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Abstract

For every connected graph G, the triangle free detour distance Das (u, V) is the length of
a longest u- v triangle free path in G, where u, v are the vertices of G. A u-v triangle
free path of length Das (u, V) is called the u-v triangle free detour. In this article, the
edge-to-vertex triangle free detour distance is introduced. It is found that the edge -to-
vertex triangle free detour distance differs from the edge -to-vertex distance and edge-
to-vertex detour distance. The edge-to-vertex triangle free detour distance is found for
some standard graphs. Their bounds are determined and their sharpness is checked.
Certain general properties satisfied by them are studied.
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1. Introduction

The facility location problem was introduced as edge-to-vertex distance by
Santhakumaran [9], in 2010. For an edge e and a vertex v in a connected graph, the
edge-to-vertex distance is defined by d(e,v) = min{d(u,v) : u € e}. The edge-to-
vertex eccentricity of e is defined by e,(e) = max{d(e,v): v € V}. A vertex v of G
such that e, (e) = d(e,v) is called an edge-to-vertex eccentric vertex of v. The edge-
to-vertex radius r, of G is defined by r, = min{e,(e) : e € E} and the edge-to-vertex
diameter d, of G is defined byd, = max{e, (e) : e € E}. An edge e for which e,(e)
is minimum is called an edge-to-vertex central edge of Gand the set of all edge-tovertex
central edges of G is the edge-to-vertex center C,(G) ofG. An edge e for which e, (e) is
maximum is called an edge-to-vertexperipheral edge of G and the set of all edge-to-
vertex peripheraledges of G is the edge-to-vertex periphery P, (G) of G. If every edgeof
Gis an edge-to-vertex central edge then G is called the edge-to-vertex self-centered
graph. This concept is useful in channel assignment problem in radio technology and
security-based communication network design. The concept of edge-to-vertex detour
distance was introduced by I. Keerthi Asir [6], Let e be an edge and v a vertex in a
connected graph G. An edge-to-vertex e — v path P is a u — v path, whereu is a vertex
in e such that P contains no vertices of e other than u. The edge-to-vertex detour
distance D(e,v) is the length of a longest e — vpath in G. Ane — v path of length
D(e,v)is called an edge-to-vertex e — v detour or simply e —v detour. Forour
convenience ane — v path of length d(e, v) is called an edge-to-vertex e — v geodesic
or simply e- v geodesic.

The following theorems are used in the article.

Theorem: 1.1.[6] For any edge e and a vertex vin a non-trivial connected graph of
ordern, 0 < d(e,v) < D(e,v) <n-—2.

Theorem: 1.2.[6] LetK,, ,, (n < m) be a complete bipartite graph with partitionVy, V,
of V(K m) such that |V;| = n and |V;| = m. Let e be an edge and v a vertex such that
v & e in K, ,,,, then

D(e,v) = {Zn— 1 ifvev,

2. Edge-To-Vertex Triangle Free Detour Distance

Definition. 2.1 Let Gbe a connected graph. Let ebe an edge and u a vertex inG. An
edge-to-vertex e — utriangle free path Pis a u — v triangle free path, wherevis a vertex
in esuch that Pcontains no vertices of e other than v. The edge-to-vertex triangle free
detour distance is the length of the longest e — u triangle free path in G.It is denoted by
Das (e, v). Ane — u triangle free path of lengthDas (e, v)is called an edge-to-vertex e —
utriangle free detour.
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Example: 2.1 Consider the graph Ggiven in the figure: 2.1. Let e = {ue, u7}and v = uy,.
The paths between eand v are Py: ug, Us, Us;PypiUs, Uy, UgPsi Uy, Uy, Us, Uy [Py,
Ug, Ug, Uy, Uy, Uy and Pg:u,, Ug, Ug, Uy, Uy, Us, Uy ;The paths Py, P,, Pyare triangle
free e — v paths and P; and Pg are not triangle free e — v paths. Thus edge-to-vertex
distance d(e,v) = 2, edge-to-vertex triangle free detour distance Das (e,v) =5 and
edge-to-vertex detour distance D(e,v) = 6.

Figure: 2.1 G
Thus edge-to-vertex triangle free detour distance differs from the edge-to-vertex
distance and edge-to-vertex detour distance.

Theorem. 2.1 Let G be a connected graph of order n. Let e be an edge and ua vertex
ofG,then 0 < d(e,v) < Dyr(e,v) < D(e,v) <n—2.

Proof. By theorem 1.1 , we can conclude that 0 <d(e,v) < D(e,v) <n-—2.1tis
enough to prove that (i)d(e, v) < Dag(e,v) and (ii) Dyr(e,v) < D(e,v).

Thus (i) is true by the definition of edge-to-vertex distance and edge-to-vertex triangle
free detour distance.

To prove :(ii)
Case(i): If the detour path does not induce a triangle in G, thenDpf(e,v) = D(e,v) .
Case(ii): If the detour path induces a triangle in G, then Dpf (e, v) < D(e,v)

Remark 2.1. The bounds in the theorem 2.1 are sharp. Let Gbe a graph and e be an

edge, d(e,u) = Dps(e,u) = D(e,u) = Oiffu € e.Let Gbe a path with vertices
{vi, vy, .} Thend(e,u) = Dyr(e,u) = D(e,u) =n—2, where e =
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{vn-1, vpJand u = v,. Let Gbe a tree, d(e,u) = Dps(e,u) = D(e,u) for every edge
eand vertex uof G. For the graph G given in the figure:2.1, e = {us, u7} and v = u,.
The paths between eand v are P;:ug, Us, Us; Poiuy, Uy, Uy P3ily, Uy, Us, Uy |
Py u;, ug, Uqg, Uy, Uy, Uy and Pg:u,, Ug, Ug,Up, Uy, Us, Uy ;The paths Py, P,, P,are
triangle free e — v paths and P; and Ps are not triangle free e — v paths. Thus edge-to-
vertex distance d(e,v) = 2, edge-to-vertex triangle free detour distance Daf(e,v) =5
and edge-to-vertex detour distanceD(e,v) =6. Thus 0 <d(e,v) < Dps(e,v) <
D(e,v) <n-—2.

Theorem. 2.2 For a complete bipartite graph Gwith partitions V;and V,such that |V;| =
nand |V,| = m(n < m).Let e be an edge of G and ua vertex such that u ¢ e in G.

Proof. Since any vertex subset of G do not induce a cycle C;in G. Thus edge-to-vertex

triangle free detour distance is equal to edge-to-vertex detour distance. By theorem: 1.2,
_(2n—2  ifu€eV,

Day(e,u) = {Zn —1 ifu€el,

Corollary:2.1 Let G be a complete bipartite graph K, ,, with partitions V;and V, .Let e
be an edge and u be a vertex such that u & einG. ThenD,¢(e,u) = 2n — 2.

Theorem: 2.3 Let G be a tree, then for every edge e and a vertex vin G, d(e,v) =
Das(e,v) = D(e,v).

Remark: 2.2 The converse of the theorem:2.3 need not be true. Consider the graph,G =
Cs,Where d(e,v) = Dyr(e,v) = D(e,v) =1 if vée and d(e,v) = Dyr(e,v) =
D(e,v) =0ifveEe.

Definition: 2.2 The edge-to-vertex triangle free detour eccentricity e,f, (e) of an edge
e in a connected graph G is defined ase,s,(e) = max{Dys(e,v) : v € V}. A vertex v
for which e,r,(e) = Dps(e, v) is called an edge-to-vertex triangle free detour eccentric
vertex of e. The edge-to-vertex triangle free detour radius of G is defined as
Rafs =radap,(G) = min{eys,(e):e € E}. The edge-to-vertex triangle free detour
diameter of G is defined as Dys, = diamas,(G) = max{eys,(€):e € E}.

Definition: 2.3 An edge e is called an edge-to-vertex triangle free detour central edge if
ear2(e) = Ryrp. The edge-to-vertex triangle free detour center of Gis defined as

Caf2(G) = Cenypo(G) = {e € E:eppy(€) = Rysa).
Definition: 2.4 An edge e is called an edge-to-vertex triangle free detour peripheral

edge if epnrp(e) = Dppp. The edge-to-vertex triangle free detour periphery of G is
defined as PAfZ(G) = PeTAfz(G) = {e €EE: eAfz(e) = DAfZ}'
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Definition. 2.5 If every edge of a graph G is a edge-to-vertex triangle free detour central
edge, then G is called edge-to-vertex triangle free detour self centered graph.

Definition. 2.6 If G is the edge-to-vertex triangle free detour self centered graph,
thenG is called edge-to-vertex triangle free detour periphery.

Example. 2.2 For the graph Ggiven in the figure: 2.2, e; = {uy, uy}, e, =
{uz, ustes ={us, st es = {wy, ushes = {us, uel e = {us, usle7 =

{u7, ugl es = {u1, ugleo ={us, uz} €10 ={uy, ushe; ={us, u} €12 = {us, us}
are the edges of G.

U1
us U2 us
Uy Uy
Us
Ug
Figure:2.2 G

The edge-to- vertex triangle free detour distances of the graph G, are provided in the
following table.
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Table:2.1

The following table provides the edge-to- vertex distances, edge-to-vertex triangle free
detour distances and edge-to- vertex detour distances of the graph Gin figure:2.2
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€ € €3 €4 €s €6 €7 €g €9 | €10 | €11 | €12

e, 2 2 2 2 2 2 2 3 2 2 1 2

exf2 4 4 4 5 5 4 3 3 3 4 3 4

epr | 6 6 6 6 6 6 6 6 5 5 4 5
Table: 2.2

The edge-to-vertex radiusr, = 1, the edge-to-vertex triangle free detour radius
Rap, = 3, the edge-to- vertex detour radius R, = 4. Thus, the edge-to-vertex triangle
free detour radius is different from the edge-to- vertex radius and the edge-to- vertex
detour radius. The edge-to-vertex diameter d, = 3, the edge-to- vertex triangle free
detour diameter D,f, = 6, the edge-to- vertex detour diameter D, = 6. Thus, the edge-
to- vertex triangle free detour diameter is different from the edge-to- vertex diameter
and the edge-to- vertex detour diameter.

The edge-to-vertex center C,(G) = {e;1}, the edge-to-vertex triangle free detour
center Caro(G) = {e;, eg, €, €11}, the edge-to-vertex detour center Cp,(G) =
{ey, €19, €11}Thus the edge-to- vertex triangle free detour center is different from the
edge-to- vertex center and the edge-to- vertex detour center. The  edge-to-vertex
periphery P,(G) = {eg}, the edge-to-vertex triangle free detour periphery Pyr,(G) =
{es, es}, the edge-to-vertex detour periphery Pp,(G) = {ei, e, ,e5,e,, €s,€6, €7, €5}
Thus, the edge-to- vertex triangle free detour periphery is different from the edge-to-
vertex periphery and the edge-to- vertex detour periphery.

The edge-to-vertex triangle free detour radius R,f, and the edge-to-vertex triangle
free detour diameter D,f, of some standard graphs are provided in the table:2.3

G K, P, C.(n=4) | W,(n=5) Ky, m(n=m)
Rys, 1 ln—ZJ n—2 n—2 {2(n—1),ifn=m
n 2n—1, ifn>m
D g, 1 n—2 n—2 n—2 {Z(n—l),ifnzm
2n—1, ifn>m

Example: 2.3 The complete graph K, the Cycle graph C,, (n = 4) and the wheel
graph W,,(n = 5) are the edge-to-vertex triangle free detour self centered graph.

Theorem:2.4 For a connected graph G of order n. Then

()0 < ey(e) < eprr(e) < epy(e) < n— 2, for every edge eof G.
(i)0 <71, <Rpp, <R, <n-—2.

(iii)0<d, <Dpp, <D, <n—2.

Remark: 2.3 The bounds in the theorem:2.4are sharp. If G = P,,then e,(e) =
earz(e) = epy(e) =0. If G =C, (n=4),then ey(e) = erpr(e) =epy(e) =n—2.
For the graph G given in the figure:2.2, 0 < e, (e) < eps,(e) < epy(e) <n — 2, forthe
Edges € = €9,€10,€11,€12-
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