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Abstract:  In  this paper, we study cyclic codes detecting a subclass of close-closed loop 
bursts viz. moderate-density close-closed loop bursts. A subclass of CT close-closed loop 
bursts called CT moderate-density close-closed loop bursts is also studied. A comparative 
study of the results obtained in this paper has also been made. 
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1. Introduction 
 
Burst errors are the most common type of errors that occur in several 
communication channels. Codes developed to detect and correct such errors have 
been studied extensively by many authors. The most successful early burst error 
correcting codes were due to Fire (1959). Fire in his report gave the idea of open and 
closed loop bursts defined as follows: 
 
Definition 1. An open loop burst of length b is a vector all of whose non-zero 
components are confined to some b consecutive components, the first and the last of 
which is non-zero. 
 
Definition 2. A closed loop burst of length b is a vector all of whose non-zero 
components are confined to some b consecutive components, the first and the last of 
which is non-zero and the number of positions from where the burst can start is n 
(i.e. it is possible to come back cyclically at the first position after the last position 
for enumeration of the length of the burst).  
 
Definition 2 of closed loop burst can also be formulated mathematically on the lines 
Campopiano (1962) as follows: 
 
Definition 2a. Let  )(qV n   be the set of all ordered n- tuples with components 

belonging to GF(q). Let X = ),...,,( 110 −naaa  be a vector in )(qV n . Then X is 
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called a closed loop burst of length b, ,2 nb ≤≤  if  ∃  an  i , 10 −≤≤ ni ,       such 
that   

0. ≠ji aa   where j = ( i + b - 1) modulo n 

and  
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There is yet another definition of a burst due to Chien and Tang (1965) which runs 
as follows:  
 
Definition 3. A CT burst of length b is a vector all of whose non-zero components 
are confined to some b consecutive components, the first of which is non-zero. 
 
Based on these definitions, Dass & Jain (2000) defined close-closed loop bursts, 
open-closed loop burst, CT close-closed loop burst, and CT open-closed loop burst 
and proved results for close-closed loop bursts and CT close-closed loop bursts. The 
definitions and the results proved by Dass & Jain (2000) are as follows: 
 
Definition 4. Let ),...,,( 110 −= naaaX be a vector in )(),( qGFaqV i

n ∈  and let 
nb ≤≤2 . Then X is called a close-closed loop burst of length b if ∃   an i , 

11 −≤≤ bi  such that  .0...,0. 1111 ====≠ −+−+−+− ibniiibn aaaaa  
 
Definition 5. The class of open loop burst as considered in Definition 1 may  be 
termed as open-closed loop bursts. 
 
Definition 6. Let X= ),...,,( 110 −naaa be a vector in )(qV n  and nb ≤≤2 . Then X is 
called a CT close-closed loop bursts of length b  if ∃  an i , 11 −≤≤ bi such that 

0≠+− ibna ; at least one of  110 ,...,, −iaaa  is non-zero and 
0... 11 ==== −+−+ ibnii aaa . 

 
Definition 7. The class of CT open loop burst as considered in Definition 3 may be 
termed as CT open-closed loop bursts. 
 
Theorem A. An (n, k) cyclic can not detect any close-closed loop burst of length b 
where 12 +≤≤ kb . 
 
Theorem B. The fraction of close-closed loop bursts of length b ( 12 +≤≤ kb ) that 
goes undetected to the total number of close-closed loop bursts in any (n, k) cyclic 
code is 
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                                                     =    
2

132

)1)(1(
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qq bbk

   . 

 
Theorem C. An (n, k) cyclic code can not detect any CT close-closed loop burst of 
length b where 12 +≤≤ kb . 
 
Theorem D. The fraction of CT close-closed loop burst of length b 

)12( +≤≤ kb that goes undetected to the total number of CT close-closed loop 
bursts in any (n, k) cyclic code is 

                                                    =     
( ) 1)1(

)1(
1

11

+−−

−
−

−+−

bqbq

qq
b

bbk

. 

 
There are of course many situations in which errors occur in the form of bursts but 
not all digits inside the burst get corrupted. Usually, the weight of the burst lies 
between two numbers 1w  and 2w  such that 212 ww ≤≤ ≤  length of burst. Such 
bursts are known as moderate-density bursts. Moderate-density bursts with respect 
to close-closed loop burst are known as moderate-density close-closed loop bursts 
and are defined as follows: 
 
Definition 8. A close-close loop burst of length b whose weight lies between 1w  
and 2w ,  bww ≤≤≤ 212 , is called a moderate-density close-closed loop burst. 
 
The development of codes which detect/correct moderate-density close-closed loop 
bursts can economize in the number of parity check digits required, suitably 
reducing the redundancy of the code or in the other words, suitably increasing the 
efficiency of transmission. In the second section of this paper, we obtain results 
similar to Theorem A and B for moderate-density close-closed loop bursts whereas 
in the third section, we obtain results similar to Theorems C and D for CT moderate-
density close-closed loop bursts. The last section viz. Section 4 gives a comparison 
of the results obtained in Section 2 and Section 3. 
 

              In what follows, an (n, k) cyclic code over GF(q) is taken as an ideal in 
the algebra of polynomials modulo the polynomial 1−nX . 
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2. Moderate-Density Close-Closed Loop Burst Error Detection 
 
In this section, we obtain results of Theorems A and B for  moderate- density close-
closed loop bursts. 
 
Theorem 1. An (n, k) cyclic codes can not detect any moderate-density close-closed 
loop burst of length b with weight lying between 1w  and  2w )( 21 bww ≤≤  where 

12 +≤≤ kb . 
Proof. There is no deviation in the final conclusion of this theorem from that of 
Theorem A because the proof is based on the length of the burst giving rise to a 
polynomial which is of the same degree even when the weight consideration over 
the burst is considered. Hence the proof is omitted.                                            
Q.E.D. 
 
Theorem 2. The fraction of moderate-density close-closed loop bursts of length b 

)12( +≤≤ kb  with weight lying between 1w  and 2w  that goes undetected to the 
total number of moderate-density close-closed loop bursts in any (n, k) cyclic code 
is  

=    
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                   where  }1,.{max1, 1111 rwrw −=−  
Proof. Let r(X) denote a moderate-density close-closed loop burst  of length 

)12( +≤≤ kbb with weight w lying between 1w  and 2w )( 21 bww ≤≤ . Let g(X) 
denote the generator polynomial of the code of degree   k.n −    
Now r (X) will be of the form 

r(X)= )...( 1
11

ib
nibnibn

ibn XaXaaX −−
−++−+−

+− +++          

);...(             1
1

2
210

−
−+++++ i

i XaXaXaa  ibnabi +−−≤≤ ,11 0, 1 ≠−ia  and the       
            number of non-zero coefficients, including  1, −+− iibn aa  lies between 1w  

and   
           2w . 

       ),()( 21 XrXrX ibn += +−  say 

where ib
niibnibn XaXaaXr −−
−++−+− +++= 1
11 ...)(  

and    ....)( 1
1

2
2102

−
−++++= i

i XaXaXaaXr  
Let 1r  be the number of non-zero coefficients in 1r (X) and 2r  be the number of 
non-zero coefficients in 2r (X), 
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where 
                        11 21 −≤≤ wr  

and                    11 22 −≤≤ wr  
Such that         2211 wrrw ≤+≤ . 
For any fixed value of  i, let us give different values of 1r . 
(i)   Let  11 =r . Then   11  ,1 221 −≤≤〉−〈 wrw  

              ( ,122112211 rwrrwwrrw −≤≤−⇒≤+≤Q  also 12 ≥r  
                               )1 , 12211 rwrrw −≤≤〉−〈∴  
               where { }.1 ,max1 , 1111 rwrw −=〉−〈  

We have then 
Number of polynomials of type ()1()(1 −= qXr ) 0

0
)1(1 −−− qib  

Number of polynomials of type 11

1,1 12
2

2

12 2

)1(1)1()( −
−

〉−〈= −
−∑ 






 −−= rw

wr r
qiqXr  

∴Number of polynomials of type r(X) 

= 11

1,1 1
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0
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(ii)  For  21 =r  we get  21 ,2 221 −≤≤〉−〈 wrw  

Number of polynomials of type ()1()(1 −= qXr ) )1(1
1

−−− qib  

Number of polynomials of type  12

1,2 1
2

2
2

12 2

)1(1)1()( −
−
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

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wr r
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∴  Number of polynomials of type r(X) 

= 12
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2
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
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
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



 −− rw

wr r
qiqib  

Continuing the computation for various values of  ,...,4,31 =r  we finally, have 
11 221 =⇒−= rwr  

and 

   Number of polynomials of type =)(1 Xr    2

2

2

2

)1(1)1( −

−
−






 −−−

w

w
qibq  

  Number of polynomials of type )(2 Xr = = 11

1 1
2

2 2

)1(1)1( −

= −
−∑ 






 −− r

r r
qiq  

  ∴  Number of polynomials  of type r(X) 

=  2

2

)1(1
2

w

w
qib −
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−∑ 






 − r
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qi  

So, for a fixed value of  i, 
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Number of polynomials of type r(X) 

=     }1

1, 1
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−∑ 






 −−∑











 −− rrw

rwr r

rw

r r
qiqib                    

Summing over i, we get 
Total number of polynomials of type r(X) 
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Again, r(X) will go undetected if g(X) divides r(X) 
⇒  r(X) =g(X)Q(X) for some polynomials Q(X) 
⇒  )()( 21

1 XrXrX bn ++− = g(X)Q(X) 

Now, number of polynomials of type Q(X) = )11( +−− bk qq   (refer[3]) 
   ∴Ratio of moderate-density close-closed loop bursts that goes undetected to the 

total number of moderate-density close-closed loop bursts is 

=   
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                   where  }1 ,.{max1 , 1111 rwrw −=−  
Hence the proof.                     Q.E.D. 
 
Special Cases. (i) For ,221 === wwb  the ratio obtained in the preceding 
theorem reduces to the ratio given in Theorem B for b=2 and the ratio in each case 
becomes   

)1(

1

−

−

q
q k

. 

(ii) For ,21 =w  the result obtained in the preceding theorem reduces to the case of 
low-density close-closed loop bursts considered by Dass & Jain (2000). 
(iii) For ,2 bw =  the result obtained in the preceding theorem reduces to the case 
for high-density close-closed loop bursts, considered by Dass & Jain (2000). 
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3. CT Moderate-Density Close-Closed Loop Burst Error Detection 
 
In this section we extend the studies made in Section 2 for CT moderate-density 
close-closed loop bursts. Firstly, we obtain the following result, the proof of 
which is omitted. 
 
Theorem 3. An (n, k) cyclic code can not detect any CT moderate-density close-
closed loop burst of length )12( +≤≤ kbb  with weight lying between 1w  and 

).( 212 bwww ≤≤  
 
We now prove the following result. 
 
Theorem 4. The fraction of CT moderate-density close-closed loop bursts of 
length b )12( +≤≤ kb with weight lying between 1w and 2w that goes undetected 
to the total number of CT moderate-density close-closed loop bursts in any (n, k) 
cyclic code is 

=   
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                   where  }1 ,.{max1 , 1111 rwrw −=−  
Proof. Let r(X) denote a CT moderate-density close-closed loop burst of length b  

)12( +≤≤ kb  with weight lying between 1w  and 2w )( 21 bww ≤≤ . Let g(X) 
denote the generator polynomial of the code of degree kn − .  
Now r(X) will be of the form  
r(X) = )...( 1

11
ib

nibnibn
ibn XaXaaX −−

−++−+−
+− +++  

);...(         1
1

2
210

−
−+++++ i

i XaXaXaa   ibnabi +−−≤≤ ,11 0≠  and the 
number  
           of non-zero coefficients, including  1, −+− iibn aa  lies between 1w  and 2w . 

        ),()( 21 XrXrX ibn += +−  say 

where ib
niibnibn XaXaaXr −−
−++−+− +++= 1
11 ...)(  

and   ....)( 1
1

2
2102

−
−++++= i

i XaXaXaaXr  
Let 1r  be the number of non-zero coefficients in )(1 Xr  and 2r  be the number of 
non-zero coefficients in )(2 Xr , 
where 
                          11 21 −≤≤ wr  
and                   11 22 −≤≤ wr  
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Such that       2211 wrrw ≤+≤ . 
For any fixed value of i, let us give different values of 1r . 
(i)   Let  11 =r . Then   11 ,1 221 −≤≤〉−〈 wrw  and 

Number of polynomials of type ()1()(1 −= qXr ) 0

0
)1(1 −−− qib  

Number of polynomials of type 2
2

12 2

)1()(
1

1,1
2

rw
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qiXr −∑ 
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〉−〈=
 

∴  Number of polynomials of type r(X) 

     = 2
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〉−〈=
 

(ii)  Let  21 =r  we get  21 ,2 221 −≤≤〉−〈 wrw  

Number of polynomials of type ()1()(1 −= qXr ) )1(1
1

−−− qib  

Number of polynomials of type  2
2
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2
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2

rw
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qiXr −∑ 






=

−

〉−〈=
 

∴  Number of polynomials of type r(X) 

= 2
2

12 2

)1()1(1
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2
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



 −−

−

〉−〈=
 

Continuing the computation for various values of  ,...,4,31 =r we finally, have 
11 221 =⇒−= rwr   and 

Number of polynomials of type   =)(1 Xr    2

2

2

2

)1( 1 )1( −

−
−






 −−−

w

w
qibq  

Number of polynomials of type  )(2 Xr =  2

2 2

)1(
1

1

r

r r
qi −∑ 







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Number of polynomials  of type r(X) 
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2
2

2
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−
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
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

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w
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1
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So, for a fixed value of  i, 
Number of polynomials of type r(X) 

=     }2
12

112 2

1
2

1 1

)1()1(1
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1 1
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
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−
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Summing over i , we get 
Total number of polynomials of type r(X) 

= { }2
12

112 2

1
2

1 1

)1()1(1
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1

1 1

1

1
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rwr r
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i
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
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

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





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−
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−

= −

−

=
    

Again, r(X) will go undetected if g(X) divides r(X) 
⇒  r(X) = g(X)Q(X) for some polynomials Q(X) 
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⇒  )()( 21 XrXrX ibn ++− = g(X)Q(X) 

Now, number of polynomials of type Q(X) = )11( +−− bk qq       (refer[3]) 
∴Ratio of moderate-density close-closed loop bursts that goes undetected to the 
total number of moderate-density close-closed loop bursts is 

=   
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1

1
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b
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w

r
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r
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                   where  }1,.{max1, 1111 rwrw −=−  
Hence the proof.                 
Q.E.D. 
 
Special Cases. (i) For ,221 === wwb  the ratio obtained in the preceding 
theorem reduces to the ratio given in Theorem B for b=2 and the ratio in each case 
becomes   

)1(

1

−

−

q
q k

. 

(ii) For ,21 =w  the result obtained in the preceding theorem reduces to the case of 
low-density close-closed loop bursts considered by Dass & Jain (2000). 
(iii) For ,2 bw =  the result obtained in the preceding theorem reduces to the case 
for high-density close-closed loop bursts, considered by Dass & Jain (2000). 

 
 

4. Comparative Study 
 
In this section, we present the comparison of the results obtained in Section 2 and 
Section 3 viz. Theorem 2 and Theorem 4. The comparison has been presented in 
the form of a table by taking specific values of b, 1w  and 2w  in the binary case. 
For 221 === wwb , both definitions viz. of moderate-density close-closed loop 
burst and of CT moderate-density close-closed loop burst coincide. Therefore, we 
start comparing the results for b=3, and onwards.  
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TABLE [ ]2=q  
____________________________________________________________________ 

Moderate-Density Close-Closed                  CT Moderate-Density Close-Closed 
Loop Bursts              Loop Bursts 
(Theorem 2)        (Theorem 4) 
________________________________________________________________  

[ ]2,2;3 21 === wwb  

00.64
00.33
50.12

=
=
=

k
k
k

       

00.4
00.2
00.1

  

[ ]3,2;3 21 === wwb  

00.34
50.13
75.02

=
=
=

k
k
k

     

40.2
20.1
60.0

  

           [ ]3,3;3 21 === wwb  

00.64
00.33
50.12

=
=
=

k
k
k

     

00.6
00.3
50.1

  

________________________________________________________________
[ ]2,2;4 21 === wwb  

33.95
66.44
33.23

=
=
=

k
k
k

     

66.4
33.2
16.1

  

[ ]3,2;4 21 === wwb  

11.35
55.14
77.03

=
=
=

k
k
k

     

00.2
00.1
50.0

  

[ ]4,2;4 21 === wwb  

 

33.25
66.14
58.03

=
=
=

k
k
k

      

64.1
82.0
41.0

  

[ ]3,3;4 21 === wwb  

66.45
33.24
16.13

=
=
=

k
k
k

     

50.3
75.1
87.0
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[ ]4,3;4 21 === wwb  

11.35
55.14
77.03

=
=
=

k
k
k

                  

54.2
27.1
63.0

 

[ ]4,4;4 21 === wwb  

33.95
66.44
33.23

=
=
=

k
k
k

                                        

33.9
66.4
33.2

 

________________________________________________________________
[ ]2,2;5 21 === wwb  

00.156
50.75
75.34

=
=
=

k
k
k

            

00.6
00.3
50.1

 

[ ]3,2;5 21 === wwb  

75.36
87.15
93.04

=
=
=

k
k
k

                                      

00.2
00.1
50.0

 

[ ]4,2;5 21 === wwb  

14.26
07.15
53.04

=
=
=

k
k
k

                                    

33.1
66.0
33.0

 

[ ]5,2;5 21 === wwb  

87.16
93.05
46.04

=
=
=

k
k
k

                                

22.1
61.0
30.0

 

[ ]3,3;5 21 === wwb  

00.56
50.25
25.14

=
=
=

k
k
k

                               

00.3
50.1
75.0

 

[ ]4,3;5 21 === wwb  

50.26
25.15
62.04

=
=
=

k
k
k

                                         

71.1
85.0
42.0
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[ ]5,3;5 21 === wwb  

14.26
07.15
53.04

=
=
=

k
k
k

                                         

53.1
76.0
38.0

 

[ ]4,4;5 21 === wwb  

00.56
50.25
25.14

=
=
=

k
k
k

                                         

00.4
00.2
00.1

 

[ ]5,4;5 21 === wwb  

75.36
87.15
93.04

=
=
=

k
k
k

                                              

15.3
57.1
78.0

 

[ ]5,5;5 21 === wwb  

00.156
50.75
75.34

=
=
=

k
k
k

                                         

00.15
50.7
75.3

 

Note.   The fractions have been calculated up to 2 decimal places. 
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