topology on W (Ω).2
From Lemma 4.1, we get a space W (Ω) whose topology is the topology gen-

erated by Bw. The open sets on W (Ω) are sets
⋃

Uw(f)∈Bw ′
Uw(f), where Bw ′ ⊆ Bw

and f ∈ M . When we refer to the topological space W (Ω), it will be with refer-
ence to the topology {

⋃
Uw(f)∈Bw ′

Uw(f) | Bw ′ ⊆ Bw} ([Munkres, 2000]).
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Lemma 4.2. Let M be a semisimple EMV-algebra and M ⊆ [0, 1]Ω. The sets
Uc(f), f ∈ M form a basis of the topology on Pc(M), where Uc(f) = {I ∈
Pc(M) | f /∈ I} for f ∈M .

Proof. We denote Bc = {Uc(f) | f ∈M}.
For any I ∈ Pc(M), there is f ∈ M\I such that I ∈ Uc(f) ∈ Bc since I is

proper.
It is obvious that Uc(f) ∩ Uc(g) ⊆ Uc(f ∧ g). Suppose that I ∈ Uc(f ∧ g).

Then f ∧ g /∈ I = IFI
, where f, g ∈ M . Similar to Lemma 4.1, we have

f /∈ IFI
= I and g /∈ IFI

= I . It implies that Uc(f ∧ g) ⊆ Uc(f) ∩ Uc(g).
So Uc(f ∧ g) = Uc(f) ∩ Uc(g). That is, for any I ∈ Uc(f) ∩ Uc(g), there is
Uc(f ∧ g) ∈ Bc such that I ∈ Uc(f ∧ g) ⊆ Uc(f) ∩ Uc(g).

Hence, we have shown that Bc as the basis of the topology on Pc(M).2
By Lemma 4.2 and Munkres [2000], the topology on Pc(M) is the topology

generated by Bc where the open sets are sets
⋃

Uc(f)∈Bc′
Uc(f), where Bc′ ⊆ Bc and

f ∈M .

Theorem 4.3. Let M be a semisimple EMV-algebra such that {0, 1}Ω ⊆ M ⊆
[0, 1]Ω. Then the two topological spaces Pc(M) and W (Ω) are homeomorphic.

Proof. Consider the two well-defined bijections Φ and Γ defined by Theorem
4.2.

(1) Φ is continuous. Without lost of generality, we shall prove that the preim-
age of any Uw(f) inW (Ω) is open inPc(M). We have Φ−1(Uw(f)) = Γ(Uw(f)) =
{IF | f /∈ IF}. For any IF ∈ Γ(Uw(f)), where F ∈ W (Ω) and f /∈ IF , by Propo-
sition 3.4 (3), we have IF ∈ Pc(M). Then IF ∈ Uc(f). So Γ(Uw(f)) ⊆ Uc(f).
Moreover, for any I ∈ Uc(f), then I ∈ Pc(M) and f /∈ I . We have FI ∈ W (Ω)
and f /∈ I = IFI

. It implies that I ∈ Γ(Uw(f)). So Uc(f) ⊆ Γ(Uw(f)). Hence,
Φ−1(Uw(f)) = Γ(Uw(f)) = Uc(f) is an open set in Pc(M).

(2) Γ is continuous. We shall prove Γ−1(Uc(f)) = Uw(f). We have Γ−1(Uc(f)) =
Φ(Uc(f)) = {FI | f /∈ I}. For any F ∈ Uw(f), we get F ∈ W (Ω) and f /∈ IF .
By Proposition 3.4 (3), we see that IF ∈ Pc(M) and F = FIF ∈ Φ(Uc(f)).
So Uw(f) ⊆ Φ(Uc(f)). For each FI ∈ Φ(Uc(f)), where I ∈ Pc(M) and
f /∈ I = IFI

. It follows that FI ∈ Uw(f). So Φ(Uc(f)) ⊆ Uw(f). Thus
Γ−1(Uc(f)) = Φ(Uc(f)) = Uw(f) is an open set in W (Ω).

We have shown that Φ is a homeomorphism between Pc(M) and W (Ω).2

Example 4.1. There exist non-closed ideals.
Let M be a semisimple EMV-algebra such that M ⊆ [0, 1]Ω. Suppose that I is

an ideal of M . It is obvious that IFI
= {f ∈ M | ∀ε > 0, ∃δ > 0 and g ∈ I such

that g−1([0, δ)) ⊆ f−1([0, ε))}. In fact, for each f ∈ IFI
, we have D(f, ε) ∈ FI
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for all ε > 0. So there exist g ∈ I and δ > 0 such that D(g, δ) ⊆ D(f, ε). It
follows that g−1([0, δ)) ⊆ f−1([0, ε)).

LetM = [0, 1]Z
+

, where all operations given by Definition 2.3 and Dvurečenskij
and Zahiri [2019, Proposition 4.10]. Let I = {f ∈ M | for all but finitely many
n ∈ Z+ such that f(n) = 0}. It follows from (f⊕g)(n) = min{f(n)+g(n), a(n)}
and simple exercises that I is an ideal of M , where f, g ∈ I and a ∈ M is a 0-1-
valued function such that f(n), g(n) ≤ a(n) for all n ∈ Z+.

Consider f given by f(n) = n+1
n2+1

(n ∈ Z+). Clearly, f ∈ M\I . It is easy to
see that f(n) → 0 when n → ∞. That is, for all ε > 0, there is N ∈ Z+ such
that f(n) < ε when n > N . Now we consider g ∈M defined by

g(n) =

{
1
n

1 ≤ n ≤ N,
0 n > N.

Then g ∈ I and D(g, δ) ⊆ D(f, ε) for δ = min{ 1
N+1

, ε}. It implies that
g−1([0, δ)) ⊆ f−1([0, ε)). So f ∈ IFI

. We have shown that I is a non-closed
ideal.

Definition 4.2. Let M be an EMV-algebra and I be an ideal of M. Then I is called
radical if I = Rad(M), where Rad(M) is the radical of M.

Proposition 4.5. Let M be a semisimple EMV-algebra such thatM ⊆ [0, 1]Ω. The
following conditions are satisfied:
(1) The intersection of closed ideals of M is also a closed ideal.
(2) An ideal I of M is closed if I is radical.

Proof. (1) Let {Iα | α ∈ Λ} be a family of closed ideals of M . For each
β ∈ Λ, it follows from

⋂
α∈Λ Iα ⊆ Iβ that (

⋂
α∈Λ Iα)c ⊆ Iβ

c = Iβ . Then
(
⋂
α∈Λ Iα)c ⊆

⋂
β∈Λ Iβ =

⋂
α∈Λ Iα. Since

⋂
α∈Λ Iα ⊆ (

⋂
α∈Λ Iα)c, we have

(
⋂
α∈Λ Iα)c =

⋂
α∈Λ Iα. So

⋂
α∈Λ Iα ∈ C(M).

(2) Suppose that I is radical. It implies that I = ∩{K | K ∈ MaxI(M)}. So
by Proposition 4.2 and (1), I is closed.2

5 Conclusion
For a semisimple EMV-algebra M such that M ⊆ [0, 1]Ω, we introduce the

notion of limits along a filter on Ω, which is unique if it exists. For all ultrafilters
U on Ω and for all f ∈M , we give an EMV-homomorphism ΦU with kernel equal
to IU , which is defined by ΦU(f) = limUf . We study connections between ideals
of M and filters on Ω. We define closure operations and closed ideals on EMV-
algebras. We show that there is a bijection between the set of all closed ideals
of M and the set of all filters on Ω. We show that there is a homeomorphism
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between the topological space Pc(M) and the topological space W (Ω). We give
an example of a non-closed ideal and some properties of closed ideals.

Assume that F is a filter of the proper EMV-algebra M and I is an ideal of
M . We can show that IF = {λa(x) | x ∈ F, a ∈ I(M), x ≤ a} is an ideal of M .
If F is a maximal filter of M , IF is a maximal ideal of M can be proved. We can
also get that FI = {λa(x) | x ∈ I, a ∈ I(M)\I, x < a} is a filter of M under the
assumption that ∀a ∈ I(M), a /∈ I =⇒ (∀b ∈ I(M), a < b)λb(a) ∈ I .
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