
Ratio Mathematica, 21, 2011, pp. 91-105

91

An Optimization Framework for “Build-or-Buy”

Strategy for component Selection in a Fault Tolerant

Modular Software System under Recovery Block Scheme

P.C.Jha* Ritu Arora** U.Dinesh Kumar***

*Department of Operational Research , University of Delhi,India

**Maharaja Agrasen Institute of Technology, GGSIP University, Delhi,India.

***Indian Institute of Management, Bangalore, India

*jhapc@yahoo.com ** arora_ritu21@yahoo.co.in ***dineshk@iimb.ernet.in

Abstract
This paper discusses a framework that helps developers to decide whether to buy or

build components of software architecture. Two optimization models have been

proposed. First model is Bi-criteria optimization model based on decision variables in

order to maximize the software reliability with simultaneous minimization of the

overall cost of the system. The second optimization model deals with the issue of

compatibility.

Keywords : Modular software, software reliability, software cost, fault tolerance, software

components, recovery block scheme

1. Introduction

Science and technology demand high quality software for making improvement

and breakthroughs. Today, computer hardware and software permeates our

modern society. The newest cameras, VCRs, and automobiles cannot be

controlled and operated without computers. When the requirement for and

dependencies on computer increases, the possibility of crises from computer

failures also increases. Software systems are developed as per the requirements

given by the users. While developing the software, quality and reliability of the

software are two key factors. Reliability of a software system is defined as the

probability that software operates without failure in a specified environment,

during a specified exposure period. Introduction of redundancy in the parts of the

hardware and/or software components is one of the most followed ways to

improve the reliability of the system under development. A careful use of

redundancy may allow the system to tolerate faults. Despite that we still cannot

guarantee error free software. A way of handling unknown and unpredictable

mailto:*jhapc@yahoo.com
mailto:arora_ritu21@yahoo.co.in
mailto:***dineshk@iimb.ernet.in

92

software failures is through fault tolerance. One way to reduce the risks of

software design faults and thus enhance software dependability is to use software

fault tolerance techniques. Software fault tolerance techniques are employed

during the procurement, or development, of the software. They enable a system to

tolerate software faults remaining in the system after its development. When a

fault occurs, these techniques provide mechanisms to the software system to

prevent system failure from occurring. There are two structural methodologies

for Fault Tolerant System i.e. Recovery Block Scheme and N-Version Scheme. In

this paper, we will discuss optimization model for recovery block. Non functional

aspects play a significant role in determining software quality. Given the fact that

lack of proper handling of non functional aspects (Cysneiros et al, [5]) of a

software application has led to a series of software failures, nonfunctional

attributes such as reliability security and performance should be considered during

the component selection phase of software development. This paper discusses a

framework that helps developers to decide whether buying or building

components of software architecture on the base of cost and non functional

factors. While developing software, components can be both bought as COTS

(Commercial Off-The Shelf) products, and probably adapted to work in the

software system, or they can be developed in-house. This decision is known as

“build-or-buy decision”. This decision affects the overall cost and reliability of

the system. Most of today’s software systems include one or more COTS

products. COTS are pieces of software that can be reused by software projects to

build new systems. Benefits of COTS based development include significant

reduction in the development cost, time and improvement in the dependability

requirement. No changes are normally made to their source codes. COTS

components are used without any code modification and inspection. The

components, which are not available in the market or cannot be purchased

economically, can be developed within the organization and are known as in-

house built components. Kapur et al [8] discussed issues related to reliability of

systems through weighted maximization of system quality subject to budgetary

constraint.

This paper discusses the issues related with reliability of the software systems and

cost produced by integrating COTS or in-house build components. Large software

system has modular structure to perform a set of functions. Each function is

performed by different modules having different alternatives for each module. In

case a COTS component is selected then different versions are available for each

93

alternative and only one version will be selected for each alternative of a module.

If a component is in-house build component, then the alternative of a module is

selected. A schematic representation of the software system is given in Figure 1.

We are selecting the components for modules to maximize the system reliability

by simultaneously minimizing the cost. The frequency with which the functions

are used is not same for all of them and not all the modules are called during the

execution of a function, the software has in its menu. Software whose failure can

have bad effects afterwards can be made fault tolerant through redundancy at

module level (Belli and Jadrzejowicz, [1]). We assume that functionally

equivalent and independently developed alternatives (i.e In-house or COTS) for

each module are available with an estimated reliability and cost. The first

optimization model (optimization model-I) of this paper maximizes the system

reliability with simultaneously minimizing the cost. The model contains four

problems (P1), (P2), (P3) and (P4). Problem (P1) is not in normalized form,

therefore, it has been normalized and transformed into problem (P3) and (P4). The

second optimization model (optimization model-II) considers the issue of

compatibility between different alternatives of modules as it is observed that some

COTS components cannot integrate with all the alternatives of another module.

The models discussed are illustrated with numerical example.

2. Notations

 R : System quality measure

 lf : Frequency of use, of function l

 ls : Set of modules required for function l

 iR : Reliability of module i

 L : Number of functions, the software is required to perform

 n : Number of modules in the software

 im : Number of alternatives available for module i

 ijV : Number of versions available for alternative j of module i

Total number of tests performed on the in- house developed instance (i.e.

alternative of module)

Number of successful (i .e failure free) test performed on the in-house

developed instance (i.e. alternative of module)

1 t : Probability that next alternative is not invoked upon failure of the current

 alternative

 :tot

ijN
j i

 :suc

ijN
j i

94

2t : Probability that the correct result is judged wrong.

3 t : Probability that an incorrect result is accepted as correct.

ijX : Event that output of alternative j of module i is rejected.

 Yij : Event that correct result of alternative j of module i is accepted.

 sij : Reliability of alternative j of module i

 r : Reliability of version of alternative for module ijk k j i

ijkC : Cost of version k of alternative j for module i

ijkr : Reliability of version k of alternative j for module i

ijkd : Delivery time of version k of alternative j for module i

ijc : Unitary development cost for alternative j of module i

ijt : Estimated development time for alternative j of module i

ij : Average time required to perform a test case for alternative j of

 module i

ij : Probability that a single execution of software fails on a test case chosen

 from a certain input distribution

ty :
0, if constraint is active

1, if constraint is inactive

th

th

t

t





 :

ijkx :
1, if the of COTS alternative of the module is chosen

0, otherwise

th th thk version j i



ijz : Binary variable taking value 0 or 1

 1 , if alternative is present in module

 0, otherwise

j i



3. Optimization Models

The first optimization model is developed for the following situations which also

hold good for the second model, but with additional assumptions related to

compatibility among alternatives of a module.

 ijy 1 if the th alternative of th module is in-house developed.

0 otherwise

j i



95

The following assumptions are common for the optimization models are:

1. Software system consists of a finite number of modules.

2. Software system is required to perform a known number of functions. The

program written for a function can call a series of modules  n . A failure

occurs if a module fails to carry out an intended operation.

3. Codes written for integration of modules don’t contain any bug.

4. Several alternatives are available for each module. Fault tolerant architecture is

desired in the modules (it has to be within the specified budget). Independently

developed alternatives (primarily COTS/ In-House components) are attached in

the modules and work similar to the recovery block scheme discussed in

(Berman et al., [2] and Kumar, [9]).

5. The cost of an alternative is the development cost, if developed in house;

otherwise it is the buying price for the COTS product.

6. Different In- house alternatives with respect to unitary development cost,

estimated development time, average time and testability of a module are

available.

7. Cost, reliability and development time of an in-house component can be

specified by using basic parameters of the development process, e.g., a

component cost may depend on a measure of developer skills, or the

component reliability depends on the amount of testing.

8. Different versions with respect to cost, reliability and delivery time of a

module are available.

9. Other than available cost-reliability versions of an alternative, we assume the

existence of virtual versions, which has a negligible reliability of 0.001, zero

cost and zero delivery time. These components are denoted by index one in the

third subscript of , C and .ijk ijk ijkx r for example 1ijr denotes the reliability of first

version of alternatives j for module i .

3.1 Model Formulation

Let S be a software architecture made of n modules having im alternatives

available for each module and each COTS alternatives has different versions.

3.1.1 Build versus Buy Decision

For each module i , if an alternative is bought (i.e. some 1ijkx ) then there is no

in-house development (i.e. 0ijy ) and vice versa.

96

1

=1; 1,2,...., and 1,2,....,
ijV

ij ijk i

k

y x i n j m


  

3.1.2 Redundancy Constraint

The equation stated below guarantees that redundancy is allowed for the

components.

2

; 1,2,...., and 1,2,....,
ijV

ij ijk ij i

k

y x z i n j m


   

1 1; 1,2,...., and 1,2,....,ij ij ix z i n j m   

1

1; 1,2,....
im

ij

j

z i n


 

3.1.3 Probability of Failure Free In-house Developed Components

 The possibility of reducing the probability that the alternative of moduleth thj i

fails by means of a certain amount of test cases (represented by the variable
tot

ijN).

Cortellessa et al [4] define the probability of failure on demand of an in-house

developed alternative of moduleth thj i , under the assumption that the on-field

users’ operational profile is the same as the one adopted for testing (Bertolino

and Strigini, [3]). Basing on the testability definition, we can assume that the

number
suc

ijN of successful (i.e. failure free) tests performed on thj alternative of

same module.

 1 ; 1,2,...., and 1,2,....,suc tot

ij ij ij iN N i n j m   

 Let A be the event “
suc

ijN failure – free test cases have been performed ” and

B be the event “ the alternative is failure free during a single run ”.If ij is the

probability that the in- house developed alternative is failure free during a single

run given that
suc

ijN test cases have been successfully performed, from the Bayes

Theorem we get
(/) ()

(/)
(/) () (/) ()

ij

P A B P B
P B A

P A B P B P A B P B
  



The following equalities come straightforwardly:

(/) 1; () 1 ; (/) (1) ; ()
suc
ijN

ij ij ijP A B P B P A B P B       

97

 therefore, we have

   

1
; 1,2,...., and 1,2,....,

1 1
suc
ij

ij

ij iN

ij ij ij

i n j m



  


  

  

3.1.4 Reliability equation of both in-house and COTS components

The reliability (ijs) of thj alternative of thi module of the software.

; 1,2,...., and 1,2,....,ij ij ij ij is y r i n j m   

where
1

; 1,2,...., and 1,2,....,
ijV

ij ijk ijk i

k

r r x i n j m


  

3.1.5 Delivery time constraint

The maximum threshold T has been given on the delivery time of the whole

system. In case of a COTS components the delivery time is simply given by ijkd ,

whereas for an in- house developed alternative the delivery time shall be

expressed as ()tot

ij ij ijt N .

  
1 1 1

iji
Vmn

tot
ij ij ij ij ijk ijk

i j k

y t N d x T
  

 
   
 
 

 

3.2 Objective Function

3.2.1 Reliability objective function

 Reliability objective function maximizes the system quality (in terms of

reliability) through a weighted function of module reliabilities. Reliability of

modules that are invoked more frequently during use is given higher weights.

Analytic Hierarchy Process (AHP) can be effectively used to calculate these

weights.

1

Maximize ()

l

L

l i

l i s

R X f R

 

 

where iR is the reliability of module i of the system under Recovery Block

stated as follows.

     ,.........2,1 ;
1

1

1

niYPXPzR ij

i

ij z

ij

m

j

j

k

z

ikiji 







 







       1 3 21 1 1ij ij ijP X t s t s t     
 

98

   2 1ij ijP Y s t 

 3.2.2 Cost objective function

Cost objective function minimizes the overall cost of the system. The sum of the

cost of all the modules is selected from “build – or - buy” strategy. The in-house

development cost of the alternative j of module i can be expressed as

 tot

ij ij ij ijc t N

 
1 1 1

Minimize C(X)=
iji

Vmn
tot

ij ij ij ij ij ijk ijk

i j k

c t N y C x
  

 
   

 
 

3.3 Optimization Model I

In the optimization model it is assumed that the alternatives of a module are in a

Recovery Block. In recovery block more than one alternative of a program exist.

For COTS based software multiple alternatives of a module can be purchased

from different vendors. Each module works under a recovery block. Upon

invocation of a module the first alternative is executed and the result is submitted

for acceptance test. If it is rejected, the second alternative is executed with the

original inputs. The same process continues through attached alternative until a

result is accepted or the whole recovery block (module) fails. Fault tolerance in a

recovery block is achieved by increasing the number of redundancies.

Problem (P1)

1

Maximize ()
l

L

l i

l i s

R X f R
 

  (1)

 
1 1 1

Minimize C(X)=
iji

Vmn
tot

ij ij ij ij ij ijk ijk

i j k

c t N y C x
  

 
   

 
  (2)

Subject to  and y are binary variable/ijk ijX S x 

    ,.........2,1 ;
1

1

1

niYPXPzR ij

i

ij z

ij

m

j

j

k

z

ikiji 







 







 (3)

 1 , 1,2,...., and 1,2,....,suc tot

ij ij ij iN N i n j m    (4)

      1 3 2 1 1 1 ij ij ijP X t s t s t     
 

   2 1ij ijP Y s t 

99

   

1
; 1,2,...., and 1,2,....,

1 1
suc
ij

ij

ij iN

ij ij ij

i n j m




  


  

  

 (5)

; 1,2,...., and 1,2,....,ij ij ij ij is y r i n j m    (6)

1

=1; 1,2,...., and 1,2,....,
ijV

ij ijk i

k

y x i n j m


   (7)

2

ijV

ij ijk ij

k

y x z


  ; 1,2,...., and 1,2,...., ii n j m  (8)

1 1; 1,2,...., and 1,2,....,ij ij ix z i n j m    (9)

1

1 ; 1,2,....,
im

ij

j

z i n


  (10)

 
1 1 1

iji

Vmn
tot

ij ij ij ij ijk ijk

i j k

y t N d x T
  

 
    

 
  (11) 

Where X is a vector of elements : and ; 1,2,..... ; 1,2,...., ; k=1,2,....Vijk ij i ijx y i n j m 

3.3.1 Normalization

The problem (P1) is Bi- criteria optimization problem in which on one hand

system reliability is maximized and other hand cost of selected components to

form / assemble the system is minimized. The reliability which is unit free is

measured between zero and one whereas cost has its unit. Two objectives can be

converted to single objective programming problem either if both objectives are

of same unit or if both objectives can be made unit free. To make cost function

unit free, the following transformation is used.

1 1 1

iji
Vmn

ijk

i j k

c C
  

 ,  
1 1

imn
tot

ij ij ij ij

i j

c c t N
 

 

Now
 

, and 1

tot

ij ij ij ijijk
ijk ijijk ij

c t NC
C c C c

c c c c


   

 

The resulting problem then can be rewritten as follows.

Problem (P2) Maximize   F
1

1  
 


L

l si

il

l

RfX

100

 Minimize
2

1 1 1

()
iji

Vmn

ij ij ijk ijk
i j k

F X c y C x

  

 
  
 
 

 

 Subject to SX 

The problem (P2) can further be written as vector optimization problem as.

Problem (P3) Vector Max  XF

 Subject to SX 

 where       TXFXFXF 21 ,

3.3.2 Finding Properly Efficient Solution

Definition 1 (Steuer, [10]): A feasible solution SX * is said to be an efficient

solution for the below problem if there exists no SX  such that    *XFXF 

and    *XFXF 

Definition 2 (Steuer, [10]): An efficient solution SX * is said to be an

properly efficient solution for the problem (P2) if there exist 0 such that for

each r

           XFXFXFXF jjrr

** / for some j with    *XFXF jj  and

   *XFXF rr  for SX  .

Using Geoffrion’s scalarization the problem (P2) reduces to

Problem (P4)

Maxize Z= 1 1 2 2F F 

Subject to SX 

 0, 1 2121  

Lemma(Geoffrion,[6]):The optimal solution of the problem (P4) for fixed

21 and  is a properly efficient solution for the problem (P3) as well as (P1).

3.4 Optimization Model II

 Optimization model II is an extension of optimization model I. As explained in

the introduction, it is observed that some alternatives of a module may not be

compatible with alternatives of another module (Jung and Choi, [7]). The next

optimization model II addresses this problem. It is done, incorporating additional

constraints in the optimization models. This constraint can be represented as

chugsq t
xx  , which means that if alternative s for module g is chosen, then

101

alternative ztut ,........1 ,  have to be chosen for module h . We also assume that if

two alternatives are compatible, then their versions are also compatible.

 ,
tgsq hu c tx x My 

ghugs msVVq
t

,.....,1 , ,......,2 c , ,.......,2  (12)

    2
thut Vzy (13)

 Constraint (12) and (13) make use of binary variable ty to choose one pair of

alternatives from among different alternative pairs of modules. Problem (P3) can

be transformed to another optimization problem using compatibility constraints

and if more than one alternative compatible component is to be chosen for

redundancy, constraint (13) can be relaxed as follows.

    2
thut Vzy (14)

4. Illustrative Examples

 Consider a software system having two modules with more than one

alternative for each module. The data sets for COTS and in-house developed

components are given in Table-1 and table II, respectively. Let

     1 2 3 1 2 33, 1,2,3 , 1,3 , s 2 , 0.5, 0.3 and 0.2L s s f f f       . It is also assumed

that 01. and 05. ,01. 321  ttt

 FUNCTIONS

 VERSION

 MODULE MODULE MODULE

Figure 1 Structure of the software

1f 2f lf

1m

2m

nm

A
L
T
E
R
N
A
T
I
V
E
S

102

Table 1: Data set for COTS components

Table 2Data set for In-House conponents

4.1 Optimization Model – I

Table 3 presents the solution for optimization model I. The problem is solved

using software package LINGO (Thiriez, [11]). The solution to the model gives

the optimal component selection for the software system along with the

corresponding cost and reliability of the overall system. The sensitivity analysis to

the delivery time constraint has been performed. It is clearly seen from the table

Alternati

ves

 Versions

 1 2 3
Cost Reliability Delivery

Time

Cost Reliability Delivery

Time

Cost Reliability Delivery

Time

1

1 0 0.001 0 14 0.90 3 11 0.88 4

2 0 0.001 0 12.5 0.86 4 18 0.92 2

3 0 0.001 0 17 0.90 2 15 0.88 3

2

1 0 0.001 0 13 0.87 4 17.

5

0.86 2

2 0 0.001 0 11 0.91 5 12 0.89 4

3 0 0.001 0 18 0.89 2 15 0.86 3

4 0 0.001 0 13 0.86 4 14 0.88 3

3

1 0 0.001 0 16 0.85 3 18 0.90 2

2 0 0.001 0 16 0.89 3 17 0.87 2

Module i Alternatives
ijt

 ij ijc
 ij

1

1 8 0.005 5 0.002

2 6 0.005 4 0.002

3 7 0.005 4 0.002

2

1 9 0.005 5 0.002

2 5 0.005 2 0.002

3 6 0.005 4 0.002

4 5 0.005 3 0.002

3 1 6 0.005 4 0.002

2 5 0.005 3 0.002

103

that when the delivery time was 10 units, then only COTS components were

selected. When the delivery time increases along with the COTS components, in

house build components were also selected. When the delivery time was 12 units,

only one in-house component was developed with the minimum cost 79 units

attained at reliability level 0.85.Our system cost decreases while the

corresponding reliability increases because the components developed in-house

decreases the cost initially but later if the level of reliability has to be kept at 0.90

then by increasing delivery time by 5 and 9 units respectively, more in-house

build components were selected which in turn increases the cost and reliability of

the overall system. Redundancy is also there in all the four cases.

Table 3: Solution of Optimization Model I

4.2 Optimization Model-II

To illustrate optimization model for compatibility, we use previous results.

Case 1. Delivery Time is assumed to be 10 units.

We assume third alternative of second module is compatible with second and

third alternatives of first module.

111 123 133 1x x x  

Case

No.

Delivery

Time

COTS IN-House System

Reliability

Overall

system

Cost

Joint

Objective

Value

1 10 111 123 132

211 221 232 242

311 322

1

1

1

x x x

x x x x

x x

  

   

 

Nil 0.84 82 0.66

2 12 111 123 132

211 232 241

311 322

1

1

1

x x x

x x x

x x

  

  

 

22 1y  0.85 79 0.68

3 17 111 123 132

211 221 232

311

1

1

1

x x x

x x x

x

  

  



24 32 1y y  0.93 86 0.74

4 21 111 132

211 221 232

311

1

1

1

x x

x x x

x

 

  



12 24 32 1y y y   0.94 92 0.75

104

211 221 232 242 1x x x x   

311 322 1x x 

It is observed that due to the compatibility condition, third alternative of first

module is chosen as it is compatible with third alternative of second module. The

system reliability for the above solution is 0.84 and cost is 81 units.

Case 2. Delivery Time is assumed to be 12 units.

We assume second alternative of third module is compatible with second and

third alternatives of first module.

22 1y 
;

111 123 133

211 232 241

311 322

1

1

1

x x x

x x x

x x

  

  

 

It is observed that due to the compatibility condition, third alternative of first

module is chosen as it is compatible with second alternative of third module. The

system reliability for the above solution is 0.85 and cost is 77 units.

Case 3. Delivery Time is assumed to be 10 units.

We assume third alternative of second module is compatible with second and

third alternatives of first module.

24 32 1y y 

111 123 133

211 221 232

311

1

1

1

x x x

x x x

x

  

  



It is observed that due to the compatibility condition, third alternative of first

module is chosen as it is compatible with third alternative of second module. The

system reliability for the above solution is 0.94 and cost is 84 units.

 5. Conclusions

We have presented optimization models that supports the decision whether to buy

software components or to build them in-house upon designing structure. A fault

tolerant software structure for Recovery block scheme is discussed. A numerical

example is presented to support these models. When delivery time is small then

all the COTS components were selected and redundancy is allowed. But as the

delivery time increases along with the COTS components in-house components

105

were also selected and different impacts on cost and reliability were considered.

Redundancy was also there in all the cases.

References
[1] F. Belli and P. Jadrzejowicz, An approach to reliability optimization

software with redundancy, IEEE Transaction of Soft. Engineering,

vol.17/3(1991), pp. 310-312.

[2] O. Berman and U. D.Kumar, Optimization models for reliability of

modular software system, IEEE Transactions of Software Engineering,

vol. 19/11(1993), pp.1119-1123.

[3] A. Bertolino, and L. Strigini, On the use of testability measures for

dependability assessment, IEEE Transactions on Software Engineering,

22/2(1996), pp.97-108.

[4] V. Cortellessa, F. Marinelli, and P. Potena, An optimization framework

for “build-or-buy” decisions in software architecture, Computers and

Operations Research, vol.35(2008), pp. 3090-3106.

[5] L. M. Cysneiros and J.C.S. Leite, Nonfunctional requirements: from

elicitation to conceptual models, IEEE transactions on Software

engineering, vol.30 (2004), pp. 328-350.

[6] A. M. Geoffrion, Proper efficiency and theory of vector maximization,

Journal of Mathematical Analysis and Application, vol.22 (1968), pp.

613-630.

[7] H. W.Jung and B. Choi, Optimization models for quality and cost of

modular software system, European Journal of Operations Research,

vol.112(1998), pp. 613-619.

[8] P. K. Kapur, A.K. Bardhan and P.C. Jha, Optimal reliability allocation

problem for a modular software system, OPSEARCH, vol.40/2(2003).

 [9] U. D. Kumar, Reliability analysis of fault tolerant recovery block,

OPSEARCH, vol.35(1998),pp. 281-294.

 [10] R. E. Steuer, Multiple Criteria optimization: theory, computation and

 application, Wiley, New York ,1986.

[11] H. Thiriez, OR software LINGO, European Journal of Operational

 Research, vol.12(2000), pp.655-656.

