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Abstract: In this paper, we study cyclic codes detecting a subclass of close-closed loop
bursts viz. moderate-density close-closed loop bursts. A subclass of CT close-closed loop
bursts called CT moderate-density close-closed loop bursts is aso studied. A comparative
study of the results obtained in this paper has also been made.
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1. Introduction

Burst errors are the most common type of errors that occur in severa
communication channels. Codes developed to detect and correct such errors have
been studied extensively by many authors. The most successful early burst error
correcting codes were due to Fire (1959). Firein his report gave the idea of open and
closed loop bursts defined as follows:

Definition 1. An open loop burst of length b is a vector al of whose non-zero
components are confined to some b consecutive components, the first and the last of
which is non-zero.

Definition 2. A closed loop burst of length b is a vector al of whose non-zero
components are confined to some b consecutive components, the first and the last of
which is non-zero and the number of positions from where the burst can start is n
(i.e. it is possible to come back cyclicaly at the first position after the last position
for enumeration of the length of the burst).

Definition 2 of closed loop burst can also be formulated mathematically on the lines
Campopiano (1962) as follows:

Definition 2a. Let V"(q) be the set of all ordered n- tuples with components
belonging to GF(q). Let X = (ay,ay,..,a,4) be a vector in V"(qg). Then X is
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called aclosed loop burst of length b, 2<b<n, if 3 ani, 0<i<n-1, such
that
g.a; #0 wherej =(i+b-1)modulon

aj+1=aj+2:...:ai7120if |>J
and e
a0:a1:...:ai_1:aj+1:aj+2:...:an_1:0|f |<J

There is yet another definition of a burst due to Chien and Tang (1965) which runs
asfollows:

Definition 3. A CT burst of length b isavector al of whose non-zero components
are confined to some b consecutive components, the first of which is non-zero.

Based on these definitions, Dass & Jain (2000) defined close-closed loop bursts,
open-closed loop burst, CT close-closed loop burst, and CT open-closed loop burst
and proved results for close-closed loop bursts and CT close-closed loop bursts. The
definitions and the results proved by Dass & Jain (2000) are as follows:

Definition 4. Let X =(ay,3ay,..,a,4) be a vector in V"(q),a € GF(q) and let
2<b<n. Then X is caled a close-closed loop burst of length b if 3 ani,
1<i<b-1suchthat a, . .8_3#0,8 =8a;,4=..=8,_4,i1=0.

Definition 5. The class of open loop burst as considered in Definition 1 may be
termed as open-closed loop bursts.

Definition 6. Let X= (ay,&,...,a, 1) beavectorin V"(q) and 2<b<n.Then X is
called a CT close-closed loop bursts of length b if 3 ani, 1<i <b-1such that
app #0; a least one of ap.,84,...8_4 IS non-zero and

8 =81 = =8y i1 =0.

Definition 7. The class of CT open loop burst as considered in Definition 3 may be
termed as CT open-closed loop bursts.

Theorem A. An (n, k) cyclic can not detect any close-closed loop burst of length b
where 2<b<k+1.

Theorem B. The fraction of close-closed loop bursts of length b (2<b<k+1) that

goes undetected to the total number of close-closed loop bursts in any (n, k) cyclic
codeis
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qk—2b+3(qb—l 1)
(b-1)(q-1?

Theorem C. An (n, k) cyclic code can not detect any CT close-closed loop burst of
length b where 2<b<k+1.

Theorem D. The fraction of CT close-closed loop burst of length b
(2<b<k+1)that goes undetected to the total number of CT close-closed loop

burstsin any (n, k) cyclic codeis
q k—b+1 (q b-1 1)

a*((b-1g-b)+1

There are of course many situations in which errors occur in the form of bursts but
not all digits inside the burst get corrupted. Usually, the weight of the burst lies
between two numbersw; and w, such that 2<w; <w, < length of burst. Such

bursts are known as moder ate-density bursts. Moderate-density bursts with respect
to close-closed loop burst are known as moderate-density close-closed loop bursts
and are defined as follows:

Definition 8. A close-close loop burst of length b whose weight lies between w;
and w,, 2<w; <w, <b, iscalled amoderate-density close-closed loop burst.

The development of codes which detect/correct moderate-density close-closed loop
bursts can economize in the number of parity check digits required, suitably
reducing the redundancy of the code or in the other words, suitably increasing the
efficiency of transmission. In the second section of this paper, we obtain results
similar to Theorem A and B for moderate-density close-closed loop bursts whereas
in the third section, we obtain results similar to Theorems C and D for CT moderate-
density close-closed loop bursts. The last section viz. Section 4 gives a comparison
of the results obtained in Section 2 and Section 3.

In what follows, an (n, k) cyclic code over GF(q) istaken asanidedl in
the algebra of polynomials modulo the polynomial X" —1.

17



2. Moder ate-Density Close-Closed Loop Burst Error Detection

In this section, we obtain results of Theorems A and B for moderate- density close-
closed loop bursts.

Theorem 1. An (n, k) cyclic codes can not detect any moderate-density close-closed
loop burst of length b with weight lying between w; and w, (w; <w, <b) where

2<b<k+1.

Proof. There is no deviation in the final conclusion of this theorem from that of
Theorem A because the proof is based on the length of the burst giving rise to a
polynomial which is of the same degree even when the weight consideration over
the burst is considered. Hence the proof is omitted.

Q.E.D.

Theorem 2. The fraction of moderate-density close-closed loop bursts of length b
(2<b<k+1) with weight lying between w; and w, that goes undetected to the

total number of moderate-density close-closed loop bursts in any (n, k) cyclic code
is

_ qk(l_q—b+1)
b-1[w,-1 . 1 WeTh . r—1
¥ (b—l—l (@-" % (l—l](q—l)z b
i=1| n=1 r-1 rp=(w -1, 1y \ 21

where (w; —ry,1) = max {w; —r,, 1
Proof. Let r(X) denote a moderate-density close-closed loop burst of length
b(2 <b <k +1)with weight w lying between w; and w, (w; <w, <b). Let g(X)

denote the generator polynomial of the code of degree n-—Kk.
Now r (X) will be of the form

r)= X" (@ _pai + 80 pria X+ B XPH)
+(ag +ray X +a, X% +..+a X' ?); 1<i<b-la, ., ,a_, #0 andthe

number of non-zero coefficients, including a,_,.i,&_; lies between w;
and

W, .

= X" (X)+15(X), sy

where 1 (X) =a, . + 85 p,i X +ota, X0
and r,(X)=ag+a X +a,X2+..+a X'
Let r; be the number of non-zero coefficients in r; (X) and r, be the number of
non-zero coefficientsin r, (X),
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where
1< <w,-1
and 1<r,<w, -1
Such that Wy < +ry S W,
For any fixed value of i, let us give different values of r; .
(i) Let r;=1.Then (w-1L, DH<r,<w,-1
QW S+, W, =W -1 <1, W, -1y, Ao r, 21
SW =, D <, <wW, —1p)

where (w; —r;,1) = max{w, —r;, 1}
We have then
Number of polynomials of type r; (X) = (q—1)( b-i-1 Xg-1)°

-1
Number of polynomials of type r,(X) = Wi (g —1)(i —1](q -1 -1
rp=(w-11) -1

.. Number of polynomials of type r(X)
. 2 Wt r,—1
= (b-i-1)a-9* S [i-1fa-D"

rp=(w-11) \ -1

(i) For r; =2 weget (W, -2, <r, <w, -2

Number of polynomials of type r; (X) = (q —1)( b-i-1 )(Q—l)
1

-2
Number of polynomials of type r,(X) = WZZ (q—l)(i—llj(q—l)rz‘1
-

r=(w—2,1)
.. Number of polynomials of type r(X)
. 3 W2 () N
G G [u —1j(q—1>f2
1 p=(w-2\ 21
Continuing the computation for various valuesof r; =34,..., wefinaly, have
and

Number of polynomials of type r, (X) = (q—D(b—i ;1](q—])w2 2
W

1
Number of polynomials of type r,(X)== X (q—])(i —1](q—])r2l
I.

r,=1 21

.. Number of polynomials of type r(X)
; wo L. r,-1
= (b—l—lj(Q—J) Z(I —1]((1—1)2
W,—2 -1

r,=1

So, for afixed value of i,
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Number of polynomials of type r(X)
w,-1 1 W, —Iy 1
= X {(b—i —1j(q—1)r1+ ) (i —1j(q—1)r2_ }
=1 [ rp=(wy—r;, 1) \ 21
Summing over i, we get
Total number of polynomials of type r(X)

_ bil{ Wil{(b_i_l_lj(q_l)rﬁl Wzifl (I _1j(q_1)r2—1 }

i=1 =1 n rp=(w—r, ) \ 21

Again, r(X) will go undetected if g(X) dividesr(X)
= r(X) =g(X)Q(X) for some polynomials Q(X)

= X"y (X) +1,(X) = gX)Q(X)
Now, number of polynomials of type Q(X) = q*(1—q ™ (refer[3])

.. Ratio of moderate-density close-closed loop bursts that goes undetected to the
total number of moderate-density close-closed loop burstsis

_ qk(l_quJrl)

b-1|w,-1 . a1 Welh . roe
z{ ) {[b—u—l](q—l) Y [u—l](q—l) =}
i=1| r=1 n-1 rp=(w -1, \ 21

where (w; —r;,1) = max {w, —r;,
Hence the proof. Q.E.D.

Special Cases. (i) For b=w; =w, =2, the ratio obtained in the preceding

theorem reduces to the ratio given in Theorem B for b=2 and the ratio in each case
becomes

g«

(@-1)
(ii) For w; =2, the result obtained in the preceding theorem reduces to the case of
low-density close-closed loop bursts considered by Dass & Jain (2000).
(iii) For w, =b, the result obtained in the preceding theorem reduces to the case

for high-density close-closed loop bursts, considered by Dass & Jain (2000).
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3. CT Moderate-Density Close-Closed Loop Burst Error Detection

In this section we extend the studies made in Section 2 for CT moderate-density
close-closed loop bursts. Firstly, we obtain the following result, the proof of
which is omitted.

Theorem 3. An (n, k) cyclic code can not detect any CT moderate-density close-
closed loop burst of length b(2<b<k+1) with weight lying between w; and

w, (W <w, <b).
We now prove the following resullt.

Theorem 4. The fraction of CT moderate-density close-closed loop bursts of
length b (2 <b < k+1)with weight lying between w, and w,, that goes undetected

to the total number of CT moderate-density close-closed loop bursts in any (n, k)
cyclic codeis

_ q“(l-q

b-1|w,-1 . ; Wy —Ty . ;
Z{ )3 {(b—l—lj(Q—l) D> (l j(q—l) 2 }}
i=1| =1 n-1 rp=(W; 1,1 \ "2

where (w; —r;,1) = max {w, —r;,
Proof. Let r(X) denote a CT moderate-density close-closed loop burst of length b
(2<b<k+1) with weight lying between w; and w, (w; <w, <b). Let g(X)

denote the generator polynomial of the code of degree n—k .
Now r(X) will be of the form

(X)) = X" (@0 pyi + By i X+t 8y g X
+(@g+ay X +a,X2+...+a , X'); i<i<b-la,,, =0 and the
number
of non-zero coefficients, including a,_,;.a;_; liesbetween w; and w, .
= X" (X) +15(X), sy
where r;(X) =a, ,,,; +a X +..+a, X
and r,(X)=a,+ayX+a,X%+..+a ;X"
Let r; be the number of non-zero coefficientsin r;(X) and r, be the number of

non-zero coefficientsin r,(X),
where

—b+l)

N—b+i+i

1<rp<w,-1
and 1<r, <w, -1
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Suchthat — w; <rj+r1, <w,.

For any fixed value of i, let us give different values of r; .

(i) Let r;=1.Then (w;-11)<r, <w,-1and

Number of polynomials of type r, (X) = (q-1)( b—i-1 Xq-1)°

w,-1
Number of polynomials of type r,(X) = ZZ [i
ro=(w-11) \ "2

](q -1
.. Number of polynomials of type r(X)

w,—-1
=(b-i-1)a-n % [i](q—l)fz
0 r=(w-11) \ T2
(i) Let r; =2 weget (W, -2, <r, <w, -2
Number of polynomials of type r; (X) = (q —1)( b-i-1 )(Q—l)
1

W, —2
Number of polynomials of type r,(X)= 22 [i
r=(W-2,1) \ "2

j(q -1
.. Number of polynomials of type r(X)
w,—2
- (b-i-ta-2 % [i}a-:
1 =W -2\ 2
Continuing the computation for various values of r; = 3,4,..., wefinaly, have

Number of polynomials of type r;(X) = (q—])( 1)(q—])w2 2

b—i-
wW,—2

1

Number of polynomials of type r,(X)= Z(i](q—])rZ
rp=1\"2

Number of polynomials of type r(X)

4 1
= (b—i—lj(q—l)wz ' z[ij(q—nfz
wW,—2 1\ 12

=

So, for afixed value of i,
Number of polynomials of type r(X)

w,—1 Wo—1y
= X {(b—i—lj(q—l)” > (ij(q—l)rz }
=1 n-1 rp=(w—r;,1) \ 2

Summing over i , we get
Total number of polynomials of type r(X)
b-1, w,-1 W, —Iy
=y{ 3 {(b—i —1j(q—1)ﬁ > (i j(q—l)fz }
i=1 =1 r-1 ry=(w—r;, 1y \ "2
Again, r(X) will go undetected if g(X) divides r(X)
= r(X) = g(X)Q(X) for some polynomias Q(X)
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= X" (X) +12(X) = g(X)QX)
Now, number of polynomials of type Q(X) = qk Q- q’b”) (refer[3])

.. Ratio of moderate-density close-closed loop bursts that goes undetected to the
total number of moderate-density close-closed loop burstsis

qk (1_ q7b+l)

b-1|w,-1 ) I Wa—1y . r
_z{z {[b—u—l](q—l)l 5 (lj(q—lv )
i=1| r=1 n-1 rp=(w—r;, 1y \ "2

where (w; —ry,1) = max {w; —r,, ]

Hence the proof.
Q.E.D.

Special Cases. (i) For b=w; =w, =2, the ratio obtained in the preceding
theorem reduces to the ratio given in Theorem B for b=2 and the ratio in each case

becomes

qk—l

@-1
(ii) For w; =2, the result obtained in the preceding theorem reduces to the case of

low-density close-closed loop bursts considered by Dass & Jain (2000).
(iii) For w, =b, the result obtained in the preceding theorem reduces to the case

for high-density close-closed loop bursts, considered by Dass & Jain (2000).

4. Compar ative Study

In this section, we present the comparison of the results obtained in Section 2 and
Section 3 viz. Theorem 2 and Theorem 4. The comparison has been presented in
the form of atable by taking specific values of b, w; and w, in the binary case.
For b=w; =w, =2, both definitions viz. of moderate-density close-closed loop

burst and of CT moderate-density close-closed loop burst coincide. Therefore, we
start comparing the results for b=3, and onwards.
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TABLE [q=2]

Moderate-Density Close-Closed CT Moderate-Density Close-Closed
Loop Bursts Loop Bursts
(Theorem 2) (Theorem 4)

b=3w, =2w, =2]

k=2 1.50 1.00
k=3 3.00 2.00
k=4 6.00 4.00
b=3w, =2w, =3]
k=2 0.75 0.60
k=3 1.50 1.20
k=4 3.00 2.40
b=3w, =3 w, =3
k=2 1.50 1.50
k=3 3.00 3.00
k=4 6.00 6.00
[b:4;w1 =2,W, = 2]
k=3 2.33 1.16
k=4 4.66 2.33
k=5 9.33 4.66
[b:4;w1 =2, W, =3]
k=3 0.77 0.50
k=4 1.55 1.00
k=5 311 2.00
[b=4w =2 w, =4]
k=3 0.58 041
k=4 1.66 0.82
k=5 2.33 1.64
[b:4;w1 =3,w, :3]
k=3 1.16 0.87
k=4 2.33 1.75
k=5 4.66 3.50

24



[b=4w =3 w, =4]

k=3 0.77 0.63
k=4 1.55 1.27
k=5 311 2.54
[b:4;w1 =4, W, :4]
k=3 2.33 2.33
k=4 4.66 4.66
k=5 9.33 9.33
b=5w =2w, =2]
k=4 3.75 1.50
k=5 7.50 3.00
k=6 15.00 6.00
[b=5w =2w, =3]
k=4 0.93 0.50
k=5 1.87 1.00
k=6 3.75 2.00
b=5w =2w, =4]
k=4 0.53 0.33
k=5 1.07 0.66
k=6 214 1.33
b=5w =2w, =5|
k=4 0.46 0.30
k=5 0.93 0.61
k=6 1.87 1.22
[b=5w =3 w, =3]
k=4 1.25 0.75
k=5 2.50 150
k=6 5.00 3.00
[b=5w =3 w, =4]
k=4 0.62 0.42
k=5 1.25 0.85
k=6 2.50 171
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[b=5w, =3 w, =5]

k=4 0.53 0.38

k=5 1.07 0.76

k=6 214 153
[b=5w, =4,w, = 4]

k=4 125 1.00

k=5 2.50 2.00

k=6 5.00 4.00
[b=5w, =4,w, =5]

k=4 0.93 0.78

k=5 1.87 157

k=6 3.75 3.15
[b=5w, =5w, = 5]

k=4 3.75 3.75

k=5 7.50 7.50

k=6 15.00 15.00

Note. The fractions have been calculated up to 2 decimal places.
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