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Abstract 

The  function on a subset  of  is the function defined by  

For 𝑥  , we define  . The Hamming 

weight   of  is the number of non – zero coordinates of , where  From 

this one could see that  , where  is the 1 – norm of  given 

by where  . This gives a relationship between the 

weight function and the 1 – norm.In this paper we establish certain properties of the 

weight function using the properties of norms. 
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1. Introduction 
Let , where is the set of real numbers.  Then,  is a vector space over  of 

dimension   The Hamming weight function on  is the function  given 

by  number of non –zero co-ordinates of  

For . 

Thus  satisfies the conditions: 

 for all  and  if and only if (1) 

 for all  and .           (2) 

 for all (3) 

 

A norm on  is a function   satisfying for all and if and 

only if (4) 

 for all  and .   (5) 

  and          for all (6) 

We see that  satisfies the condition of a norm except the condition (5).  Instead,  it 

satisfies (2). We may call such a function a mininorm.  Let us formalize the definition. 

 

Definition:1.1Let  be a vector space over or   A mininorm on  is a function 

  satisfying the following conditions: 

for all  and   if and only if (7) 

 for all  and (8) 

 for all (9) 

 a vector space with a mininorm defined on it is called a mininormed spaces.  

It is clear that  is a mininorm on  

 

2.The weight function and the 1- norm 

The  1- norm or on   is defined by  

 , where (10) 

We cannot connect the weight function with  the 1- norm using the  - function. 

 The  – function on   is defined by  (11) 

The  – function can be extended to  in the following way: 

, (12) 

 where   

This  – function satisfies the following  
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for all  and   if and only if (13) 

  for all  and (14) 

 and      for all (15) 

Hence the partial order relation  on  is defined as follows: 

For  and  in  

 if and only if (16) 

Now let  

Then,  

Now,  

Hence  = number of non- zero components of  

Thus, (17) 

This gives the connection between the Hamming weight function and the 1- norm, via 

the 

 – function. 

 

3.Topological Properties of the  – function 

Proposition:3.1The  – function on  is bounded. 

Proof:Let  

 

  

 since for all  

Hence  is bounded. 

 

Proposition:3.2The  – function on  is not continuous. 

Proof:First we show that  is not continuous, 

Let  

Then  as  

That is,  in  with . 
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But  for all n. 

So,  

Hence  is not continuous. 

Now for all  

Thus,  where  denotes the composition of functions. 

 is continuous . 

Suppose  is continuous. 

Hence  is  continuous, since the composition of two continuous  functions is 

continuous. 

This is not possible. 

Hence is  not continuous  
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