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Abstract

For a graph G(V,E), the transit of a vertex v is defined as the sum
of the lengths of all geodesics with v as an internal vertex. This pa-
per deals with the transit of vertices in Corona product of graphs.
We obtain expressions for transit of an arbitrary vertex in the Corona
product G1 ◦G2 of G1 and G2. We also consider the cases where G1

is a particular graph class. The expressions for transit of vertices in
G1 ◦G2, with G1 as path Pn, a cycle Cn, a star Sn, a complete graph
Kn and a complete bipartite graph Km,n is established.
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1 Introduction

Topological indices and centrality measures are graph invariant. Numerous
studies have been carried out in these areas. The first notable topological index
was the wiener index, named after Harry Wiener, a pioneer in chemical graph
theory. It is defined as the sum of the lengths of the shortest paths between all
pairs of vertices in the chemical graph representing the non-hydrogen atoms in
the molecule. Wiener made fundamental contributions to the study of topolog-
ical indices and established a correlation between the Wiener index and boiling
points (hence viscosity and surface tension) of the paraffin. He could establish
relationships with many chemical properties of alkanes with the wiener index.

Centrality measures are a vital tool for understanding graphs. Each measure
has its own definition of importance. Some are based on the degree of a vertex
while others take the closeness to other vertices as the score of significance.

In the paper [Shimbel and Alfonso], they introduced the concept of the stress
of a vertex. It is the number of shortest paths on which a vertex lies. This was
further modified to produce measures of centrality. It found applications in social
networking, for analyzing communication dynamics.

Keeping in mind the above two concepts, we introduced a new index, called
the transit index of a graph. It considers the distances in the graph as well as the
degree of vertices. In computing the stress of a vertex, we only take into account
the number of shortest paths through it; the length of the paths is not considered.
Be it in data transmission or in the measure of closeness, the length of the paths
also matters. Hence, in the computation of transit we account for the number of
shortest paths as well as their length.

Graph products are binary operations. Two graphs G1 and G2 are combined
to produce a new graph H . In this paper, we study the transit of vertices in the
Corona product of graphs. Information on individual graphs is used to compute
the transit of vertices in their Corona products. Thus the transit of vertices in large
graphs and networks, which can be viewed as Corona products of simple graphs,
can be computed more efficiently.

2 Preliminaries

In this section, we come across certain definitions and terminologies employed
in developing results in the latter sections. Throughout this paper we only consider
simple connected and finite graphs.

Definition 2.1 (K.M.Reshmi and Pilakkat. Raji [2020]). Let v ∈ V . Then the
transit of v denoted by T (v) is “the sum of the lengths of all shortest paths with v
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as an internal vertex” and the transit index of G denoted by TI(G) is

TI(G) =
∑
v∈V

T (v)

Lemma 2.2 (K.M.Reshmi and Pilakkat. Raji [2020]). T (v) = 0 iff ⟨N [v]⟩ is a
clique.

Theorem 2.3 (K.M.Reshmi and Pilakkat. Raji [2020]). For a path Pn, Transit
index is

TI(Pn) =
n(n+ 1)(n2 − 3n+ 2)

12

Theorem 2.4. For a cycle, the transit of any vertex v is, T (v) = (n2−4)n
24

and

i) TI(Cn) =
n2(n2−4)

24
,n even.

ii) TI(Cn) =
n(n2−1)(n−3)

24
, n odd

Definition 2.5. Two vertices of a graph are called transit identical if the shortest
paths passing through it are same in number and length.

We use the following terminologies.
The order of a graph G, denoted by |G| is the number of vertices in V (G). The
distance between two vertices u, v ∈ V is the length of any shortest u − v path
in G. A shortest path from u to v is also called a u − v geodesic. The number
of shortest u − v paths is denoted by σ(u, v) and the number of shortest u − v
path with ’a’ as an internal vertex is denoted by σ(u, v/a). It can be noted that
a vertex ’a’ lies on a shortest u − v path iff d(u, v) = d(u, a) + d(a, v). The
number of shortest u − v path with ’a’ as an internal vertex can be computed
as σ(u, v/a) = σ(u, a) × σ(a, v). Number of shortest paths in G with ’a’ as an
internal vertex is denoted by σG(a). Clearly σG(a) =

∑
(u,v) σ(u, v/a)

3 Transit of vertices in Corona Product of graphs

3.1 Corona Product of Graphs

Definition 3.1. (Frucht and Harary [1970]) Let G1 and G2 be two graphs. The
corona product G1 ◦G2, is obtained by taking one copy of G1 and |V (G1)| copies
of G2; and by joining each vertex of the i-th copy of G2 to the i-th vertex of G1,
where 1 ≤ i ≤ |V (G1)|
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Whenever we consider G1 ◦G2, we use the following notations.
1. Gi

2 the ith copy of G2 in G1 ◦G2

2. V (G1) = {u1, u2, . . . , un1}, |E(G1)| = m1

3. V (Gi
2) = {vi1, vi2, . . . , vin2

}, |E(Gi
2)| = m2,∀i

Lemma 3.2. (Agnes [2015]) Let G1 and G2 be two arbitrary graphs. Then,

• dG1◦G2(ui, up) = dG1(ui, up), 0 ≤ i, p ≤ n1

• dG1◦G2(ui, v
p
q ) = dG1(ui, up) + 1, 0 ≤ i, p ≤ n1, 0 ≤ q ≤ n2

• dG1◦G2(v
i
j, v

p
q ) =


dG1(ui, up) + 2, i ̸= p
1, if i = p, vjvq ∈ E(G2)
2, if i = p, vjvq /∈ E(G2)

Proposition 3.3. For any two graphs G1 and G2,

1. TG2(a) = 0 iff TG1◦G2(a) = 0, a ∈ G2

2. TG2(a) = TG1◦G2(a), for a ∈ G2 iff every shortest path in G2 with ’a’ as an
internal vertex is of length 2.

Proof. Note that as the result 2 is obvious, we prove only 1. 1) TG2(a) = 0 ⇐⇒
⟨NG2 [a]⟩ is a clique. ⇐⇒ ⟨NG1◦G2 [a]⟩ is a clique⇐⇒ TG1◦G2(a) = 0.

Proposition 3.4. Let G1 and G2 be arbitrary graphs,
1)For any up in G1,

σG1◦G2(up) = (n2 + 1)
[
(n2 + 1)σG1(up) + n2

∑n1

p̸=k=1 σG1(up, uk)
]

2) σG1◦G2(v
i
k) = Number of geodesic of length 2 in G2 with vk as an internal

vertex.

Proof. 1)Let up be any vertex of G1. Every geodesic in G1 with up as an internal
vertex will be counted in σG1◦G2(up).
For k ̸= l, geodesics connecting Gk

2∪{uk} to Gl
2∪{ul} will have ul−uk geodesic

as its part. Let P1 be one of the ul − uk geodesic with up as an internal vertex.
Then P1 will be part of a geodesic connecting vertices of Gk

2 ∪ {uk} to vertices of
Gl

2 ∪ {ul}. There will be
- n2

2 geodesics connecting Gk
2 to Gl

2,
- n2 geodesics connecting Gk

2 to ul and
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- n2 geodesics connecting Gl
2 to uk, with P1 as its part. Hence for the pair of

vertices (uk, ul), there will be (n2
2 + 2n2 + 1)σG1(up) geodesics with up as an

internal vertex.
The geodesics connecting vertices of Gp

2 to other vertices of G1 ◦ G2 will have
up − uk geodesic as a part for some k. If P2 is one of the up − uk geodesic, it will
be part of
- n2

2 geodesics connecting Gk
2 to Gp

2 and
- n2 geodesics connecting Gp

2 to uk. Hence for every up−uk geodesic in G1 there
will be σG1(up, uk)[n2(n2+1)] geodesics in G1 ◦G2 with up as an internal vertex.
Considering every pair uk − up the result follows.
2) Since every vertex of Gi

2 are joined to ui, the maximum distance between ver-
tices of Gi

2 is 2. Hence the proof.

Next we find an expression for the transit of a vertex, up in G1 ◦ G2, where
G1 and G2 are arbitrary. Let (uk, ul) be a pair of vertices in G1 such that uk − ul

geodesic has up as an internal vertex. Let Tkl(up) denote the contribution to transit
of up, due to geodesic connecting vertices of Gk

2 ∪ {uk} to Gl
2 ∪ {ul}. Also we

denote the contribution of vertices in Gp
2 to T (up) by Tp(up).

Lemma 3.5. For arbitrary graphs G1 and G2,

Tkl(up) = σG1(uk, ul/up)
[
(n2 + 1)2d(uk, ul) + 2n2(n2 + 1)

]
Proof. Table 1 gives the length and number of geodesics through up

Vertices connected Length Number
Gk

2 to Gl
2 2 + d(uk, ul) n2

2σ(uk, ul/up)
uk to Gl

2 1 + d(uk, ul) n2σ(uk, ul/up)
Gk

2 to ul 1 + d(uk, ul) n2σ(uk, ul/up)
uk to ul d(uk, ul) σ(uk, ul/up)

Table 1: Table detailing geodesics through up

The result follows.

Lemma 3.6. Tp(up) =
∑n1

p ̸=k=1

[
σG1(up, uk)

[
n2(n2+1)d(up, uk)+n2(1+2n2)

]]
+

2
[(

n2

2

)
−m2

]
Proof. Table 2 gives the contribution of geodesics through up to Tp(up). Consid-
ering every vertex uk, k ̸= p, the result follows.

Theorem 3.7. 1) T (up) = Tp(up) +
∑

kl Tkl(up)
2) T (vpi ) = 2× number of geodesics in G2 of length 2 through vi.
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Vertices connected Length Number
uk to Gp

2 1 + d(uk, up) n2σ(uk, up)
Gk

2 to Gp
2 2 + d(uk, up) n2

2σ(uk, up)
Gp

2 to Gp
2 2

(
n2

2

)
−m2

Table 2: Geodesics through up

Proof. 1) Geodesics through up are either considered in Tp(up) or in Tkl(up).
Hence the result is evident.
2) Follows from Proposition 3.4.

In the remaining sections we consider G2 as arbitrary, while G1 is replaced by
various graph classes like Pn, Cn, Kn, Km,n and Sm+1

3.2 Path Graphs

Let Pn be the path graph with vertices 1, 2, . . . , n. We give an expression for
transit of k using Theorem 3.7 in Pn ◦G2.

Theorem 3.8.

T (k) =
(k − 1)(n2 + 1)(n− k)

2

[
(n2 + 1)(n+ 1) + 4n2

]
+

n2(n2+1)
[(k − 1)k

2
+
(n− k)(n− k + 1)

2

]
+n2(2n2+1)(n−1)+2

[(n2

2

)
−m2

]
Proof. Let 1 ≤ l < k < m ≤ n. Since G1 is a path, we have σG1(l,m/k) = 1.
Hence Tlm(k) = (n2 + 1)2(m− l) + 2n2(n2 + 1)

∴
∑
l,m

Tlm(k) = (n2 + 1)2
k−1∑
l=1

n∑
m=k−1

(m− l) +
k−1∑
l=1

n∑
m=k−1

2n2(n2 + 1)

= (n2 + 1)2TG1(k) + (k − 1)(n− k − 1)2n2(n2 + 1)

= (n2 + 1)2
(n+ 1)(k − 1)(n− k)

2
+ (k − 1)(n− k − 1)2n2(n2 + 1)

=
(k − 1)(n2 + 1)(n− k)

2

[
(n2 + 1)(n+ 1) + 4n2

]
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In a similar manner we compute Tk(k)

Tk(k) =
n∑

k ̸=i=1

[
(d(k, i) + 1)n2 + (d(k, i) + 2)n2

2

]
+2

[(n2

2

)
−m2

]
= (n2 + n2

2)

[
(k − 1)k

2
+

(n− k)(n− k + 1)

2

]
+ n2(2n2 + 1)(n− 1)

+2
[(n2

2

)
−m2

]
The result follows.

In the following examples we compute transit for the vertices in various corona
product of Pn. From Theorem 3.8, we have

T (k) =
(k − 1)(n2 + 1)(n− k)

2

[
(n2 + 1)(n+ 1) + 4n2

]
+n2(n2+1)

[(k − 1)k

2
+
(n− k)(n− k + 1)

2

]
+n2(2n2+1)(n−1)+2

[(n2

2

)
−m2

]
= T1 + T2, say where T2 = 2

[(
n2

2

)
−m2

]
Examples

1. G2 = Pm. Here n2 = m,m2 = m−1. Hence T (k) = T1+(m−1)(m−2).
For pendant vertices of P i

m, the transit is 0 and 2 for others, ∀i.

2. G2 = Cm. Here n2 = m2 = m. For every vertex in Ci
m, there exist only

one geodesic of length 2 through it.
Here T (k) = T1 +m(m− 3) and T (vik) = 2, ∀k, i.

3. G2 = Km. Then n2 = m,m2 =
(
m
2

)
.

Thus, T (k) = T1 and T (vik) = 0, ∀k, i.

4. G2 = Sm. Here n2 = m,m2 = m−1. Hence T (k) = T1+(m−1)(m−2).
T (vik) = 0, for pendant vertices and for central vertex of S − m, T (vik) =
(m− 1)(m− 2)

5. G2 = Kl1,l2 . n2 = m = l1 + l2 and m = l1l2
T (k) = T1 + (m− 1)m− 2l1l2 and T (vik) = TKl1,l2

(vk)
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3.3 Cycle
In this section we consider G1 to be a cycle. We have already seen that transit

of vertices in cycles with order 2n and 2n + 1 are the same. Hence we consider
G1 = C2n1+1. We represent the vertices by 0, 1, . . . , 2n1. Also every vertex in the
cycle being transit identical, it is enough we compute the transit for n1.

Theorem 3.9. If a is any vertex of the cycle C2n or C2n+1, its transit in the corona
product C2n ◦G2 or C2n+1 ◦G2 is given by T (a) = (n2+1)(n1−1)n1

3
[n2n1 + 4n2 +

n1 + 1] + n2n1

[
(n2 + 1)(n1 + 1) + 2(1 + 2n2)

]
+ 2

[(
n2

2

)
−m2

]
Proof. For any k, l we know that σG1(k, l/n1) = 1.

Tk,l(n1) =
[
(n2 + 1)2d(k, l) + 2n2(n2 + 1)

]
∴
∑
k,l

Tk,l(n1) = (n2 + 1)2
∑
k,l

d(k, l) +
n1(n1 − 1)

2
2n2(n2 + 1)

= (n2 + 1)2TG1(n1) +
n1(n1 − 1)

2
2n2(n2 + 1)

= (n2 + 1)2
(n2 − 1)n

24
+

n1(n1 − 1)

2
2n2(n2 + 1)

=
(n2 + 1)(n1 − 1)n1

3
[n2n1 + 4n2 + n1 + 1]

Next we compute Tn1(n1)

Tn1(n1) =

2n1∑
n1 ̸=i=0

[
n2(n2 + 1)d(n, i) + n2(1 + 2n2)

]
+2

[(
n2

2

)
−m2

]
, σG1(n1, i) being 1

= n2n1

[
(n2 + 1)(n1 + 1) + 2(1 + 2n2)

]
+ 2

[(
n2

2

)
−m2

]
And TG1◦G2(n1) =

∑
k,l Tk,l(n1) + Tn1(n1). Hence the proof.

3.4 Star
Let G1 = Sn+1. In a star there are n pendant vertices and one central vertex.

All pendant vertices are transit identical. Hence we need to compute transit of one
of the pendant vertex and the central vertex in Sn+1 ◦G2. Let us name the vertices
as 1, 2, . . . , n+ 1, where n+ 1 is the central vertex.
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Theorem 3.10. In Sn+1 ◦ G2, T (n + 1) = n
[
(n − 1)(n2 + 1)(2n2 + 1) +

n2(3n2 + 2)
]
+ 2

[(
n2

2

)
−m2

]
and T (i) = n2

[
(n2 + 1)(2n− 1) + n(2n2 + 1)

]
+

2
[(

n2

2

)
−m2

]
, i ̸= n+ 1

Proof. Consider n+ 1. We have σ(k, l/(n+ 1)) = 1 and d(k, l) = 2

Thus Tk,l(n+ 1) = 2(n2 + 1)(2n2 + 1) (1)

∴
∑
k,l

Tk,l(n+ 1) =

(
n

2

)
2(n2 + 1)(2n2 + 1) (2)

= n(n− 1)(n2 + 1)(2n2 + 1) (3)

While computing Tn+1(n+ 1), we see that σSn+1(n+ 1, i) = 1 and d(n+ 1, i) =
1,∀i. Thus we get Tn+1(n+1) = nn2(3n2+2)+2

[(
n2

2

)
−m2

]
, which completes

the computation for T (n+ 1)
Now consider the vertex i ̸= n + 1. It can easily be verified that σ(k, l/i) =
0,∀k, l. Hence

∑
k,l Tk,l(i) = 0. for a fixed i, σ(i, k) = 1∀k and d(i, n + 1) = 1

and d(i, k) = 2, k ̸= n+ 1
∴ Ti(i) = n2

[
4nn2 + 3n− n2 − 1

]
+ 2

[(
n2

2

)
−m2

]
. Hence the proof.

3.5 Complete graph and Complete bipartite graph
Theorem 3.11. In the corona product Kn ◦G2, the transit of any vertex of Kn is
(n− 1)n2(3n2 + 2) + 2

[(
n2

2

)
−m2

]
Proof. Since every vertex of Kn is transit identical, we consider one of them. Let
ui be any vertex of Kn.
σ(uk, ul/ui) = 0 =⇒

∑
Tk,l(ui) = 0

Again σ(ui, uk) = 1,∀k ̸= i and d(ui, uk) = 1
∴ Ti(ui) =

∑
k ̸=i

[
n2(n2 + 1) + n2(2n2 + 1)

]
+ 2

[(
n2

2

)
−m2

]
. Hence the result.

Next we consider a complete bipartite graph Kl1,l2 with bipartition V1, V2. Let
V1 = a1, a2, . . . , al1 and V2 = b1, b2, . . . , bl2 . Then all ai are transit identical.
Similarly all bi are also transit identical. Computation of T (ai) and T (bi) are
similar. Hence we compute T (ai) only.

Theorem 3.12. In Kl1,l2 ◦G2, the transit of ai, T (ai) =
(
l2
2

)
2(n2 +1)(2n2 +1)+

l2n2(4n2 + 3)(l1 − 1) + l2n2(3n2 + 2) + 2
[(

n2

2

)
−m2

]
Proof. The shortest path in Kl1,l2 through ai are those connecting vertices of
V2. ∴ Tk,l(ai) = σKl1,l2

(bk, bl/ai)
[
(n2 + 1)2d(uk, ul) + 2n2(n2 + 1)

]
. Thus∑

k,l Tk,l(ai) =
(
l2
2

)
2(n2 + 1)(2n2 + 1).
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While computing Ti(ai), we see that vertices in V1 and V2 behaves differently.
Hence we split the summation as follows.

Ti(ai) =
∑
aj

σ(ai, aj)
[
n2(n2 + 1)d(ai, aj) + n2(2n2 + 1)

]
+
∑
bj

σ(ai, bj)
[
n2(n2 + 1)d(ai, bj) + n2(2n2 + 1)

]
+ 2

[(
n2

2

)
−m2

]

= l2n2(4n2 + 3)(l1 − 1) + l2n2(3n2 + 2) + 2

[(
n2

2

)
−m2

]

4 Conclusion
In this paper, we first considered arbitrary graphs G1 and G2. We could give

an expression for the transit of vertices in their corona product. This result was
applied to compute the transit of vertices in G1/circG2, where G1 refers to a
particular graph. It should be noted that we could express the transit of vertices in
G1 ◦G2 in terms of individual graph parameters. Thus, the computation of transit
in huge networks, which are Corona products, is now much easier.
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