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Abstract

In this paper, we mainly study connections between ideals of the
semisimple EMV-algebra M and filters on some nonempty set 2. We
show that there is a bijection between the set of all closed ideals of
M and the set of all filters on §2. We get that this correspondence also
holds between the set of all closed prime ideals of M and the set of
all weak ultrafilters on 2. We prove that the topological space of all
closed prime ideals of M and the topological space of all weak ultra-
filters on (2 are homeomorphic.
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1 Introduction

An MV-algebra is an algebra (M;®, *,0) of type (2, 1, 0, 0) which has the
top element 1. The study of MV-algebras is very in-depth and comprehensive,
which has important applications in other areas of mathematical research. There
are close connections between ideals of a semisimple MV-algebra and filters on
some associated nonempty set. Moreover, there exists a bijection between the set
of all closed ideals of a semisimple MV-algebra and the set of all filters on some
nonempty set. For more details about it, we recommend the monographs Cignoli
et al. [2013], Lele et al. [2021].

An EMV-algebra is an algebra (M;V, A, ®,0) of type (2, 2, 2, 0), which is a
new class of algebraic structures. EMV-algebras cannot guarantee the existence
of the top element 1, which are the generalizations of M'V-algebras. MV-algebras
are termwise equivalent to EMV-algebras with the top element, Dvurecenskij and
Zabhiri [2019].

We shall mainly study connections between ideals of a semisimple EMV-
algebra M and filters on (2, where M C [0,1] and [0, 1] is an EMV-clan of
fuzzy functions on some nonempty set {2. This paper is organized as follows. In
Section 2, we give some basic notions and theorems on EM V-algebras, which will
be used in the paper. In Section 3, we start by introducing the limits of f € M
along a filter F" on 2. We study the connections between ideals of M and filters
on §2. In Section 4, we define a closure operation on M. We exhibit a one-to-one
correspondence between the set of all closed ideals of M and the set of all filters
on (). We show that there is a homeomorphism between the topological space of
all closed prime ideals of M and the topological space of all weak ultrafilters on
2. In addition, there is an example of an ideal that is a non-closed ideal, and some
properties of closed ideals are listed.

2 Preliminaries

In this section, we introduce some basic notions and theorems on an EM V-
algebra, which will be used in the following sections.

A filter F' on a nonempty set €2 is a collection of subsets of () satisfying (i)
the intersection of two elements in F' again belongs to it and (ii) for all S' € F,
S C T C Q) implies that " € F. By (ii), we have 2 € F' for any filter F' on
Q. A filter F is called proper if ) ¢ F. It is obvious that if F} and F} are filters
on (), F} N F; is also a filter of ). In fact, for all 51,5, € Fi N F,, we get
S1 NSy € Fy N F,. Moreover, forany S € Fiy N Fyand S C T C ), which
implies ' € Fyand T € F5. SoT' € F; N F,. We have shown that F; N Fy is a
filter on €.
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Definition 2.1. ([Cignoli et al., 2013, Definition 1.1.1]) An MV-algebra is an
algebra (M;®,*,0,1) of type (2,1,0,0) such that (M;®,0) is a commutative
monoid, and for all x,y € M satisfying the following axioms:

(MV1) x** = x;

(MV2) x ® 0" = 0%

(MV3) (z*Dy) Dy = (y ©x)

Forall z, y € [0, 1], the real interval [0, 1] with the operations x &y = min{z+
y,1} and z* = 1 — x is an MV-algebra. Let (M;+,0) be a monoid. An element
a € M is called idempotent if it satisfies the equation a + a = a. We denote
the set of all idempotent elements of M by Z(M ). We recommend Cignoli et al.
[2013] for MV-algebras.

EMV-algebras as the generalizations of MV-algebras have many important
properties. We recommend Dvurecenskij and Zahiri [2019] for EM V-algebras.

Definition 2.2. ([Dvurecenskij and Zahiri, 2019, Definition 3.1]) An EMV-algebra
is an algebra (M;V, N\, ®,0) with type (2,2,2,0) satisfying the followings:
(EMVI) (M;V, A\,0) is a distributive lattice with the least element 0;

(EMV2) (M;&,0) is a commutative ordered monoid with the neutral element 0;
(EMV3) for all a,b € Z(M) with a < b and for each x € [a,b], the element
Aap(z) = min{y € [a,b] | x ® y = b} exists in M, and ([a,b]; B, Ao p, a,b) is an
MV-algebra;

(EMV4) for any x € M, there is a € Z(M) such that x < a.

EM V-algebras cannot guarantee the existence of the top element 1. An ideal /
of an EMV-algebra M is a nonempty subset satisfying (i) forall z,y € I, x®y € [
and (ii) for each y € I and x € M, x < y can deduce = € I. Let Ideal(M) to
denote the set of all ideals of M. An ideal I of M is proper if I # M. A proper
ideal [ is called prime if for any z,y € M, v Ay € [ implies that x € I or
y € I. We use P(M) to denote the set of all prime ideals of M. An ideal I of M
is maximal if for all z € M\ I, we have (I U{z}) = M, where (U {z}) = {z €
M | z < a® n.x for some a € I and some n € N}. The set of all maximal ideals
of M is denoted by MaxI(M). It is well known that any maximal ideal of M must
be prime ([Dvurecenskij and Zahiri, 2019]). An EMV-algebra M is semisimple if
and only if Rad(M) = {0}, where Rad(M) = N{I | I € MaxI(M)}. The set
Rad(M) is called the radical of M.

For two EMV-algebras (M;;V, A, ®,0) and (My; V, A, ®,0), a mapping & :
My, — M, is called an EMV-homomorphism if ® preserves the operations
V, A, @ and 0, and for each b € Z( M) and for each = € [0, b], we have ®(\,(z)) =
o) (®(x)). Every MV-homomorphism is also an EMV-homomorphism, but the
converse is not necessarily true ([Dvurecenskij and Zahiri, 2019]). A mapping s :
M — [0, 1] is said a state-morphism on M if s is an EMV-homomorphism from
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the EMV-algebra M into the EMV-algebra of the real interval ([0, 1]; V, A, &, 0)
with top element, such that there exists an element x € M with s(z) = 1. The
set Ker(s) = {x € M | s(x) = 0} is called the kernel of the state-morphism s
([Dvurecenskij and Zahiri, 2019]).

Theorem 2.1. ([Dvurecenskij and Zahiri, 2019, Theorem 4.2 (ii)]) Let M be an
EMV-algebra and s be a state-morphism on M. Then Ker(s) is a maximal ideal
of M. In addition, there is a unique maximal ideal I of M such that s = sy, where
sy:axv——x/l forall x € M.

Definition 2.3. ([Dvurecenskij and Zahiri, 2019, Definition 4.9]) Let ) be a
nonempty set. A system T C [0,1] is called an EMV-clan if it satisfies the fol-
lowing conditions:

(1) 0 € T such that 0(w) = 0 for all w € €);

(2)if a € T is a 0-1-valued function, then a — f € T for each f € T with
fw) < a(w) forall w € Q, and if f,g € T with f(w), g(w) < a(w) for all
w € ), then f © g € T, where (f @ g)(w) = min{f(w) + g(w), a(w)} for all
w €

(3) for each [ € T, there exists a 0-1-valued function a € T such that f(w) <
a(w) for all w € €);

(4) for given w € ), there exists [ € T such that f(w) = 1.

From Dvurecenskij and Zahiri [2019, Proposition 4.10], we see that any EM V-
clan can be organized into an EMV-algebra. That is, every EMV-clan on some
Q2 # () is an EMV-algebra, see DvureCenskij and Zahiri [2019].

3 Ideals of semisimple EMV-algebras and filters on
associated nonempty sets

Let M be a semisimple EMV-algebra. By Dvurecenskij and Zahiri [2019,
Theorem 4.11], there is an EMV-clan [0, 1] on some € # () such that M is
an EMV-subalgebra of [0, 1]%. In this section, for a semisimple EMV-algebra
M C [0, 1], we shall define the notion of limits along a filter. The connections
between ideals of M and filters on 2 are studied. For each f € M and for all ¢ > 0,
we denote D(f,e) = {x € Q| flx) <e}.

Definition 3.1. Let M be a semisimple EMV-algebra and F be a filter on ) such
that M C [0,1]%. Forany f € M and t € [0,1], we call that f converges to t
along F if for every € > 0, there is S € F such that | f(S) —1t |< e.

Proposition 3.1. Let M be a semisimple EMV-algebra and F be a proper filter on
Q such that M C [0,1]%. Then for each f € M, there has at most one limit along
F.
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Proof. The proof is similar to Lele et al. [2021, Proposition 2.2].0

For any f € M, the limit of f along a proper filter F on 2 does not necessarily
exist. But it would be unique if it exists by Proposition 3.1. We denote it by

Let  be an ideal of M and F’ be a filter on 2. We define

F;={SCQ| D(f,e) CSforsome f €[ ande > 0}
and

Ip = {f € M| f converges to 0 along F'}={f € M | D(f,e) € F for all
e > 0}.

Proposition 3.2. Let M be a semisimple EMV-algebra and F be a filter on §) such
that M C [0,1]%. Forall f,g € M:

(1) If limp f and lim pg exist, then limp(f ®g) exists and limp(f®g) = limpf&®
limpg.

(2) If limp f exists, then limp\,(f) exists and limpA,(f) = A\o(limp f), where a
is an idempotent element of M such that f € [0, a).

Proof. (1) Suppose that f,g € M, limpf and limprg exist. There exist-
s an idempotent element a € Z(M) such that f,g € [0,a]. Also, we have
limpf,limpg < a(z) forall z € Q. In the MV-algebra ([0, a]; ®, A4, 0, a), limp f
and limpg also exist. By Lele et al. [2021, Lemma 2.4], we have limg(f @ g)
exists and limp(f @ g) = limpf @ limpg.

(2) Recall that \,(f) = min{z € [0,a] | 2 ® f = a}, where a € Z(M) with
f €10, a]. Since ([0, a]; ®, A\, 0, a) is an MV-algebra, the result follows from Lele
et al. [2021, Lemma 2.4].0

Recall that an ultrafilter U on (2 is a filter which is maximal, in other words,
any filter that contains it is equal to it. An ultrafilter U on €2 is equally a collection
of subsets of (2 satisfying (i) U is proper, (ii) the intersection of two subsets in the
collection belongs to it and (iii) for any subset V', V' € U if and only if Q\V ¢ U,
see Garner [2020, Definition 2]. From (iii), we see that €2 € U for any ultrafilter
U on (). We shall show that the limits along an ultrafilter exist.

Proposition 3.3. Let M be a semisimple EMV-algebra and U be an ultrafilter on
Q such that M C [0,1]%. Then, for any f € M, there has a unique limit along U.

Proof. Suppose that there isno ¢ € [0, 1] such that lim f = t. That is, for any
t € [0, 1], there exists €9 > 0 such that f~1(O;) ¢ U, where O; = (t — &9, t + &p).
In fact, if for all € > 0, there exists ¢ty € [0,1] such that f~'(O,,) € U, where
Oy, = (to — &,t9 + ). It follows that limy f = ¢, which is a contradiction.
Since [0, 1] is compact, for each open covering {O; | t € [0, 1]} of [0, 1], where
O; = (t — e,t + ¢), there exists a finite subset {O;,, Oy, ......, Oy, } such that
0,1] = U, Oy, Since U is an ultrafilter on 2, we have | J;, f7'(O;,) =
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UL, On) = £71([0,1]) = Q € U. By Garner [2020, Definition 2], there
is7je{l,2... ,n} such that ffl(Otj) € U, which is a contradiction. Hence, f
has at least one limit along U'.

By Proposition 3.1, the uniqueness of the limit is clear.d

Theorem 3.1. Let M be a semisimple EMV-algebra and U be an ultrafilter on
Q such that M C [0,1]%. Consider the mapping ®y : M — [0, 1] given
by Oy (f) = limyf, where f € M. Then ®y is an EMV-homomorphism with
K@T(CI)U) = IU.

Proof. Let & : M — [0,1] be a mapping defined by @y (f) = limyf,
where f € M. By Proposition 3.3, the limit of f along U is unique. So @
is well-defined. For all f,g € M, there is a € Z(M) such that f,g € [0,a]
and ([0, a]; ®, A4, 0, a) is an MV-algebra. Now we consider the restriction of @,
on [0, a]. From Lele et al. [2021, Proposition 2.6] we see that ®;; |[g 4 is an MV-
homomorphism. Clearly, ®,(0) = 0. Also, we have @ (fBg) = Py (f)DPy(g),
(I)U(f V g) = (I)U(f) V CDU(g) and q)U(f /\g) = (I)U(f) A (I)U(g) That iS, (I)U is an
EMV-homomorphism. In addition, Ker(®y) = {f € M | limyf =0} =1y.0

Theorem 3.2. Let M be a semisimple EMV-algebra such that M C [0,1]%. We
have the followings:

(1) For each ideal I of M, ¥ is a filter on ). Moreover, if I is proper, then F is
proper.

(2) For each filter F on (), 1 is an ideal of M. Moreover, if F is proper; then 1 is
proper.

Proof. (1) Let I be an ideal of M.

(i)Foralle > 0 and f € I, we have D(f,e) = {z € Q| f(z) < e} C Q.
Then 2 € Fy.

(i) Let 57 € Sy, € Qand S; € F;. There exist f € I and € > 0 such that
D(f,e) CS; C Sy. This implies that Sy € F;.

(iii) Suppose that S7, Sy € F;. There exist f,g € [ and £,0 > 0 such that
D(f,e) € Sy and D(g,6) C Ss. It follows that D(f,e) N D(g,0) € S N S,. In
addition, since D(f @ g, min(e,d)) € D(f,e) N D(g,0) and f & g € I, we have
D(f,e)ND(g,0) € F;. By (ii), it now follows that S; NSy € F;. So F; is a filter
on ).

Let I be a proper ideal. Suppose that F; is not proper. Then () € F;. So there
exist f € I and € > 0 such that f(z) > ¢ for all z € Q. We choose N > 1 such
that f(z) > e > +. Then Nf € I and Nf(z) > 1. It implies that 1 € I and
I = M, which is a contradiction. Therefore, F; is proper.

(2) Let F be a filter on €2.

(i) Since 0 € I, we have Ir # 0.
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(ii) For all f,g € I, by Proposition 3.2, we have limp(f ® g) = limpf ©
limpg=0.S0 f & g € Ip.

(iii) Suppose that f € M, g € Ir and f < g. We have limpf < limpg = 0.
Then f € Ir. Therefore, I is an ideal of M.

Let F be a proper filter. If I~ is not proper, then I = M. Forall f € Ip = M,
for all e > 0, we have D(f,e) € F. There exists a € Z(M) such that f < a and
a € M =1Ip. So for any x € (), there is g(z) > 0 such that a(x) > g(x), where
g € [0,a]. It follows that ) = D(a, g(z)) € F, which is a contradiction. Hence,
Iy is proper.C]

Proposition 3.4. Let M be a semisimple EMV-algebra such that M C [0, 1]
Then we have the followings:

(1) For each ideal I of M, I C Ip,.

(2) For each filter F on ), Fy,. C F.

(3) For each filter F on Q, Fy, = F if {0,1}* C M.

Proof. The proof is similar to Lele et al. [2021, Proposition 2.8].0

Proposition 3.5. Let M be a semisimple EMV-algebra such that M C [0, 1]%%. We
have the followings:

(1) If {0,1}¢ C M, then for each maximal ideal K of M, F i is an ultrafilter on
Q.

(2) Iy is a maximal ideal of M if U is an ultrafilter on €.

(3) If {0, 1} C M, the converse of (2) is true.

Proof. (1) Let K be a maximal ideal of M and S C €. Suppose S ¢ Fx. We
will show that Q\S € Fp.
We define f € M by

0 z€585,

fle) = { 1 x¢8.
Then we have D(f,0.5) = S ¢ Fg. It follows that f ¢ K. Letb € Z(M) such
that f € [0, b]. It follows from f ¢ K that f ¢ K}, where K, = K N[0, b]. Since
K is a maximal ideal of M, by Dvurecenskij and Zahiri [2019, Proposition 3.22],
K is a maximal ideal of the MV-algebra ([0, b]; &, A, 0,0). By the maximality
of K, there exists n > 1 such that \y(nf) € K. Then \(nf) € K. Notice
that nf = f, which follows that \,(f) = A\p(nf) € K. In addition, we also have
O\S = Q\D(f,0.5) = D(M\(f),0.5) € Fg. Hence, by Freiwald [2014, Chapter

IX, Theorem 3.5], F' i is an ultrafilter on 2.

(2) Let U be an ultrafilter on 2. From Theorem 3.1, there is an EM V-homomor-
phism &y : M — [0, 1] defined by ®y(f) = limyf. Since M C [0,1]¢ is
semisimple, for given w € (), there is f € M such that f(w) = 1. So for
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{w} € Q € U andall ¢ > 0, we have f({w}) C (1 —&,1 + ¢), which im-
plies that there exists f € M such that &y (f) = limyf = 1. Hence, Oy is a
state-morphism on /. By Theorem 2.1, Ker(®y) = I is a maximal ideal of M.

(3) If Iy be a maximal ideal of M. Then Fy,, is an ultrafilter on (2 by (1). By
Proposition 3.4 (3), U = Fy,, is an ultrafilter.O

Proposition 3.6. Let M be a semisimple EMV-algebra and F be a filter on () such
that {0,1}* C M C [0, 1] Then for any f € M, F is an ultrafilter if and only if
f has a unique limit along F.

Proof. =: If F is an ultrafilter. By Proposition 3.3 we see that f has a unique
limit along F.

<: Suppose that f has a unique limit along F', where f € M. Consider the
mapping ¢ : M — [0,1] defined by ®r(f) = limpf. We have that ®p is
well-defined. By the proof of Proposition 3.5, @ is a sate-morphism on M. So
Ker(®p) = Ir is a maximal ideal of M by Theorem 2.1. Therefore, F is an
ultrafilter on €2 by Proposition 3.5 (3).0

4 Closed ideals of semisimple EMV-algebras

In this section, we introduce the notions of closure operations and c-closed
ideals on EMV-algebras. We get a bijection between the set of all closed ideals
of M and the set of all filters on (2. We exhibit a homeomorphism between the
topological space of all closed prime ideals of M and the topological space of all
weak ultrafilters on €.

Definition 4.1. A closure operation on an EMV-algebra M is a mapping c :
Ideal(M) — Ideal(M) satisfying the following conditions: for all 1,J €
Ideal(M),

(Cl1)I C I

(C2)ifI C J, then I¢ C J¢;

(C3) [°° = I°; where [°=c(I).

Proposition 4.1. Let M be a semisimple EMV-algebra and M C [0, 1], For each
ideal I of M, we denote I¢ = Ig,. Then c is a closure operation on M.

Proof. The proof is similar to Lele et al. [2021, Proposition 3.1].0

An ideal I of M is called c-closed if /¢ = I. We frequently prefer to call an
ideal is closed instead of c-closed. The set of all closed ideals of M is denoted
by C(M). In the subsequent sections, we shall mainly study closed ideals of M,
where the closure operation is given by Proposition 4.1. Now we show that any
maximal ideal must be contained in C(M).
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Proposition 4.2. Let M be a semisimple EMV-algebra and M C [0,1]%. Every
maximal ideal of M is a closed ideal.

Proof. Let I be a maximal ideal of M. I, is a proper ideal by Theorem 3.2.
By Proposition 3.4 (1), we have I C Ig,. Suppose I & Ig,. Forany f € Ig,\1,
by the maximality of I, we have M = (I U {f}) C If,, which is a contradiction.
So I = Iy,. We have shown that [ is closed.O

Theorem 4.1. Let M be a semisimple EMV-algebra such that {0,1}* C M C
[0, 1], Then there is a bijection between the set of all closed ideals of M and the
set of all filters on ().

Proof. Let F'(Q2) to denote the set of all filters on (2. Define two mappings:

O:C(M)— F(Q)byO(l)=F;and T : F(Q) — C(M) by Y(F) = Ip.
By Theorem 3.2 and Proposition 3.4(3), © and T are well-defined. For any I €
C(M) and F € F(Q2), we get OY(F) = O(Ip) = Fy, = F and TO(I) =
T(F;) = Ir, = I. So OY and YO are identical mappings. Hence, O is a
bijection.O

Remark 4.1. From Theorem 4.1, we get a one-to-one correspondence between
the set of all closed ideals of M and the set of all filters on ). We shall study
the restriction of this correspondence. We define Cyy(M) = {I € C(M) | I €
MazI(M)} and Fyy(Q)) = {F | F is an ultrafilter on Q0}. Suppose that {0,1}* C
M C [0,1]% It is easy to verify that there is also a bijection between Cpr (M) and
Fy(Q).

In fact, define two mappings V : Fy(Q) — Cp(M) given by V(U) = Iy
and V' : Cpr (M) — Fy(Q2) given by V'(I) = ¥ . From Proposition 3.4 (3) and
Proposition 3.5 we see that V and V' are well-defined. Similar to Theorem 4.1,
we can prove that V is a bijection.

Next, we will study a special class of filters on {2, which corresponds to closed
prime ideals of M. A filter F on €2 is called a weak ultrafilter if I is a prime ideal
of M. We denote the set of all weak ultrafilters on 2 by W (£2).

Proposition 4.3. Let M be a semsimple EMV-algebra and M C [0,1]. Every
ultrafilter on () is a weak ultrafilter.

Proof. Let F' be an ultrafilter on 2. Then Iy is a maximal ideal of M by
Proposition 3.5 (2). So Iy is prime ([Dvurecenskij and Zahiri, 2019]). Hence, F
is a weak ultrafilter.OJ

Proposition 4.4. Let M be a semisimple EMV-algebra and M C [0,1]%. If [ is a
prime ideal of M, ¥ is a weak ultrafilter on ).
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Proof. Let [ be a prime ideal of M. Then F; is proper. It follows that Iy,
is a proper ideal by Theorem 3.2. Suppose that f A g € I, for f,g € M. We
get D(f Ng,e) € Fyforall e > 0. Since D(f,¢),D(g,e) C D(f Ng,e) € Fy,
we have that at least one of D(f,¢) and D(g,¢) is nonempty. That is, f € Ig, or
g € Ig,. In fact, suppose that D(f, ) and D(g,¢) are empty sets. It follows that
) = D(f Ng,e) € F, which is a contradiction. We have shown that F; is a weak
ultrafilter on 2.0

Theorem 4.2. Let M be a semisimple EMV-algebra such that {0,1}* C M C
[0, 1], Then there is a bijection between the set of all closed prime ideals of M
and the set of all weak ultrafilters on €.

Proof. Let P.(M) to denote the set of all closed prime ideals of M. Define
two mappings:

O :P(M) — W(Q) defined by &(/) = Fyand I' : W(Q2) — P.(M)
defined by I'(F’) = I.
The mappings ® and I' are well-defined by Proposition 4.4, Proposition 3.4 (3)
and the definition of weak ultrafilters.

Forany I € P.(M) and F € W(Q2), we have ['®(]) =I'(F;) =Ir, = I and
OI'(F) = ®(Ir) = F1,. = F. So ®I" and I'® are identical mappings. Hence,  is
a bijection.O

Lemma 4.1. Let M be a semisimple EMV-algebra such that M C [0,1]%. Then
there is a topology on the space W (Q) which has B, = {U,(f) | f € M} as a
basis, where U, (f) ={F e W(Q) | f ¢ Ip} for f € M.

Proof. For any F' € W(Q2), there is f € M\Ir such that F' € U, (f) € B,
since I is prime.

Furthermore, for all f,g € M, suppose that I € U,(f) N Uy,(g). Then
f¢Ipand g ¢ Ir. We have f A g ¢ 1p since I is a prime ideal of M, which
follows that U, (f) N U,(g9) € U,(f A g). For any F' € U,(f A g), we have
fAg ¢ Ip. Itimplies that D(f A g,e0) ¢ F for some gy > 0. It follows from
D(f,e0),D(g,e0) € D(f Ng,e0) ¢ Fand FF € W(Q) that f ¢ Ir and g ¢ Ip.
Then U, (f A g) C Uy(f) NUL(g). SoUy,(f A g) =Us(f) NUL(g). That is, for
any ' € U, (f) NU,(g), there is Uy, (f N g) € By, such that F' € Uy, (f N g) C
U (f) N U(9)-

We have shown that the sets U, (f) form a basis of the topology on W (2).0

From Lemma 4.1, we get a space W ({2) whose topology is the topology gen-
erated by B,,. The open sets on W (Q) are sets  |J  U,(f), where B, C B,

Un(f)EBW'
and f € M. When we refer to the topological space W (£2), it will be with refer-
ence to the topology { U  U.(f) | B.' € By} ([Munkres, 2000]).
U (f)EBW'
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Lemma 4.2. Let M be a semisimple EMV-algebra and M C [0,1]. The sets
U(f), [ € M form a basis of the topology on P.(M), where U,(f) = {I €
P.(M)| f &I} forf e M.

Proof. We denote B. = {U.(f) | f € M}.

For any I € P.(M), there is f € M\I such that I € U.(f) € B. since [ is
proper.

It is obvious that U.(f) NU.(9) C U.(f A g). Suppose that I € U.(f A g).
Then f Ag ¢ I = Ig,, where f,g € M. Similar to Lemma 4.1, we have
f&1Ig, =Tand g ¢ Ig, = I. It implies that U.(f A g) C U.(f) NU(g).
SoU.(f Ng) = U(f) NU.(g). That is, for any I € U.(f) NU.(g), there is
U(f Ng) € B.suchthat I € U.(f A g) CU(f) NU(g).

Hence, we have shown that B, as the basis of the topology on P.(M).0

By Lemma 4.2 and Munkres [2000], the topology on P.(M) is the topology
generated by B, where the open sets are sets  |J  U.(f), where B, C B, and

U (f)eB.’
feM.

Theorem 4.3. Let M be a semisimple EMV-algebra such that {0,1}* C M C
[0, 1]%. Then the two topological spaces P.(M) and W (Q) are homeomorphic.

Proof. Consider the two well-defined bijections ¢ and I" defined by Theorem
4.2.

(1) ® is continuous. Without lost of generality, we shall prove that the preim-
age of any U, (f) in W () is open in P.(M). We have @1 (U,,(f)) = T (U, (f)) =
{Irp | f ¢ 1p}. Forany Ip € I'(Uy,(f)), where F € W(Q2) and f ¢ I, by Propo-
sition 3.4 (3), we have Ip € P.(M). Then Ir € U.(f). So I'(U,(f)) C U.(f).
Moreover, for any I € U.(f), then I € P.(M) and f ¢ I. We have F; € W (Q)
and f ¢ I = Ip,. It implies that I € T'(U,(f)). SoU.(f) C T'(U,(f)). Hence,
YU, (f)) = T(U,(f)) = U.(f) is an open set in P.(M).

(2) T is continuous. We shall prove I'"Y(U.(f)) = Uy, (f). We have T1(U.(f))
SU(f) ={Fr| f ¢ I}. Forany F' € U,(f), we get ' € W(Q) and f ¢ Ip.
By Proposition 3.4 (3), we see that Ip € P.(M) and F' = Fy, € ®U.(f)).
So U,(f) € ®U.(f)). For each F; € ®(U.(f)), where I € P.(M) and
f ¢ I = Ig,. It follows that F; € U,(f). So ®U.(f)) C U,(f). Thus
=Y U(f)) = U.(f)) = U,(f) is an open set in W ().

We have shown that ® is a homeomorphism between P.(M ) and W (2).0

Example 4.1. There exist non-closed ideals.

Let M be a semisimple EMV-algebra such that M C [0, 1]%. Suppose that I is
an ideal of M. It is obvious that Iy, = {f € M | Ve > 0,30 > 0 and g € I such
that g71([0,8)) C f71([0,¢))}. In fact, for each f € Ig,, we have D(f,) € F;
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forall e > 0. So there exist g € I and § > 0 such that D(g,0) C D(f,e). It
follows that g=([0,46)) C f71([0,¢)).

Let M = [0, 1]Z+, where all operations given by Definition 2.3 and Dvurecenskij
and Zahiri [2019, Proposition 4.10]. Let I = {f € M | for all but finitely many
n € Z* suchthat f(n) = 0}. It follows from ( f®g)(n) = min{ f(n)+g(n),a(n)}
and simple exercises that I is an ideal of M, where f,g € I and a € M is a 0-1-
valued function such that f(n), g(n) < a(n) foralln € Z*.

Consider f given by f(n) = 7?2111 (n € Z*). Clearly, f € M\I. It is easy to
see that f(n) — 0 when n — oo. That is, for all ¢ > 0, there is N € 7™ such
that f(n) < € whenn > N. Now we consider g € M defined by

L 1<n<N,
g(n) =144 ‘

Then g € I and D(g,0) € D(f,e) for 6 = min{577,e}. It implies that
g([0,0)) € f7Y([0,¢)). So f € Ig,. We have shown that 1 is a non-closed
ideal.

Definition 4.2. Let M be an EMV-algebra and I be an ideal of M. Then I is called
radical if I = Rad(M), where Rad(M) is the radical of M.

Proposition 4.5. Let M be a semisimple EMV-algebra such that M C [0, 1]%. The
following conditions are satisfied:

(1) The intersection of closed ideals of M is also a closed ideal.
(2) An ideal I of M is closed if I is radical.

Proof. (1) Let {I, | @ € A} be a family of closed ideals of M. For each
B € A, it follows from [,y [a € Ip that ((),cpla)® € 1g° = Iz. Then

(Maea10)® € NMpeals = Naea La- Since Nyen Io € (Naen La)S, we have

(ﬂaEA Ia)c ﬂaEA[ So ﬂaeA Iy € C(M)
(2) Suppose that [ is radical. It implies that [ = N{K | K € MaxI(M)}. So

by Proposition 4.2 and (1), I is closed.O

5 Conclusion

For a semisimple EMV-algebra M such that M C [0, 1]}, we introduce the
notion of limits along a filter on €2, which is unique if it exists. For all ultrafilters
Uon()andforall f € M, we give an EMV-homomorphism & with kernel equal
to Iy, which is defined by @y (f) = limy f. We study connections between ideals
of M and filters on (2. We define closure operations and closed ideals on EM V-
algebras. We show that there is a bijection between the set of all closed ideals
of M and the set of all filters on 2. We show that there is a homeomorphism
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between the topological space P.(M) and the topological space W (2). We give
an example of a non-closed ideal and some properties of closed ideals.

Assume that F' is a filter of the proper EMV-algebra M and I is an ideal of
M. We can show that I = {\,(2) | z € F,a € Z(M),x < a} is an ideal of M.
If F'is a maximal filter of M, I is a maximal ideal of M can be proved. We can
also getthat F; = {\,(z) |z € I,a € Z(M)\I,x < a} is a filter of M under the
assumption that Va € Z(M),a ¢ [ = (Vb € Z(M),a < b)M\y(a) € 1.
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