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Abstract 

In this paper, we discuss the properties of an intuitionistic multi-anti fuzzy normal ring of a ring 

is defined and discussed its properties. some results based on cartesian product, homomorphism 

and anti homomorphism of an intuitionistic multi-anti fuzzy normal ring of a ring are also 

discussed.  
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1. Introduction 

The idea of fuzzy sets introduced by L. A. Zadeh 1965 [19] is an approach to 

mathematical representation of vagueness in everyday curriculum, The idea of fuzzy set 

is welcome because it handles uncertainty and vagueness which ordinary set could not 

address. In fuzzy set theory membership function of an element is single value between 

0 and 1. Therefore, a generalization of fuzzy set was introduced by Attanassov [1], 1983 

called intuitionistic fuzzy set (IFS) which deals with the degree of non-membership 

function and the degree of hesitation. After several year, Sabu Sebastian [13] introduced 

the theory of multi-fuzzy sets in terms of multi-dimensional membership function. R. 

Muthuraj and S. Balamurugan [15] introduced the concept of multi-anti fuzzy subgroup 

and discussed some of its properties. R. Muthuraj and S. Balamurugan [17] introduced 

the concept of multi-anti fuzzy ideal of a ring under homomorphism. 

In this paper, we discuss the properties of an intuitionistic multi-anti fuzzy normal ring 

of a ring is defined and discussed its properties. some results based on cartesian product, 

homomorphism and anti homomorphism of an intuitionistic multi-anti fuzzy normal 

ring of a ring. 
 

2. Preliminaries 

2.1 Definition [1, 2, 4] A fuzzy subset A of a ring R is called a fuzzy subring of R if for 

all x, y R 

i. A (x– y) ≥ min {A(x), A (y)} and 

ii. A (xy) ≥ min {A (x), A (y)}. 

 

2.2 Definition [2, 7] A fuzzy subset A of a ring R is called an anti-fuzzy subring of R if 

for all x, y R 

i. A (x– y) ≤ max {A(x), A (y)} and 

ii. A (xy)  ≤ max {A (x), A (y)}. 

 

2.3 Proposition [7] Let R1 and R2be rings and let f be a homomorphism from R1 onto 

R2. If A is a anti fuzzy ideal of R2 then f-1(A) is a anti fuzzy ideal of R1. 

 

2.4 Definition [2] Let R be a ring. Let G ={  x, A(x), B(x)    / xR} be an 

intuitionistic fuzzy set defined on a ring R, where A: R→[0,1], B: R→[0,1] such that 0 

 A(x) + B(x)  1. An intuitionistic fuzzy subset G of R is called an intuitionistic fuzzy 

ring on R if the following conditions are satisfied. For all x, y R, 

i. A ( x – y) ≥ min {A (x), A(y)} , 

ii. A (xy)  ≥ min {A(x),  A(y)}, 

iii. B (x− y)  max {B (x), B (y)}, 

iv. B (xy)  max {B (x), B (y)}. 
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2.5 Definition [7,17] Let R be a ring. Let G = {x, A(x), B(x) / xR} be an 

intuitionistic fuzzy set defined on a ring R, where A: R→[0,1], B: R→[0,1] such that 0 

 A(x) + B(x)  1. An intuitionistic fuzzy subset G of R is called an intuitionistic anti-

fuzzy ring on R if the following conditions are satisfied. For all x, y R, 

i. A (x – y)  max {A (x), A (y)}, 

ii. A (xy)  max {A(x),  A (y)}, 

iii. B (x− y) ≥ min {B (x) , B (y)}, 

iv. B (xy) ≥ min {B (x) , B (y)}. 

 

2.6 Definition [18] An intuitionistic multi-anti fuzzy ring G = {x, A(x), B(x) / xR} 

on a ring R is said to be an intuitionistic multi-anti fuzzy normal ring on R if for every 

x, y   R, A (xy) = A (yx) and B(xy) = B(yx). 

 

2.7 Example [18] Consider the intuitionistic fuzzy sets, G = {x, A(x), B(x) / xR} of 

dimension 2 on Z is defined as, 

 A1(x) = 0.2 if x = 0; A1(x) = 0.7 if x 0 and A2(x) = 0.3 if x = 0; A2(x) = 0.9 if x 0. 

 B1(x) = 0.7 if x = 0; B1(x) = 0.2 if x 0 and B2(x) = 0.6 if x = 0; B2(x) = 0.1 if x 0. 

Then the intuitionistic multi-fuzzy set G = (A, B) of dimension 2 on Z is defined as, 









=

0 x if(0.7,0.9)

0  x if(0.2,0.3)
 = (x))2A (x),1(A = A(x) .B(x)= (B1(x), B2(x)) = {

(0.7,0.6)if x =  0

(0.2,0.1)if x ≠ 0
 

Clearly, G is an intuitionistic multi-anti fuzzy normal ring on Z. 

 

 

3. Properties of Intuitionistic multi-anti fuzzy normal 

ring 

In this section, the properties of an intuitionistic multi-anti fuzzy normal ring is 

discussed. 

3.1 Theorem Let G = {x, A(x), B(x) / xR} and H = {x, C(x), D(x) / xR} be any 

two intuitionistic multi-anti fuzzy normal subrings of rings R1 and R2 respectively. Then 

their anti cartesian product G  H is an intuitionistic multi-anti fuzzy normal subring of 

R1  R2. 

 

Proof 

Let G and H be any two intuitionistic multi-anti fuzzy normal subrings of rings R1 and 

R2 respectively. Then, by Theorem 2.2.5, G  H is an intuitionistic multi-anti fuzzy 

subring of R1 R2. 

Let (p, q), (r, s)  R1R2.For each i = 1, 2, ..., k, 

Now,     

(A  C) ((p, q)(r, s)) = (( Ai  Ci )(pr, qs ))   
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= (max {Ai(pr), Ci(qs)})   

= (max {Ai(rp), Ci(sq)})  

= ((Ai Ci )( rp, sq )) 

= (A  C) ((r, s) (p, q)) 

Therefore, (A  C)((p, q)(r, s)) = (A  C) ((r, s) (p, q)) and 

(B D) ((p, q)(r, s)) = (( Bi Di )(pr, qs ))   

= (min {Bi(pr), Di(qs)})   

= (min {Bi(rp), Di(sq)})  

= (( Bi Di )( rp, sq )) 

= (B  D) ((r, s) (p, q)) 

(B D) ((p, q)(r, s))=(B  D) ((r, s) (p, q)) 

Hence, (G  H) ((p, q)(r, s)  = (G  H) ((r, s) (p, q)).  

Hence, the anti cartesian product GH is an intuitionistic multi-anti fuzzy normal 

subring of R1  R2. 

 

3.2 Theorem Let G = {x, A(x), B(x) / xR}and H = {x, C(x), D(x) / xR }be 

intuitionistic multi-fuzzy subsets of R1 and R2 respectively, such that  C(02)   A(x) and  

D(02)  B(x)  for all x in R1, where 02 is the additive identity element of R2.  The anti 

cartesian product G  H is an intuitionistic multi-anti fuzzy normal subring of R1  R2, 

and then G is an intuitionistic multi-anti fuzzy normal subring of R1. 

 

Proof 

Let p, r  R1 and 02R2.Let G  H be an intuitionistic multi-anti fuzzy normal subring 

of R1 R2. 

Then, by Theorem 2.2.7, G is an intuitionistic multi-anti fuzzy subring of R1. 

For each i = 1, 2,..., k,   

 A (pr) = (A1(pr ), A2(pr ), ... , Ak(pr )) 

 = (max {A1(pr ), C1(0202)} , ... ,                    

 max{Ak(pr ), Ck(0202)}) 

A (pr) = (max (Ai(pr ), Ci(0202))) and 

B (pr) = (B1(pr ), B2(pr ), ... , Bk(pr )) 

= (min {B1(pr ), D1(0202)} , ... ,                    

min{Bk(pr ), Dk(0202)}) 

B(pr) = (min (Bi(pr ), Di(0202))) 

That is, A (pr) = (max (Ai (pr), Ci (0202))) and  

B(pr) = (min (Bi(pr ), Di(0202))). 

Hence, (G  H )( pr, 0202 ) = (G  H)(pr, 0202) 

= (G  H)((p, 02)   (r, 02)) 

= (G  H)((r, 02)   (p, 02)) 

 (G  H )( pr, 0202) = (G  H)(pr, 0202). 

That is, A(pr) = A(rp) and  

B(pr) = B(rp). 
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3.3 Theorem. Let G = {x, A(x), B(x) / xR}and H = {x, C(x), D(x) / xR} be 

intuitionistic multi-fuzzy subsets of R1 and R2 respectively, such that A (01)   C(y) and 

B (01)   D(y)for all y in R2, where 01 is the additive identity element of R1.  The anti 

cartesian product G  An intuitionistic multi-anti fuzzy normal subring of R1  R2, then 

His a multi-anti fuzzy normal subring of R2. 

 

Proof 

Let q, s  R2 and 01R1.Let G  H is an intuitionistic multi-anti fuzzy normal subring 

of R1  R2. 

Then, by Theorem 2.2.8, An intuitionistic multi-anti fuzzy subring of R1. 

For each i = 1, 2, k,   

C (qs) = (C1(qs), C2(qs), ..., Ck(qs)) 

= (max {C1(qs), A1(0101)}, ...,                    

max {Ck (qs), Ak (0101)}) 

C (qs) = (max (Ci(qs), Ai (0101))) and 

D (qs) = (D1(qs), D2(qs), ..., Dk(qs)) 

= (min {D1(qs), B1(0101)}, ...,                    

min {Dk (qs), Bk (0101)}) 

D(qs) = (min (Bi (0101), Di (qs))) 

That is, C (qs) = (max (Ai (0101), Ci (qs))) and  

D(qs) = (min (Bi(0101), Di(qs))). 

Hence,  (G  H )( 0101,qs ) = (G  H )(0101, qs) 

= (G  H )(01 ,q)  (01 , s) ) 

= (G  H )((01 , s)   ( 01 ,p) ) 

(G H) (01 01, qs) = (G  H) (01 01, sq). 

That is, C(qs) = C(sq) and  

D(qs) = D(sq). 

Hence, H is an intuitionistic multi-anti fuzzy normal subring of R1. 

 

3.4 Remark Let G = {x, A(x), B(x) / xR}and H = {x, C(x), D(x) / xR}be 

intuitionistic multi-fuzzy subsets of rings R1 and R2 respectively.  The anti cartesian 

product G  H is an intuitionistic multi-anti fuzzy normal subring of R1  R2, then it is 

not necessarily that both G and H are intuitionistic multi-anti fuzzy normal subrings of 

R1 andR2 respectively.  
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4. Properties of intuitionistic multi-anti fuzzy normal 

subring of a ring under homomorphism and anti 

homomorphism 
 

In this section, the properties of intuitionistic multi-anti fuzzy normal subring of a ring 

under homomorphism and anti homomorphism are discussed. 

 

4.1 Theorem Let R1 and R2 be any two rings. Let f: R1 → R2 be an onto homomorphism. 

If G = {x, A(x), B(x) / xR1} is an intuitionistic multi-anti fuzzy normal subring of 

R1, then f(G) is an intuitionistic multi-anti fuzzy normal subring of R2, if G has inf 

property and G is f-invariant. 

 

Proof 

Let G be an intuitionistic multi-anti fuzzy normal subring of R1.  

Then, by Theorem 2.3.2, f(G) is an intuitionistic multi-anti fuzzy subring of R2. 

Then if x, yR1, then f(x), f(y)R2.  

Now, f(A)(f(x)f(y)) = f(A)(f(xy))  

= A(xy)                 

= A(yx) 

= f(A)(f(yx)) 

= f(A)(f(y)f(x)) 

There fore, f(A)(f(x)f(y)) = f(A)(f(y)f(x)) and 

f(B)(f(x)f(y)) = f(B)(f(xy))  

= B(xy)                 

= B(yx) 

= f(B)(f(yx)) 

= f(B)(f(y)f(x)) 

There fore, f(B)(f(x)f(y)) = f(B)(f(y)f(x)). 

Hence, G(f(x)f(y) = G(f(y)f(x)). 

Hence, f(G) is an intuitionistic multi-anti fuzzy normal subring of R2. 

 

4.2 Theorem Let R1 and R2 be any two rings.  Let f: R1 → R2 be a homomorphism. If H 

= { x, C(x), D(x) / xR1} is an intuitionistic multi-anti fuzzy normal subring of R2, 

then f–1(H) is an intuitionistic multi-anti fuzzy normal subring of R1. 

Proof 

Let H be an intuitionistic multi-anti fuzzy normal subring of R2. 

Then, by Theorem 2.3.3, f–1(H) is an intuitionistic multi-anti fuzzy subring of R1. 

For any x, yR1, 

Now, f–1(C)(xy) = C(f(xy)) 

= C(f(x)f(y)) 

= C(f(y)f(x)) 
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= C(f(yx)) 

= f–1(C)(yx) 

Therefore, f–1(C)(xy) = f–1(C)(yx) and 

f–1(D)(xy) = D(f(xy)) 

= D(f(x)f(y)) 

= D(f(y)f(x)) 

= D(f(yx)) 

= f–1(D)(yx) 

Therefore, f–1(D)(xy) = f–1(D)(yx). 

Hence, f–1(H)(xy) = f–1(H)(yx). 

Hence, f–1(H) is an intuitionistic multi-anti fuzzy normal subring of R1. 

 

4.3 Theorem Let R1 and R2 be any two rings.  Let f: R1 → R2 be an onto anti 

homomorphism.  If G = { x, A(x), B(x) / xR1} is an intuitionistic multi-anti fuzzy 

normal subring of R1, then f(G) is an intuitionistic multi-anti fuzzy normal subring of 

R2, if G has inf property and G is f-invariant. 

 

Proof 

Let G be an intuitionistic multi-anti fuzzy normal subring of R1.  

Then, by Theorem 2.3.4, f(G) is an intuitionistic multi-anti fuzzy subring of R2. 

Then if x, yR1, then f(x), f(y)R2.  

Now, f(A)(f(x)f(y)) = f(A)(f(yx))  

= A(yx)                 

= A(xy) 

= f(A)(f(xy)) 

= f(A)(f(y)f(x)) 

There fore, f(A)(f(x)f(y)) = f(A)(f(y)f(x)) and 

f(B)(f(x)f(y)) = f(B)(f(yx))  

= B(yx)                 

= B(xy) 

= f(B)(f(xy)) 

= f(B)(f(y)f(x)) 

There fore, f(B)(f(x)f(y) = f(B)(f(y)f(x)). 

Hence, G(f(x)f(y)) = G(f(y)f(x)). 

Hence, f(G) is an intuitionistic multi-anti fuzzy normal subring of R2. 

 

4.4 Theorem Let R1 and R2 be any two rings.  Let f: R1 → R2 be an anti homomorphism.  

If H = {x, A(x), B(x) / xR1} is an intuitionistic multi-anti fuzzy normal subring of 

R2, then f–1(H) is an intuitionistic multi-anti fuzzy normal subring of R1. 

Proof  

Let B be an intuitionistic multi-anti fuzzy normal subring of R2. 

Then, by Theorem 2.3.5, f–1(H) is an intuitionistic multi-anti fuzzy subring of R1. 
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For any x, yR1, 

Now, f–1(C)(xy) = C(f(xy)) 

= C(f(y)f(x)) 

= C(f(x)f(y)) 

= C(f(yx)) 

= f–1(C)(yx) 

Therefore, f–1(C)(xy) = f–1(C)(yx) and 

f–1(D)(xy) = D(f(xy)) 

= D(f(y)f(x)) 

= D(f(x)f(y)) 

= D(f(yx)) 

= f–1(D)(yx) 

Therefore, f–1(D)(xy) = f–1(D)(yx). 

f–1(H)(xy) = f–1(H)(yx). 

Hence, f–1(H) is an intuitionistic multi-anti fuzzy normal subring of R1. 

 

5.  Conclusion 
In this paper, we discuss the properties of an intuitionistic multi-anti fuzzy normal 

ring of a ring is defined and discussed its properties. Homomorphism and anti 

homomorphism of an intuitionistic multi-anti fuzzy normal ring of a ring.  
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