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Abstract

The number of ydn-sets that v belongs to in G is defined as the detour domination
value of v, indicated byyDy (v), for each vertex v € V(G). In this article, we examined
at the concept of a graph’s detour domination value. The connected detour domination
values of a vertex v € V(G), represented asCDy(G) , are defined as the number of
Cdn-sets to which a vertex belongs v to G. Some of the related detour dominating
values in graphs’ general characteristics are examined. This concept’s satisfaction of
some general properties is investigated. Some common graphs are established.
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1. Introduction

Graph having the type G = (V, E) is a finite, undirected connected graph without
loops or numerous edges. The order and size of the letter G are represented by the
characters n and m, respectively. We refer to [3] for the fundamental terms used in
graph theory. If uv is an edge of G, then two vertices u and v are said to be adjacent. If
two edges of G connect a vertex, they are said to be adjacent. The distance d(u, v)
between two vertices u and v in a connected graph G is thelength of a shortest u-vpath
in G. A u-v geodesic is a u-v path of length d(u, v).

The longest u-v path in G is also referred to as detour distance D (u, v) between two
vertices u and v in a linked graph G from u to v. A u-v detour is a u-v path of length
D(u,v). If x is a vertex of P that also contains the vertices u and v, then x is said to lie
on a u-v detour. Every vertex of G is contained in a detour connecting some pair of
vertices in S, which is the definition of a detour set of G. Any detour set of orderdn (G)
is referred to as a minimum detour set of G or a dn -set of G. The detour number dn
(G) of G is the minimum order of a detour set. These ideas have been researched in [4,
5, 6]. If for every v € V \ Dis adjacent to a vertex in D, then the set DS Vis a
dominant set of G. If no subset of a dominating set D is a dominating set of G’s, then D
is said to be minimal. The symboly(G) denotes the domination number of G, which is
the least cardinality of a minimal set of G dominating sets. In [4], the graph's
domination number was studied. If a set S is both a detour and a dominating set of G’s,
then it is referred to as a detour dominating set of G. Any detour dominating set of order
va(G)is referred to as a y4— set of G. The detour domination numbery,(G) of G is the
minimal order of its detour dominating set. In [8], the detour domination number of a
graph y,(G)studied. If a set S is a detour dominating set of G and its induction by S is
connected, the set S € V(G) is referred to as a connected detour dominating set of G .
Any connected detour dominating set with order y.,(G) is referred to as ay.,4 - set of G.
The connected detour domination number of y.;(G) of G is the maximum order of its
connected detour dominating sets. In [8,9], the connected detour domination number of
a graph was investigated. The subsequent theorem is applied thereafter.

Theorem 1.1[3] Every detour set of a connected graph G contains each end vertex.

Theorem 1.2[3] Let G be a connected graph n > 2. Then dn(G) = n if and only if
G = Kz.

Theorem 1.3[3] Let G be a connected graph of order n > 4. Then dn(G) =n —1 if
and Only if G = Kl,n—l-
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2.The Detour Domination Value of a Graph

Definition 2.1. For each vertexv € V(G), we define the detour domination value of v,
denoted by yDy, (v), to be the number of ydn-sets to which v belongs to G.

Example 2.2. In relation to the graph G in Figure 2.1, S;= {v;,v3},5,= {v;, v5}, 3=
{vi,va}, Su={v,,v3}, Ss= {vy, 14}, S= {v3, va}are the onlysix minimum ydn-sets of G
such that yDy (v1) = 3,yDy(v,) = 3, yDy(v3) = 3, yDy(vs) = 3, y7(G) = 6.

1 JWA\ U1 U3

QT

Uy

G

Figure 2.1
Theorem 2.3. For the complete grapnt= K,(n = 2)yDy(v) =n—-1, yr(G) =
nC,for each v € V(G).
Proof. Since any two sets of G's vertices is the ydn-set of G, thus yt(G) = nC,.
Since each vertex of G belongs to exactly n — 1ydn-sets, it follows that yD,(v) =
n—1foreachv € V(G).m

Theorem 2.4. For a star G= K;,_1(n = 3)yDy(v) = 1,yt(G) = 1for each v €
V(G).

Proof. We have G = K, ,,_1. Let S represent the set of all of the end vertices in
G. Then S is the unique ydn-set of G. Thus yt(G) = 1. Therefore yD,(v) = 1 for
eachv € V(G).m

Theorem 2.5. For the complete bipartite graph ¢ = K, ,with bipartite sets X and Y.
mn ifmn =2

andyt(G) ={1ifm=n=1
1 if {im,n}={1,x}wherex > 1

n, ifveX

m, if vey

If m=n=1= yDy(v) =1forany vinKj ;.

If myn = 2thenyDy,(v) = {
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If {m,n} = {1,x} withx > 1thenG = Ky ,.yDy(v) = {t" i}f;] E;(

Proof. Let X = {x;,x,,.., x5} and Y = {y4,y,, ...y} be the two bipartite sets of
G. Since any two adjacent vertices of G is a ydn-sets of G, it follows that y7(G) = mn
ifmn > 2.

If m,n = 1 then it has only one a ydnset of G such that y7(G) = 1.

If {m,n} = {1, x} then it only one ydn-set of G such that y7(G) = 1.

If v € X then any vertex in Y belongs to aydn-set of G hence yD,(v) = n. Also if
v € Y then any vertex in X belongs to a ydn-set thus yD,(v) = m for m,n = 2. If
m=n=1,then G = K,,yDy(v) = 1 forany v in K; ;. If {m,n} = {1,x} with x > 1,

1, ifveXx
thenG = K, , yDy (v) :{0 iffv eY'.

Theorem 2.6.For the wheel graph ¢ = K; + C,,_; (n = 5), yt(G) = {213_ 27’1 n ; 6

4, ifn=5
andyDy(v) =< 3, ifn =6 andv € V(C,_4)

n—1,ifn=>5,veV(K;)

Proof. Let V(K;) = x and V(Cp,—1) = {v1, V3, ..., Vp—1}. Let n = 5. Then S; = {vy,v,},
Sy = {v2, 3}, S3 = {V3,14}.54 = {4, 11}, S5 = {v1,x}, S¢ = {v2,x}, S7 = {v3,x}, Sg =
{vs, x},Sqg = {vy,v4}, 810 = {vy,v3} are  ydn-sets of G such that yD,(v,) =
4,yDy(v;) = 4,yDy(v3) = 4,yDy(vs) = 4, YDy (x) = 4.
Let n > 6. Then any two adjacent vertices of G is a ydn-set of G so that y7(G) =
m—1)+(Mm—-1)=2n-2 for v € V(C,-1), hence v lies in exactly three ydn-set of
G so that yD,(v) =3 for all v € V(C,—-1). Since x is adjacent to n — 1 vertices of
G,yDy(x)=n—1.m

Theorem 2.7. For the cycle graph G =Ch(n =3),
3 ifn=0(nod?3)

yt(C,) = n(l +%BJ) if n =1(mod 3)

n if n =2(mod 3)
Proof. LetV(C,) = {vy,v,, ...,v}. Let n =3k, where k > 1, Here ydn(C,) = k,a
ydn-set F comprises k K;’sand F is fixed by the choice of the first K;. There exists
exactly one ydn(C,)-set containing the vertex v;, and there are two ydn(C,)-sets
omitting the vertex v, such as F containing the vertex v, and F containing the vertex
v,. Thus yz(C,) = 3.
Let n=3k+ 1, where k = 1. Here ydn(C,) = k + 1, aydn-set Fis constituted in
exactly one of the following two ways.
i) Fcomprises (k — 1)K;’s and one K.
i) Fcomprises(k + 1)K;’s.
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Case(i) (F) = (k — 1)K; U K,: Note that F is fixed by the choice of the single K,
choosing a K, in the same as choosing its initial vertex in the counter clockwise order.
Hence 7 = 3k + 1.

Case(ii){(F) = (k + 1)K;:1t is clear that eachK; dominates three vertices, exactly there
are two vertices, say x and y, each of whom is adjacent to two distinct K;’s in F. And F
is fixed by the placements of x and y.There are n =3k + 1 ways of choosing
x. Consider the P;j_, (a sequence of 3k — 2 slots) obtained as a result of cutting from

C, the P; centered about x vertex.y may be placed in the first slot of any of the
3k—2

— | = k. As the order of selecting the two vertices x and y is immaterial T =
(3k2+1) I
Summing over the two disjoint cases, we get yr(Cn)=(3k+1)+@k=

k 1|n
(Bk+1) (1 +E) = Tl(l +;l§J)
Let n = 3k + 2, where k > 1, Hereydn(C,) = k + 1, a ydn(C,)-set F comprises of
only K;'s and is fixed by the placement of the only vertex which is adjacent to two
distinct K, 'sin F. Hence yt(C,) = n.m

3. The Connected Detour Domination Value of a
Graph

Definition 3.1. For each vertex v € V(G),we define the connected detour domination
values of v, denoted by €Dy, (G)to be the number of Cdn-sets to which v belongs to G.

Example 3.2. For the graph G given in Figure 3.1, S;= {v,,v,},S,= {vy,v3},S3=
{U11v4}' 54-: {U21v4}' 55: {UZ'U3}' S6: {UZ'US}v S7:{U3,U5} ’ 58: {U4,, US}are the Only
eight minimum Cdn-sets of G such that CDy(v,) = 3,CDy(v,) = 4,CDy(v3) = 3,
CDy(v,) = 3,CDy(vs) = 3andr.(G) = 8.

©
2
1 / 3 %1 V3
4 5 Uy Us
G
Figure 3.1
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Proposition 3.3. Let G be a graph with n vertices without cut vertices and A=n — 1.
ThenCdn(G) = 2 andCDy(v) <n—1Vv € V(G) and equality holds if and only if
deg (v) = n—1.

Proof. Let x be a universal vertex of G. Let y € N(x). Then S = {x, y} is a Cdn-set of
G so that Cdn(G) = 2. Since x is a universal vertex of G x belongs to every Cdn-set of
G.Since G contains at most n — 1 Cdn-sets, CD,(v) <n—1. Let CD,(v) =n— 1.
Hence it follows that v belongs to every Cdn-set of G. Therefore CD,(v) =n — 1. The
converse is clear. m

Theorem3.4. For n = 3,7.(C,) =n and CD,(v) = n — 2 Vv € V(G).

Proof. Let V(C,,) = {v,, vy, ..., . }. Then S, =V (C,) —{v;,v;;:13J(1 <i<n-1)and
S =V(C,) — {v,,v,} are the n, Cdn-sets of G, so that 7.(C,) =n. As C, is vertex
transitive CDy, (v) = CDy(v,) forall v € V(C,). Since v; belongs to n — 2 Cdn-sets
of C,, it follows that CD,(v) =n—2forallv e V(C,). m

Theorem3.5. Forn > 2,7.(B,) = 1 andCDy, (v) = 1 for each vertex Vv € V(B,).
Proof. Since S = V(G) is the unique Cdn-sets of G the results follow theorem. m

Theorem3.6. For the complete graph G = K,,(n = 4),CDy,(v) =n—1,7.(G) = nC,
for each vertex v € V(G).

Proof. Since any two set of vertices of G is theCdn-set of G, it follows that 7.(G) =
nC,. Since each vertex of G belongs to exatly n — 1 Cdn-sets, it follows that CD, (v) =
n — 1, for each vertex v € V(G). ]

Theorem3.7. For the wheel graph G = K; + C,,_;(n = 5),7.(G) = {27110; 27'an256
4, ifn=5

and CD,(v) =<3, if n =26andv €V(C,_1).

n—1,ifn=>5 v € V(K;)
Proof. Let V(K;) = x and V(C,,_;) = {v{, V5, ..., Uy_1}. Let n = 5. Then
S1=V(Wy1,v2),5; = V(v,,3),83 = V(v3,14),54 = V(Vs,11),S5 = V(vy,%), Sg =
V(vy,x), S; =V (v3,%),Sg = V(V4,%),Sg = V(v,,14),S1 = V(vy,v3)are the Cdn-
sets of G, such that €Dy (v,) = 4,CDy(v,) = 4,CDy(v3) = 4,CDy(v,) = 4,CDy(x) =
4 and 7.(G) = 10. Let n = 6. Then any two adjacent vertices of G is a Cdn-sets of G so
thatt.(G) =(n—1)+ (n—1) =2n -2 forv € V(C,_,), v lies in excatly three Cdn-
sets of G so that CDy(v) = 3 forall v € V(C,_,). Since x is adjacent to n — 1 vertices
of G,CDy(x) =n — 1. m

Theorem3.8. Let G = K; + P,_; and V(K;) = x and V(P,_;) = {v1, V3, e, U1}
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2, ifv=xv,V,1

Then for n — 1 is odd 7.(G) = 3 and CDy(v) = {0' otherwise and for
3, ifv=x
2, ifv=vy0rv,_4

n—1lisevent.(G) =4and CDy(v) 1, if V= vns

2
k 0, otherwise
Proof. Let V(K;) = x and V(P,_1) = {v1, V5, «.., U1 }-
Case (i) n—1isodd. S; = {x,v.},S; = {x,v,_1}, S5 = {v1,v,,_1} are the only three
Cdn-sets of G, such that CD,(x) = 2,CDy(v;) = 2,CDy(v,,_,) = 2 so that 7.(G) = 3.

Case (i) n—1 iseven. My = {x,v,}, M, = {x,v,_1}, M5 = {x, Un_—l},M4 = {vy, Vp_1}
2
arethe only four Cdn-sets of G, so that CDy(x) = 3,CDy(vy) = 2,CDy(v,,—1) = 2,

cD, (vn__l) — 1 andr,(G) = 4. "
2
4, ifn=2
Theorem3.9. t.(P, xB) =<1, ifn=3
8,ifn=>4

Proof. Let S be a Cdn-sets of P, x B, of cardinality n where n > 2 if n = 2, then
P,xP,=C, and any two adjacent vertices form a  Cdn-set
i.e{uy, v, Lh{uy, uy}, {vy, v, }, {u,, v, Jare all possibleCdn-sets of P, x P,. If n = 3, there
is a uniqueCdn-set{u,, v,}. So let n > 4. By lemma 2.2 either {us, uy, ..., Up_3,Up_2} C
S or {vs, V4, ., Vp_3,Un_2} © S (and not both). Let {us, uy, ..., Up_3, U2} ©S. AS
vs € S, to maintain connectedness of (S) and to dominate u,, we have u, € S. In the
same way, u,_q € S. Thus {u,,us, ...,up_»,u,_1} € S. Since S contains n elements,
let the other 2 vertices in S be [, m. To dominate u, and v,, one of [ and m (say [) must
be either u,or v,. Similarly m is either u,, or v,,_;.Since there are two choices each for [
and m such that S forms a Cdn-set, the number of Cdn-sets
containingus, Uy, ..., Up—3, Up—2 is 4. Similarlythe number of Cdn-sets
containingus, vy, ..., Un_3, Vn—, IS 4. Hence by lemma 2.2, we get 7.(P, X B,) = 8 for
n=4.n

Theorem3.10. LetP, x B, be a rectangular grid with n > 2 and let a; = u; or v;. If
n = 2,then CDy(v) = 2 for all v € V(P, X B,). If n = 3, then CDy(a,) = CDy(a3) =

2, if i=1lorn
0and CDy(a,) =1,If n>4then CDy(a;) =16, if i=20rn—1

4, otherwise

Proof. The proof is clear for n = 2 and theorem 2.10, so we assume that n > 4. Let v
be a vertex in P, X P,.
Case 1: [v € {uy, v1, Uy, v }]. Let v = uy, then using the line of proof of Theorem 3.10,
theCdn-sets containing u, are precisely those where [ = u, and m is either u,, or v,,_;
i.e,CDy (v) = 2. Same for the case when v =V, orv = u,, or v = v,.
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Case 2: [v € {uy, v, up_1, Vn_1}]- Let v = u,. Note that any connected dominating set
contains either u,, v,. Also total number of minimum connected dominating sets is 8,
out of which only two does not contain u,, namely {v,v,,..,v,} and
{vi, V2, e, Vp_1,Up_1}. Thus CDy(u,) = 8 — 2 = 6. Now,as there exist isomorphisms
which maps u, to v,, u,_;, v,,_ respectively, by proposition 2.2, we have CDy (u,) =
CDy(v;) = CDy(up—1) = CDy(vy_4) = 6.

Case 3: [v & {uq, V1, Uy, Vg, Up_1, Vn—1, Un, Un}]. In this case, from the proof of
Theorem 2.10 we have CDy (v) = 4.
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