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Abstract

In this paper, we define equitable eccentric domination in graphs. An
eccentric dominating set S ⊆ V (G) of a graph G(V,E) is called an
equitable eccentric dominating set if for every v ∈ V − S there ex-
ist at least one vertex u ∈ V such that |d(v) − d(u)| ≤ 1 where
vu ∈ E(G). We find equitable eccentric domination number γeqed(G)
for most popular known graphs. Theorems related to γeqed(G) have
been stated and proved.
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1 Introduction
A graph is a representation of a pair of sets (V,E), where V is the set of vertices
and E is the set of edges which are connecting the pair of vertices. Graph theory
has its application in many fields such as computation, social and natural science
etc. Any problems of mathematics, science and engineering can be represented in
the form of a graph. The concept of graph theory was first introduced by Leonard
Euler in the year 1736. He created the first graph as a solution to solve the prob-
lem of seven bridges of Konigsberge built across the pregel river of prussia. Graph
theory has experienced tremendous growth, the main reason for this phenomena
is applicability of graph theory in different disciplines. Graph theory becomes in-
teresting because graphs can be used to model situations that occur in real world
problems. These problems can be studied with the aid of graphs.

The concept of domination in graphs was studied by Ore and Berge. Ore[11] in-
troduced domination in graphs in his famous book ’Theory of graphs’ in 1962.
Cockyane and Hedetniemi[3] also contributed several results pertaining to domi-
nation. They unfolded different aspects, by swaying all available results bringing
to light new ideas and emphasizing its applicable potential in a variety of scien-
tific ideas in their paper ’Towards a theory of domination in graphs’. T.W.Haynes,
S.Hedetniemi and P.Slater[6] have breifly discussed on various domination pa-
rameters in the book Fundamentals of domination in graphs.

T.N. Janakiraman et al[9] introduced the concept of eccentric domination in graphs
in 2010. Kuppusamy Markandan Dharmalingam[4] introduced equitable graph of
a graph. E. Sampathkumar et al[1] introduced degree equitable sets in a graph. V
Swaminathan and K.M. Dharmalingam[12] introduced degree equitable domina-
tion in graphs. Basavanagoud et al[2] introduced equitable dominating graph.

The concept of eccentricity by T.N. Janakiraman et al has inspired researchers
which has led to many invariants of eccentric dominations in graphs. Some of the
extended eccentric dominations are accurate eccentric domination[7] and equal
eccentric domination[8]. The concept of geodesic distance is very important. The
existing eccentric domination only highlighted the idea based on an eccentric ver-
tex and its domination. The proposed equitable eccentric domination was mainly
necessary because it highlights the properties of a vertex in a graph, it considers
the connectivity between the vertices where the difference between their vertex de-
grees is less than or equal to one. Equitable domination when incorporated with
eccentric domination yeilds equitable eccentric domination which concentrates
on the vertex degree, geodesic distance, eccentricity, eccentric vertex and domi-
nation. In this paper, we introduce equitable eccentric domination in graphs. We
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find equitable eccentric dominating set, equitable eccentric domination number
γeqed(G), upper equitable eccentric dominating set and upper equitable eccentric
domination number Γeqed(G) of different standard graphs. For undefined graph
terminologies refer the book ’Graph theory’ by frank harary[5].

2 Preliminaries
Definition 2.1 (11). Let G be a graph with the vertex set V . A subset D of V is
a dominating set for G when every vertex not in D is the endpoint of some edge
from a vertex in D.

Definition 2.2 ([10]). Let γ(G) (called the domination number) and Γ(G) (called
the upper domination number) be the minimum cardinality and the maximum car-
dinality of a minimal dominating set of G, respectively.

Definition 2.3 ([6]). The degree deg(v) of v is the number of edges incident with
v.

Definition 2.4 ([9]). The eccentricity e(v) of v is the distance to a vertex farthest
from v. Thus, e(v) = max{d(u, v) : u ∈ V }. For a vertex v, each vertex at a
distance e(v) from v is an eccentric vertex. Eccentric set of a vertex v is defined
as E(v) = {u ∈ V (G)/d(u, v) = e(v)}.

Definition 2.5 ([9]). The radius r(G) is the minimum eccentricity of the vertices,
whereas the diameter diam(G) is the maximum eccentricity.

Definition 2.6 ([9]). v is a central vertex if e(v) = r(G). The center C(G) is
the set of all central vertices. v is a peripheral vertex if e(v) = diam(G). The
periphery P (G) is the set of all peripheral vertices.

Definition 2.7 ([9]). A set D ⊆ V (G) is an eccentric dominating set if D is a
dominating set of G and for every v ∈ V −D, there exists at least one eccentric
point of v in D. If D is an eccentric dominating set, then every superset D′ ⊇ D
is also an eccentric dominating set. But D′′ ⊆ D is not necessarily an eccentric
dominating set. An eccentric dominating set D is a minimal eccentric dominating
set if no proper subset D′′ ⊆ D is an eccentric dominating set.

Definition 2.8 ([9]). The eccentric domination number γed(G) of a graph G equals
the minimum cardinality of an eccentric dominating set. That is, γed(G) = min|D|,
where the minimum is taken over D in D, where D is the set of all minimal eccen-
tric dominating sets of G.

Definition 2.9 ([4]). A subset D of V is called an equitable dominating set if
for every v ∈ V − D there exists a vertex u ∈ D such that uv ∈ E(G) and
|deg(u) − deg(v)| ≤ 1. The minimum cardinality of such a dominating set is
denoted by γe and is called the equitable domination number of G.
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3 Equitable eccentric domination in graphs
In this section we introduce equitable eccentric domination, theorems related to
equitable eccentric domination number of family of graphs are stated and proved.

Definition 3.1. An eccentric dominating set S ⊆ V (G) is called an equitable
eccentric dominating set(EQED-set) if for every v ∈ V − S there exist at least
one vertex u ∈ S such that vu ∈ E(G) and |d(v)− d(u)| ≤ 1.

Definition 3.2. An equitable eccentric dominating set S is called a minimal eq-
uitable eccentric dominating set if no proper subset of S is equitable eccentric
dominating set.

Definition 3.3. The equitable eccentric domination number γeqed(G) of a graph
G is the minimum cardinality among the minimal equitable eccentric dominating
sets of G.

Definition 3.4. The upper equitable eccentric domination number Γeqed(G) of
a graph G is the maximum cardinality among the minimal equitable eccentric
dominating sets of G.

Example 3.1.

v4 v5

v2 v3

v6

v1

Figure 2.1: Graph G

Consider the graph G consists of 6 vertices given in figure 2.1. Here the dominat-
ing set is S = {v1, v4} but not eccentric dominating set since E(v3) = {v2, v6}
not in S. The eccentric dominating set is S = {v1, v6} but not equitable eccentric
dominating set since |d(v4)− d(v6)| = 2. The equitable eccentric dominating set
is S = {v1, v2, v6}.

Remark 3.1. For any path Pn where n ≥ 3,
1. Every minimum EQED-set contains the pendant vertices.
2. If D1, D2, D3 are minimum EQED-sets of paths Pn−1, Pn, Pn+1 consecutively
where n = 3k and k > 1. Then |D1| = |D2| = |D3|. Therefore for k = 2,
γeqed(P5) = γeqed(P6) = γeqed(P7) = 3.

Theorem 3.1. For complete graph Kn, γeqed(Kn) = 1, ∀n ≥ 2.
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Proof. In a complete graph Kn all the vertices are eccentric vertices to each
other. If v ∈ V (Kn) then the eccentric vertex E(v) = V (Kn) − {v} and every
singleton set forms a dominating set. For every vertex v ∈ D ∃ a vertex u ∈
V (Kn) − D ∋ |deg(u) − deg(v)| ≤ 1 where uv ∈ E(Kn). Therefore every
single vertex of Kn is an EQED-set. Hence γeqed(Kn) = 1.

Theorem 3.2. For path graph Pn where n > 1,

γeqed(Pn) =

{
1, for n = 2

⌊n+1
3
⌋+ 1, ∀ n ≥ 3

Proof. Case(i): For a path P2, V (P2) = {v1, v2}. Both the vertices are eccen-
tric vertices to each other. Therefore D = {v1} or {v2} and |deg(v2)−deg(v1)| =
0, where v1v2 ∈ E(P2). Hence γeqed(P2) = 1.
Case(ii): For a path Pn where n ≥ 3. The pendant or end vertices of the path
form the eccentric vertices ie, if V (Pn) = {v1, v2, v3, . . . vn}, E(v1) = {vn} and
E(vn) = {v1}. E(vi) = {v1} or {vn} for any vi ∈ V (Pn) where n is even. If n is
odd then E(vi) = {v1} or {vn}. For Pn where ′n′ is odd, the central vertex vi has
two eccentric vertices ie, E(vi) = {v1, vn}. Degree of end vertices is 1 and de-
gree of all the intermediate vertices is 2. The EQED-set contains both the pendant
vertices. Both v1 and vn being pendant vertices dominate the vertices adjacent
to them and the minimum dominating set among the intermediate vertices along
with two pendant vertices forms an EQED-set. Since |deg(u)−deg(v)| ≤ 1 where
uv ∈ E(Pn) for all u ∈ D and v ∈ V (Pn) −D and ∃ an eccentric vertex u ∈ D
for every v ∈ V (Pn)−D. For Pn where n = 3k and k > 2, number of vertices of
P3k−1, P3k, P3k+1 are same. Every minimum equitable eccentric domination set
of D contains ⌊n+1

3
⌋+ 1 number of vertices.

Theorem 3.3. For star graph Sn,

γeqed(Sn) =

{
2, if n = 3
0, if n ̸= 3

Proof. Case(i): If n = 3, then the star graph S3 is isometric to P3. From the
theorem-3.2 γeqed(P3) = γeqed(S3) = 2.
Case(ii): If n ̸= 3 then Sn is of the form S4, S5, S6, . . . For any graph Sn where
n ̸= 3, there can be many dominating sets and eccentric dominating sets but we
cannot find a EQED-set because of the central vertex vi of the star graph has
degree ≥ 3. The degree of every pendant vertex u of a star graph is 1, deg(u) =
1, u ∈ V (Sn) − {vi}. The degree of central vertex vi of a star graph is given
by deg(vi) = n − 1. Since, central vertex vi ∈ V (Sn) then either vi ∈ D or
vi ∈ V (Sn)−D. Therefore |deg(vi)− deg(u)| > 1 always which doesnot satisfy
the condition to be a EQED-set. Hence γeqed(Sn) = 0 where n ̸= 3.
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Theorem 3.4. For cycle graph Cn where n ≥ 3,

γeqed(Cn) =


n
2
, if n is even ∀ n ≥ 4

⌈n
3
⌉, if n is odd & n = 3k ∀ k = 1, 3, 5, 7, . . .

⌈n
3
⌉+ 1, otherwise

Proof. Case(i): If ′n′ is even and n ≥ 4. Let the cycles Cn be of the form
C4, C6, C8, C10, . . . C2n. In an even cycle if u ∈ V (Cn) the eccentric vertex of
u, E(u) = {v} is always placed at a distance of n

2
edges from it and every

vertex has a unique eccentric vertex to form the first eccentric dominating set.
The set D must contain n

2
vertices in such a way that for every v ∈ D then

E(v) /∈ D or for some u ∈ V (Cn) − D, E(u) /∈ V (Cn) − D. Then if the
vertex u and E(u) ∈ D then we cannot construct a eccentric dominating set. Fur-
ther if we reduce the cardinality of D to less than n

2
we will have u and E(u)

in V − D. Therefore D must contain n
2

vertices with all the unique eccentric
vertices in V − D. Then for any u ∈ V (Cn) − D ∃ a vertex v ∈ D such that
|deg(u)− deg(v)| ≤ 1 where uv ∈ E(Cn) for every vertex vi ∈ Cn, deg(vi) = 2.
Therefore |deg(u)− deg(v)| = |2− 2| = 0. Therefore γeqed(Cn) =

n
2
.

Case(ii): Now we have the odd cycles of the form C3, C9, C15, C21, . . . C3k. Every
vertex u ∈ V (Cn) has two eccentric vertices vi, vj such that E(u) = {vi, vj}.
The eccentric vertices vi, vj will always be adjacent i.e., vi, vj ∈ E(Cn). vi, vj
are placed at a distance of n−1

2
edges from u. Since every vertex u can dom-

inate its adjacent vertices v, w. n
3

set of vertices form a dominating set of a
cycle. The dominating set D = {vi, vj, vn} forms the EQED-set such that no
eccentric vertices of vi ∈ D are in D. Then ∀ v ∈ V (Cn) − D ∃ a vertex
u ∈ D ∋′ |deg(u)− deg(v)| = |2− 2| = 0. Therefore γeqed(Cn) = ⌈n

3
⌉.

Case(iii): If n = 3k+1 where k is even. The cycles are of the form C7,C13,C19,. . . ,
C3k+1 and if n = 3k+1 where k is odd, the cycles are of the form C5,C11,C17,. . . ,
C3k+2. Totally we have C5, C7, C11, C13, C17, C19, . . . C3k+1, C3k+2. Similar to
case(ii) every vertex vi ∈ V (Cn) has two eccentric vertices vl, vm, E(vi) =
{vl, vm} such that vl and vm are adjacent i.e., vl, vm ∈ E(Cn). Eccentric ver-
tex vl and vm of vi are placed at a distance of n−1

2
from vi. If n = 3k we get

3, 9, 15, 21, . . . which are the multiples of 3 we get a whole number which forms
the cardinality of a EQED-set as proved in case(ii). But when n = 3k + 1 or
n = 3k+2 then n = 5, 7, 11, 13, 17, 19, . . . 3k+1, 3k+2 which are not multiples
of 3 we get a fraction value and also we are left out with a vertex which is to
be dominated. Therefore the cardinality of the EQED-set of a cycles of the form
C3k+1, C3k+2 increases by 1. Hence γeqed(Cn) = ⌈n

3
⌉+ 1.

Theorem 3.5. Every EQED-set in a wheel graph Wn, n ≥ 6 contains the central
vertex.

92



Equitable eccentric domination

Proof. Let v1 be the central vertex of the wheel graph Wn, n ≥ 6 then
deg(v1) = n− 1 = ∆(Wn). The degree of any non-central vertex u ∈ V (Wn) is
deg(u) = 3 = δ(Wn).
Suppose the central vertex v1 ∈ V (Wn) − D, u ∈ D and D is an minimal ec-
centric dominating set we need to check for the condition of equitable domination
then for v1 ∈ V (Wn)−D and u ∈ D, we have uv1 ∈ E(Wn)
|deg(v1)− deg(u)| = |∆(G)− δ(G)|
|deg(v1)− deg(u)| = |(n− 1)− 3|
|deg(v1)− deg(u)| = |n− 4| where n ≥ 6
|deg(v1)− deg(u)| > 1. which is a contradiction.
Therefore the central vertex v1 must belong to D, if the set D is a equitable ec-
centric dominating set of Wn.

Theorem 3.6. Let Wn be a wheel graph where n ≥ 5 then EQED-set contains
more than one vertex.

Proof. In any wheel graph Wn where n ≥ 5. If the set D ⊆ V (Wn) contains
the central vertex v1 then D forms a dominating set as deg(v1) = n− 1 = ∆(G).
But the eccentric vertices of a central vertex v1 is given by E(v1) = V −{v1} and
the eccentric vertex of any non-central vertex u is given by E(u) = V − N [u].
Therefore there is no eccentric dominating or equitable eccentric dominating set
of cardinality 1 for Wn where n ≥ 5.

Theorem 3.7. For wheel graph Wn, where n ≥ 4 we have

γeqed(Wn) =


1, if n = 4
4, if n = 6
⌊n
2
⌋, if n is odd and n ≥ 5

⌊n+1
3
⌋+ 1, ∀ n ≥ 8 and n is even

Proof. Case(i): If n = 4, W4 is isometric to K4, then by theorem-3.1 γeqed(W4) =
γeqed(K4) = 1.
Case(ii): If n = 6, in a wheel graph W6, there are no eccentric dominating sets
of cardinality 1 or 2. Therefore we do not get an EQED-set of cardinality 1 or 2.
There are sets of cardinality 3 which are eccentric dominating sets. But they do
not form an EQED-set as the central vertex should not be present in V −D. Since
the degree of central vertex vi is deg(vi) = n − 1 = 5 and degree of any other
non-central vertex is deg(vj) = 3. Therefore |deg(vi)− deg(vj)| = 2 > 1 and in
other cases if vi /∈ V − D then we find a combination of vertices of 3 cardinal-
ity which are eccentric dominating set but they dont form an INED-set since for
some vertex v ∈ V − D there is no vertex u ∈ D such that u, v /∈ E(W6). But
we find a EQED-set with cardinality 4 as we have the central vertex in D. Then
|deg(vi) − deg(vj)| ≤ 1, (vi, vj) ∈ E(W6) where vi ∈ D and vj ∈ V (W6) −D.
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Therefore γeqed(W6) = 4.
Case(iii): If n is odd and n ≥ 5 we have the wheel graph of order W5,W7,W9,W11, . . .
If v ∈ V (Wn) then |E(v)| = n − 4. There will always be n − 4 vertices which
form the eccentric vertex E(v) for every vertex v. And for any wheel graph where
′n′ is odd. The set D ⊆ V (Wn) forms an eccentric dominating sets only when
|D| = ⌊n

2
⌋. Then for every v ∈ V (Wn)−D there exists a vertex u ∈ D such that

|deg(u)− deg(v)| ≤ 1 and (u, v) ∈ E(Wn). Therefore γeqed(Wn) = ⌊n
2
⌋.

Case(iv): The wheel graph Wn where n is even and n ≥ 8 has n − 4 eccentric
vertices. We have wheel graphs W8,W10,W12, . . . For every vertex v ∈ V (Wn),
|E(v)| = n − 4. From theorem-3.6,3.5, γeqed(Wn) ̸= 1 and the central vertex
vi ∈ D then D contains other vertices of Wn where cardinality of D is of the form
⌊n+1

3
⌋ + 1. For every v ∈ V −D there exists a vertex u ∈ D such that E(v) lies

in D and |deg(u) − deg(v)| ≤ 1 such that there exists an edge between u and v.
Therefore γeqed(Wn) = ⌊n+1

3
⌋+ 1.

Theorem 3.8. An EQED-set D is a minimal EQED-set if one of the following
conditions holds,
1. For every vertex u in V −D there does not exists v in D such that E(u) = {v}
ie, u has no eccentric vertex in D.
2. There exists some u ∈ V − D such that N(u)

⋂
D = {v}, E(u)

⋂
D = {v}

and |d(u)− d(v)| ≤ 1 where uv ∈ E(G).

Proof. Suppose D is a minimal EQED-set of G. Then for every vertex v in
D, D−{v} is not an EQED-set. Thus there exists some vertex u in V −D

⋃
{v}

which is not dominated by any vertex in D−{v} or there exists u ∈ V −D
⋃
{v}

such that u does not have an eccentric vertex in D − {v} ie, E(u) ̸= D − {v}
or |d(u) − d(v)| ≰ 1 or uv /∈ E(G). ∴ The concept of equitable condition
does not hold. Case(i): If v = u then u does not have an eccentric vertex in D ie,
E(u) ̸= D. Case(ii): If v ̸= u, (a) If u ∈ V−D and u is not dominated by D−{v},
but dominated by D then u is adjacent to only v in D ie,N(u)

⋂
D = {v}. (b) If

u ∈ V −D and u does not have an eccentric vertex in D−{v} but u has an eccen-
tric vertex in D. Thus v is the only eccentric vertex of u in D ie, E(u)

⋂
D = {v}.

(c) If u ∈ V −D and |d(u) − d(x)| ≰ 1 or ux /∈ E(G) where x ∈ D − {v} but
|d(u) − d(v)| ≤ 1 and uv ∈ E(G). Conversely, Suppose D is an EQED-set and
for each v ∈ D, one of the two conditions holds. Now we show that D is a min-
imal EQED-set. Suppose D is not an minimal EQED-set ie, there exists a vertex
v ∈ D such that D − {v} is an EQED-set. Hence v is adjacent to at least one
vertex x in D−{v}, v has an eccentric vertex in D−{v} ie, E(v) ∈ D−{v} and
|d(u)− d(x)| ≤ 1 where ux ∈ E(G). ∴ Equitable condition holds and EQED-set
exists. Also if D − {v} is an EQED-set, then every vertex u in V − D is ad-
jacent to at least one vertex x in D − {v}, u has an eccentric vertex in D − {v}
ie,E(u) ∈ D−{v} and |d(u)−d(x)| ≤ 1 and ux ∈ E(G). Therefore condition-(2)
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does not hold. Hence neither condition-(1) nor (2) holds, which is a contradiction
to our assumption. Hence for each v ∈ D one of the 2 conditions holds.

The equitable eccentric dominating set, γeqed(G), upper equitable eccentric dom-
inating set and Γeqed(G) of standard graphs are tabulated.

Graph Figure
D - Minimum

EQED set.
|D| = γeqed(G)

γeqed(G)
S - Upper
EQED set.

|S| = Γeqed(G)

Γeqed(G)

Diamond
graph

v1

v4

v2 v3
{v1, v2},
{v1, v3},
{v2, v3},
{v2, v4},
{v3, v4}.

2
{v1, v2},
{v1, v3},
{v2, v3},
{v2, v4},
{v3, v4}.

2

Tetrahedral
graph v2

v1

v3 v4

{v1},
{v2},
{v3},
{v4}.

1
{v1},
{v2},
{v3},
{v4}.

1

Claw
graph

v2 v3

v1

v4

Does not exist 0 Does not exist 0

Paw
graph

v2 v3

v1

v4

{v1, v3},
{v2, v3},
{v3, v4}.

2
{v1, v3},
{v2, v3},
{v3, v4}.

2

Bull
graph

v3 v4

v5

v2v1

{v1, v2, v3},
{v1, v2, v4},
{v1, v2, v5}.

3
{v1, v2, v3},
{v1, v2, v4},
{v1, v2, v5}.

3

Butterfly
graph

v3

v2

v5

v1

v4

{v1, v2, v3},
{v1, v3, v5},
{v2, v3, v4},
{v3, v4, v5}.

3
{v1, v2, v3},
{v1, v3, v5},
{v2, v3, v4},
{v3, v4, v5}.

3

Banner
graph

v3 v4

v1 v2

v5

{v1, v2, v5},
{v1, v3, v5},
{v2, v3, v5},
{v2, v4, v5},
{v3, v4, v5}.

3
{v1, v2, v5},
{v1, v3, v5},
{v2, v3, v5},
{v2, v4, v5},
{v3, v4, v5}.

3

95



Riyaz Ur Rehman A and A Mohamed Ismayil

Graph Figure
D - Minimum

EQED set.
|D| = γeqed(G)

γeqed(G)
S - Upper
EQED set.

|S| = Γeqed(G)

Γeqed(G)

Fork
graph

v2 v3

v1

v4 v5

{v1, v2, v3, v4},
{v1, v2, v4, v5},
{v1, v3, v4, v5}.

4
{v1, v2, v3, v4},
{v1, v2, v4, v5},
{v1, v3, v4, v5}.

4

(3,2)-Tadpole
graph

v2 v3 v4

v1

v5

{v1, v4},
{v4, v5}.

2 {v1, v2, v3, v5}. 4

Kite
graph

v3 v4

v1

v5

v2
{v1, v2, v4},
{v1, v3, v4},
{v2, v3, v4},
{v2, v4, v5},
{v3, v4, v5}.

3
{v1, v2, v4},
{v1, v3, v4},
{v2, v3, v4},
{v2, v4, v5},
{v3, v4, v5}.

3

(4,1)-Lollipop
graph

v3 v4

v1

v5

v2
{v1, v4},
{v2, v4},
{v3, v4},
{v4, v5}.

2
{v1, v4},
{v2, v4},
{v3, v4},
{v4, v5}.

2

House
graph

v2 v3

v1

v4 v5

{v2, v4},
{v3, v5}.

2 {v1, v2, v3},
{v1, v4, v5}.

3

House X
graph

v2 v3

v1

v4 v5

{v1, v2},
{v1, v3},
{v1, v4},
{v1, v5}.

2
{v1, v2},
{v1, v3},
{v1, v4},
{v1, v5}.

2

Gem
graph

v1 v2

v5

v3 v4 {v1, v2}. 2
{v1, v3, v4},
{v2, v3, v4},
{v3, v4, v5}.

3
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Graph Figure
D - Minimum

EQED set.
|D| = γeqed(G)

γeqed(G)
S - Upper
EQED set.

|S| = Γeqed(G)

Γeqed(G)

Dart
graph v3

v4

v1

v5

v2 {v2, v4}. 2 {v1, v2, v3, v5}. 4

Cricket
graph v4 v5v3

v1 v2
{v1, v3, v4, v5},
{v2, v3, v4, v5}.

4 {v1, v3, v4, v5},
{v2, v3, v4, v5}.

4

Pentatope
graph

v1

v4 v5

v2 v3
{v1},
{v2},
{v3},
{v4},
{v5}.

1
{v1},
{v2},
{v3},
{v4},
{v5}.

1

Johnson
solid

skeleton-12
graph

v2

v1

v3

v4 v5

{v1, v2},
{v1, v3},
{v1, v4},
{v1, v5},
{v2, v3},
{v3, v4},
{v3, v5}.

2

{v1, v2},
{v1, v3},
{v1, v4},
{v1, v5},
{v2, v3},
{v3, v4},
{v3, v5}.

2

Cross
graph

v3

v1

v2 v4

v5

v6

{v1, v2, v3, v4, v5},
{v1, v2, v3, v4, v6}.

5 {v1, v2, v3, v4, v5},
{v1, v2, v3, v4, v6}.

5

Net
graph v5

v6

v3 v4

v1 v2

{v1, v2, v3, v6},
{v1, v2, v4, v6},
{v1, v2, v5, v6}.

4
{v1, v2, v3, v6},
{v1, v2, v4, v6},
{v1, v2, v5, v6}.

4

Fish
graph

v4

v2

v5

v1

v6

v3 {v2, v3, v4},
{v3, v4, v5}.

3 {v1, v2, v4, v5, v6}. 5
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Graph Figure
D - Minimum

EQED set.
|D| = γeqed(G)

γeqed(G)
S - Upper
EQED set.

|S| = Γeqed(G)

Γeqed(G)

A
graph

v3 v4

v1

v5

v2

v6

{v1, v2, v5, v6},
{v1, v3, v5, v6},
{v1, v4, v5, v6},
{v2, v3, v5, v6},
{v2, v4, v5, v6},
{v3, v4, v5, v6}.

4

{v1, v2, v5, v6},
{v1, v3, v5, v6},
{v1, v4, v5, v6},
{v2, v3, v5, v6},
{v2, v4, v5, v6},
{v3, v4, v5, v6}.

4

R
graph

v3 v4

v1

v5

v2

v6

{v2, v3, v5, v6}. 4 {v1, v3, v4, v5, v6}. 5

4-polynomial
graph

v2 v3v1

v5v4 v6

{v1, v2, v3},
{v1, v3, v4},
{v2, v3, v4},
{v3, v4, v5},
{v3, v4, v6},
{v4, v5, v6}.

3

{v1, v2, v3},
{v1, v3, v4},
{v2, v3, v4},
{v3, v4, v5},
{v3, v4, v6},
{v4, v5, v6}.

3

(2,3)-King
graph

v2 v3v1

v5v4 v6

{v1, v2, v3},
{v1, v2, v6},
{v1, v3, v5},
{v1, v5, v6},
{v2, v3, v4},
{v2, v4, v6},
{v3, v4, v5},
{v4, v5, v6}.

3

{v1, v2, v3},
{v1, v2, v6},
{v1, v3, v5},
{v1, v5, v6},
{v2, v3, v4},
{v2, v4, v6},
{v3, v4, v5},
{v4, v5, v6}.

3

Antenna
graph

v2

v1

v3 v4

v5 v6

{v1, v2, v5},
{v1, v2, v6},
{v1, v3, v5},
{v1, v3, v6},
{v1, v4, v5},
{v1, v4, v6}.

3 {v1, v2, v3, v4}. 4

3-prism
graph

v2

v3 v4

v1

v5 v6

{v1, v2},
{v3, v5},
{v4, v6}.

2 {v1, v5, v6},
{v2, v3, v4}.

3

Octahedral
graph

v4

v3v2

v1

v5 v6

{v1, v2, v3},
{v1, v2, v5},
{v1, v3, v6},
{v1, v5, v6},
{v2, v3, v4},
{v2, v4, v5},
{v3, v4, v6},
{v4, v5, v6}.

3

{v1, v2, v3},
{v1, v2, v5},
{v1, v3, v6},
{v1, v5, v6},
{v2, v3, v4},
{v2, v4, v5},
{v3, v4, v6},
{v4, v5, v6}.

3
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4 Conclusions
Inspired by eccentric dominating set and equitable dominating set we introduce
the equitable eccentric dominating set. We find minimum equitable eccentric
dominating set, minimum equitable eccentric domination number γeqed(G), up-
per equitable eccentric dominating set and upper equitable eccentric domination
number Γeqed(G) of different standard graphs. We have discussed the properties
and proved theorems related to equitable eccentric dominating set of family of
graphs.
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