
Ratio mathematica 18
(2008), 62 - 90

62

Effect of Introduction of Fault and
Imperfect Debugging on Release Time

P. K. Kapur*, Deepali Gupta@, Anshu Gupta*, P. C. Jha*

Abstract
One of the most important decisions related to the efficient
management of testing phase of software development life cycle is to
determine when to stop testing and release the software in the market.
Most of the testing processes are imperfect once. In this paper first we
have discussed an optimal release time problem for an imperfect fault-
debugging model due to Kapur et al considering effect of perfect and
imperfect debugging separately on the total expected software cost.
Next, we proposed a SRGM incorporating the effect of imperfect fault
debugging and error generation. The proposed model is validated on a
data set cited in literature and a release time problem is formulated
minimizing the expected cost subject to a minimum reliability level to
be achieved by the release time using the proposed model. Solution
method is discussed to solve such class of problem. A numerical
illustration is given for both type of release problem and finally a
sensitivity analysis is performed.

Keywords: Software Reliability, Non-Homogeneous Poisson Process,
Imperfect Debugging, Error Generation, Release Time.

1. INTRODUCTION

Last decade of the twentieth century is marked in history for the
incredible growth in the information technology. Consequently
computers and computer-based systems have entered in every walk

 * Department of Operational Research, University of Delhi, Delhi –07, India.
@ Department of Mathematics, Jaypee Institute of Information Technology, Noida

P. K. Kapur, D. Gupta, A. Gupta, P. C. Jha

63

and talk of our lives. We have become heavily dependent on
automated tools and intelligent systems for almost every activity. A
mere delay in the operation of these systems can led to big financial
loses. Our lives depend critically on the correct functioning of these
systems. There are already numerous instances where failures of
computer-controlled systems have led to colossal loss of human lives
and economy. With the increased dependence of human kind on
software systems, software systems are also becoming complex and
large and a major concern for the software developers is to deliver
more reliable software in smaller development time.

It is the testing stage of the software development in which attempts
are made to remove most of the faults lying dormant in software. A
successful test strategy begins by considering the requirement
specification and continues by specifying test cases based on this
requirement specification, to be executed later to find the
corresponding faults, which might have been introduced during the
various stages of the SDLC. The growing field of Software Reliability
Engineering deals in building mathematical models that describe the
failure\removal phenomenon with respect to time\testing efforts and
consequent enhancement in reliability of the software due to fault
removal known as Software Reliability Growth Modeling (SRGMs).
Several SRGMS have been discussed and validated by the various
researchers under the varying set of assumptions. Most of these
models depict either exponential or S-shaped relationship between the
testing time\effort and the corresponding number of faults removed
[2,9].

Most of the earlier software reliability models assume the fault
removal process (fault debugging) to be perfect i.e. when an attempt is
made to remove a fault, it is removed with certainty and no new faults
are introduced. But this assumption is not realistic due to the
complexity of the software system and incomplete understanding of
the user’s requirements or specifications by the testing team. The
software testing team may not be able to fix the cause of the failure
properly or they may introduce new faults during removal. Therefore

Effect of Introduction of Fault and Imperfect Debugging on Release Time

64

it is necessary to incorporate the effect of imperfect debugging into the
software reliability growth modeling. In recent years, several
imperfect debugging SRGMs have been proposed and studied (Pham
[10], Kapur and Younes [5], Slud [12], and Obha and Chou [8], etc.)

There are two type of imperfect debugging possibilities-first, on a
failure the corresponding fault is identified, but just because of
incomplete understanding of the software, the detected fault is not
removed completely and hence the fault content of the software
remains unchanged on the removal action, proposed by Kapur [3]
known as imperfect fault debugging, - second, when on a failure the
corresponding fault is identified and removed with certainty but some
new faults are added to the software during the removal process,
proposed by Obha and Chou[8]. This type of imperfect debugging led
to an increase in the fault content of the software known as error
generation.

No software can be tested indefinitely in order to make it bug free
since users of the software want faster deliveries and constraint on
development cost. As discussed above an important objective of
developing SRGM is to predict software performance using the
measure of software reliability and use the information for decision-
making. An important decision problem of practical concern is to
determine when to stop testing and release the software system to the
user known as “Release Time Problem”. This decision depends on the
model used for describing the failure phenomenon and the criterion
used for determining system readiness. The optimization problem of
determining the optimal time of software release can be formulated
based on goals set by the management. Firstly the management may
wish to determine the optimal release time such that total expected
cost of testing in the testing and operation phase is minimum.
Secondly they may set a reliability level to be achieved by the release
time. Thirdly they may wish to determine the release time such that
the total expected cost of the software is minimum and reliability of
the software is achieved to a certain desired level. Such a problem is
known as a Bi-criteria release time problem. For Bi-criteria release

P. K. Kapur, D. Gupta, A. Gupta, P. C. Jha

65

time problem release time is determined by carrying a trade off
between cost and reliability. Many researchers in literature have
studied various release time problems for different SRGMs [2,3,6,7,9].
Min Xie [13] attempted to determine the optimal release time of
software using the SRGM proposed by Obha and Chou [8]
incorporating the second type of imperfect debugging i.e. error
generation. Whereas the author is referring to imperfect fault
debugging that is due to the fault not fixed properly, in his cost model,
which creates confusion between two types of imperfect debugging.
The cost model used by the author is incomplete, as he considered the
cost of fixing an error to be same for due to perfect and imperfect fault
debugging during testing and operation phase. The mathematical form
of SRGM by Obha and Chou [8] is equivalent to the Kapur [3] model
of imperfect fault debugging but the two models are based on different
set of assumptions, Obha and Chou model incorporate the effect of
error generation whereas Kapur model incorporate the effect of
imperfect fault debugging. In this paper we have determined the
optimal time when software is ready to be release for use using the
imperfect fault-debugging model due to Kapur [3] modifying the cost
model of Min Xie. We incorporated separate cost of fixing an error
due to perfect and imperfect fault debugging during testing and
operation phase in the cost model and determined the release time in
the way as determined by Min Xie, which gives the optimal values of
the release time and the level of perfect debugging p. However it is
imperative to estimate the level of perfect fault debugging i.e. p from
the SRGM used to describe the failure phenomenon using the
collected failure data, and not as a decision to be obtained from release
time problem. At the optimal release time of software determined
minimizing the cost, we may not obtain the desired reliability level.
Hence if we have a reliability level to be achieved by the optimal time
of software release we should incorporate the desired reliability level
either as a constraint of a release time problem or as an objective of
Bi-criteria release time problem. However we may not obtain a
minimum cost at the desired reliability level, therefore release time is
determined by a trade-off between reliability and cost. In this paper
we have proposed a SRGM incorporating two types of imperfect

Effect of Introduction of Fault and Imperfect Debugging on Release Time

66

debugging simultaneously. The proposed model is validated on
software failure data sets used in literature. We then determined the
release time for the proposed model minimizing the total expected
software cost subject to minimum level of reliability to be achieved by
the release time incorporating the effect of imperfect debugging and
error generation on cost model.

This paper is organized as follows: In the section 2.1 we have
discussed a release time problem for perfect debugging SRGM due to
Goel Okumoto. In section 2.2.1 we have discussed we have reviewed
imperfect fault debugging SRGM due to kapur et al. Then in section
2.2.2 we have discussed the effect of imperfect debugging on total
expected software cost and then finally in section 2.2.3 we formulated
a release time problem for imperfect fault debugging SRGM due to
kapur et al and derived the optimal release time of the software
minimizing the total expected software cost. In section 3 first we
proposed a SRGM incorporating the effect of imperfect debugging
and fault generation in section 3.1. Parameters of the proposed model
are estimated in section 3.2. Further we discuss the effect of imperfect
fault debugging and error generation on total expected software cost in
section 3.3 and finally a release time problem is formulated and solved
minimizing the total expected software testing cost subject to
minimum reliability level constraint. In section 4.1 a numerical
illustration is given for both type of release problem and finally a
sensitivity analysis is performed to determine the effect of variations
in minimum reliability level to be achieved, in cost of fixing an error
perfectly and imperfectly in operation phase and in level of perfect
debugging..

2. Release Time Problem for Imperfect Fault Debugging SRGM

2.1 Determination of Release Time for Perfect Debugging SRGM

Among all SRGMs developed so far a large family of stochastic
reliability models based on a non-homogeneous Poisson process
known as NHPP reliability models, has been widely used. Some of

P. K. Kapur, D. Gupta, A. Gupta, P. C. Jha

67

them depict exponential growth while others show S-shaped growth
depending on nature of growth phenomenon during testing. Most
commonly cost model seen in literature for determination of release
time for perfect debugging NHPP models is [2,13]

 1 3C C m(T) C (m() m(T)) CT     …(2.1)

 Using Goel Okumoto NHPP [2] model, for which the mean value
function is

 btm(t) a(1 e)  …(2.2)

The optimal release time minimizing the total expected software cost
defined as (1) is given by

 * 3 1ab(C C)1T ln
b C

   
 

 …(2.3)

Maximum likelihood estimates (MLE) of a and b for the software
failure data cited in Zhang and Pham [10], are obtained as a = 142.32
and b = 0.1246. Assuming C1 = $200, C3 = $1500, and C = $5, from
(3), the optimal release time is calculated as 67.70556 and the
minimum expected software cost is found to be $28,842. However, the
model assumes a perfect testing process. It would be of interest to
study the effect of imperfect debugging on total expected software
testing cost. In the next section we have discussed the effect of
imperfect fault debugging on expected software testing cost, briefly
discussing the imperfect fault debugging SRGM due to Kapur [3].

2.2 Release Time Problem for Imperfect Fault Debugging

SRGM (Kapur [])

2.2.1 Imperfect Fault Debugging SRGM

Effect of Introduction of Fault and Imperfect Debugging on Release Time

68

A simple imperfect fault debugging model proposed by Kapur [3]
assume on a failure the corresponding fault is identified and when an
attempt is made to remove the fault it is not fixed properly, which
does not lead to any change in the initial fault content of the software.
The model is formulated as follows

Model Assumptions
1. Software system is subject to failures at random times caused by

faults remaining in the software.
2. Failure rate of the software is equally affected by errors remaining

in the software.
3. At any time the failure rate of the software is proportional to the

faults remaining in the software.
4. On a instantaneous repair effort starts and the following may

occur:
 (a) Fault contents are reduced by one, with probability p
 (b) Fault contents are unchanged with probability 1-p.
5. The error removal phenomenon in the software is modeled by

NHPP.

Notations

 a : initial error content.
 b : proportionality constant(fault removal rate per remaining
fault).
 p : probability of perfect debugging.
 mf(t) : mean number of failures detected in (0,t].
 mr(t) : mean number of faults removed in the software till time t.
 (t) : intensity function or fault detection rate per unit time.

The differential equation describing the rate of change of)(tmr with
respect to time under the assumptions specified above and following
the notations is given by

  r rm (t) bp a-m (t)  …(2.4)

P. K. Kapur, D. Gupta, A. Gupta, P. C. Jha

69

Solving equation (2.4) under the initial condition 0)0(rm is given
by

bpt
rm (t) a 1 e    …(2.5)

Corresponding mean number of failures in (0,t] is given by

 dt(t)mab)(
0

r 
t

f tm …(2.6)

bpt

f
am (t) 1 e
p

    …(2.7)

The NHPP intensity function is given by

(t) abexp(bpt)   …(2.8)

It can be seen that (t) is a decreasing function in t with λ(0) = ab and
λ(∞)=0.

In the next section we have proposed the cost model incorporating the
effect of imperfect debugging.

2.2.2 Effect of Imperfect Debugging on the Cost Model

A major concern in software development is the cost. It is well known
that the development of a software system is time-consuming and
costly. Since most software testing processes are imperfect debugging
ones, it is of great importance for the management to know the effect
of the imperfect debugging on software cost (Ammann et al. [1],
Shanthikumar [11], and Pham [10]). On the other hand, if the release
time of the software is determined by the minimum cost criterion, the
imperfect debugging will affect the release time as well.

Effect of Introduction of Fault and Imperfect Debugging on Release Time

70

The parameter p representing the probability of perfect debugging can
also represent the testing level, indicating “how perfect” the testing
process is. Testing level parameter p is usually influenced by a
number of factors, such as the experience of the testing personnel, the
testing strategy adopted, and the number of reviews in debugging.
When the testing level is low, it is possible to increase it to a certain
extent, but usually this has to be achieved at a higher testing cost.

Total expected software cost includes cost of testing and the cost of
fixing a fault during testing and operation phase for perfect and
imperfect debugging. Cost of fixing an error is different for both
perfect and imperfect debugging. Also the cost of testing is a function
of perfect debugging probability p. Since the testing cost parameter C
depends on the testing team composition and testing strategy used, If
the probability of perfect debugging is to be increased, it is expected
that extra financial resources will be needed to engage more
experienced testing personnel, and this will result in an increase of C.
In other words, C should be a function of the testing level, denoted by
C(p) and hence this function should possess the following two
properties:

1. C(p) is a monotonous increasing function of p.
2. When p1, C(p).

The second property implies that perfect debugging is impossible in
practice or the cost of achieving it is extremely high.

Notations:

C1(C2): cost incurred on a prefect (imperfect) debugging effort
before release of the software system.

 C3(C4): cost incurred on a prefect (imperfect) debugging effort
after release of the software system. (C3 > C1, C4 > C2).

 C : testing cost per unit time.
 T : release time of the software.
 T* : optimal release time.

P. K. Kapur, D. Gupta, A. Gupta, P. C. Jha

71

 R0 : desired level of software reliability at the release time(0 <
R0 < 1).

Although there are many cost functions that can satisfy these
conditions, a simple, but reasonable function that meets the two
properties above is given by:

 

CC(p)
1 p




 …(2.9)

Hence, the cost model (2.1) can be modified as

     1 2 f 3 4 f f
CTMin C(T,p) C p C (1 p) m (T) C p C (1 p) m () m (T)

(1 p)
        


 ...(2.10)

If the release time remains at 67.70556, the software cost under
different probabilities of perfect debugging or testing levels is
calculated and summarized in Table 1. It is clear that the software cost
changes significantly as the testing level, p, changes. Obviously, if the
management has not taken into consideration the effect of imperfect
debugging on software cost, the model may give a wrong estimate of
the system reliability and\or cost at the release time.

Table 1.

In the next section we will determine optimal release time and optimal
testing level such that the total expected software cost is minimized.

p Cost($103)

0.7 37037
0.75 35485.03
0.8 34345.28
0.85 33652.61
0.9 33693.12
0.95 36123.14
1 ∞

Effect of Introduction of Fault and Imperfect Debugging on Release Time

72

2.2.3 Optimal Release Policy

The optimization problem minimizing the total expected software cost
in order to determine optimal release time T* and optimal testing level
p* can be formulated as follows

     1 2 f 3 4 f f
CTMin C(T,p) C p C (1 p) .m (T) C p C (1 p) . m () m (T

(1 p)
        



Subject to 0 p 1 and T 0   …(2.11)

Using the principles of calculus the above optimization problem can
be solved as follows:

Taking partial derivates of C(p,T) with respect to p and T and equate
them to zero, we have that

     bpT bpT
1 2 3 4

C CC p C (1 p) .abe C p C (1 p) . abe 0
T (1 p)

 
        

 
…(2.12)

And

     

   
 

bpT bpT bpT
1 2 1 2 2 2

bpT bpT bpT
3 4 3 4 2 2

C a a a abTC C 1 e C p C (1 p) e e
p p pp p

a a abT CT(C C) e C p C (1 p) e e 0
p pp 1 p

  

  

 
            

  
              

…(2.13)
From (2.12) T can be expressed in terms of p as

2 1ab(D D)(1 p)1T g(p) ln
bp C

     
 

 …(2.14)

Where)1(,)1(432211 pCpCDpCpCD 
It is clear that, when p takes values between (0,1), the condition T > 0
is always satisfied.

P. K. Kapur, D. Gupta, A. Gupta, P. C. Jha

73

Substituting the value of T from (2.14) into (2.13), we get

  2 1 2
2 1 2 2 1 4 2

2 2
2 1

ab D D 1 p
(2p 1)C(D D)ln C ab(D D)(1 p) C(C C)(1 p)

CC 0
p bp (1 p) (D D)

  
        

   
  

…(2.15)
or, equivalently h(p) = 0.

  2 1 2
2 1 2 2 1 4 2

ab D D 1 p
h(p) (2p 1)C(D D)ln C ab(D D)(1 p) C(C C)(1 p) 0

C
             
  

 …(2.16)
h(p) is a continuous function of p on(0,1) and

p 0 p 1
lim h(p) K lim h(p)

  
    …(2.17)

where  4 2
2 4 2

ab(C C)
K C ln abC C C C

C
       

  
 …(2.18)

Now, taking the derivative of h(p) with respect to p, we have that

    

    

ab D D 1 p 12 1h (p) 2C(D D)ln (2p 1)C D D C(C C)2 1 2 1 4 2C 1 p

ab D D 1 p2 122C ab(D D)(1 p) C ab(1 p) (2p 1)Cln C C C C 02 2 1 2 3 1 4 2C

                   
   
                

It can be seen that h(p) is a continuous and strictly decreasing
function on (0,1) and

   ab C C4 2lim h (p) 2K Cln C ab C C C C lim h (p)2 4 3 2 1Cp 0 p 1

  
               

The following Theorem summarizes some analytical results regarding
the existence and uniqueness of the optimal solution.

Effect of Introduction of Fault and Imperfect Debugging on Release Time

74

Theorem 1. The optimal values of p and T, denoted by p* and T*,
which minimize the expected software cost given by (9) are as
follows:

Case 1. If K  0, then p* = inf{p : h(p)< 0}and T* = g(p*).
Case 2. If K >0, then define p = inf(p:dh/dp < 0}and

1. If h(p) > 0, then p* = min[C(p1, T1),C(p2, T2)] and T*

=g(p*),where p1 and p2 are the solutions to the equation of h(p) = 0
and T1 = g(p1), T2 = g(p2).

2. If h(p) = 0, then p* equals the unique solution to the equation of
h(p) = 0 and T* = g(p*).

3. If h(p) < 0, then p* and T* does not exist within 0<p<1 and T>0.

Using the above procedure to find the optimal release time first we
need to determine the value inf{p : h(p)< 0 or p = inf(p:dh/dp < 0}
what ever is the case assuming a perfect debugging environment i.e
p=1 as both h(p) and h(p) function of p in order to determine the
optimal value of p and then using this optimal value of p we estimate
the other parameters of the SRGM based on the collected failure data
and then determine the optimal release time. The procedure if repeated
for this optimal value and more dense data we will obtain another set
of optimal values and hence it is a iterative approach. Hence the
solution procedure adopted by Min Xie does not terminate in one step
to give the optimal values. However it is imperative to estimate the
level of perfect fault debugging i.e. p from the SRGM used to describe
the failure phenomenon using the collected failure data over a period
of time, and not as a decision to be obtained from release time
problem by minimizing cost function. The effect of level of perfect
debugging on release time can be obtained by carrying a sensitivity
analysis on the release problem.

Whenever a decision is made to release the software the management
evaluate the reliability of the software as quality metric at the release
time. In the numerical example given in this paper we found that the
reliability level at the optimal release time is 0.9398, where as for the

P. K. Kapur, D. Gupta, A. Gupta, P. C. Jha

75

problem discussed by Min Xie it is 0.9117. However if the
management desires to obtain a reliability level 0.95 by the release
time, the approach followed above to find the optimal solution
couldn’t be used. Therefore we must consider the level of reliability to
be achieved while formulating such class of problem.

Before we discuss the release time problem by minimizing the cost
under reliability constraint we propose and validate a SRGM
incorporating the effect of both imperfect fault debugging and error
generation in the next section.

3. Release Time Problem for an SRGM Incorporating Two

Types of Imperfect Debugging

3.1 SRGM with Two types of Imperfect Debugging

During the testing process when a fault in encountered, corresponding
fault is identified and an attempt is made to remove the fault, there are
three possibilities, first the fault is removed perfectly, secondly the
fault is not removed perfectly due to which the fault content remains
unchanged known as imperfect fault debugging, third the fault is
removed perfectly, but when the test case that led to the failure is re-
executed some other fault is encountered, known as error generation.
In fact while removing the fault the programmer has introduced a new
fault leading to an increase in total fault content of the software.
Newly introduced fault leads to a failure only when the original fault
is removed perfectly.

Model Assumptions
1. Software system is subject to failures at random times caused by

faults remaining in the software.
2. Failure rate of the software is equally affected by errors remaining

in the software.
3. At any time the failure rate of the software is proportional to the

faults remaining in the software.

Effect of Introduction of Fault and Imperfect Debugging on Release Time

76

4. On a instantaneous repair effort starts and the following may
occur:

 (a) fault contents are reduced by one with probability p
 (b) fault contents are unchanged with probability 1-p.
5. The error removal phenomenon in the software is modeled by

NHPP.
6. During the fault removal process faults are generated with a

constant probability .

Under the assumptions specified above the differential equation for
the proposed model is given by

 '
r rm (t) bp a(t)-m (t) …(3.1)

Where a(t) can be expressed as

 ra(t) a m (t)   …(3.2)

Substituting (3.2) in (3.1) we have

  '
r r rm (t) bp a + m (t) - m (t)  …(3.3)

Solving equation (3.3) under the initial condition '
rm (0) 0 we get

 bp(1 α)t

r
am (t) 1 e

1 α
     

 …(3.4)

Corresponding Mean number of failures in (0,t] is given by

 dt(t)ma(t)b)(
0

r 
t

f tm …(3.5)

 α)tbp(1
f e1

α)p(1
a(t)m 


 …(3.6)

The NHPP intensity function is given by)exp()(bptabt  …(3.7)

P. K. Kapur, D. Gupta, A. Gupta, P. C. Jha

77

It can be seen that (t) is a decreasing function in t
with (0) ab and () 0     .

In the next section we validate and compare the model with some
existing models.

3.2 Parameter Estimation

Method of least squares or maximum likelihood has been suggested
and widely used for estimation of parameter of mathematical models.
The model proposed in this paper is a non-linear and it is difficult to
find solution for nonlinear models using Least Square method and
require numerical algorithms to solve it.

Statistical software packages such as SPSS help to overcome this
problem. SPSS is a statistical package for Social Sciences. It is a
comprehensive and flexible package for statistical analysis and data
management system. SPSS can take data from almost any type of file
and use them to generate tabulated reports, charts and plots of
distributions and trends, descriptive statistics, and conduct complex
statistical analysis. SPSS Regression Models enables the user to apply
more sophisticated models to the data using its wide range of
nonlinear regression models. For the estimation of the parameters of
the proposed model method of Least Square has been used. Non-linear
regression is a method of finding a nonlinear model of the relationship
between the dependent variable and a set of independent variables.
Unlike traditional linear regression, which is restricted to estimating
linear models, nonlinear regression can estimate models with arbitrary
relationships between independent and dependent variables.

3.2.1 Comparison Criteria

1. Mean Square Error (MSE):

Effect of Introduction of Fault and Imperfect Debugging on Release Time

78

The model under comparison is used to simulate the fault data, the
difference between the expected values, N(t) and the observed data Ni
is measured by MSE as follows.

2k
i i

i 1

(N (t) N)M S E
k


  …(3.8)

Where k is the number of observations. The lower MSE indicates less
fitting error, thus better goodness of fit.

2. Coefficient of multiple determination (R2):

We define this coefficient as the ratio of the sum of squares resulting
from the trend model to that from constant model subtracted from 1.

 2 residual SS R 1 -
corrected SS

 … (3.9)

R2 measures the percentage of the total variation about the mean
accounted for the fitted curve. It ranges in value from 0 to 1. Small
values indicate that the model does not fit the data well. The larger
value of R2 explains the better fit of the model.

3.2.2 Data Analysis and Model Comparison

To validate the proposed model we have carried out the parameter
estimation on a data set from a real time command and control system,
which represents 136 failures, observed during system testing for 25
hours of CPU time [9]. Parameters of the model are estimated by the
nonlinear least squares method in SPSS using cumulative failure data
against time. Estimated parameter values are given in table- 2. The
MSE and R2 values are also given. The Fitting of the models is
illustrated graphically in figure 1 and figure 2.

P. K. Kapur, D. Gupta, A. Gupta, P. C. Jha

79

Table 2:

 Figure 1: Figure 2:

Cumulative Failures Curve

0

20

40

60

80

100

120

140

160

1 4 7 10 13 16 19 22 25

Time

m
(t)

Actual Data

Estimated Values

Non-Cumulative Failure Curve

0

5

10

15

20

25

30
1 4 7 10 13 16 19 22 25

Time

m
(t)

Actual Data

Estimated Values

In the next section we have proposed the cost model incorporating the
effect of imperfect fault debugging and error generation.

3.3 Effect of Imperfect Fault Debugging and Error Generation

on Cost Model

Like knowing the effect of the imperfect debugging on software cost it
is also of great importance for the management to know the effect of
fault generation on cost. Since due to fault generation amount of fault
content of software increases, it has a direct effect on the reliability
level of the software achieved by the release time.

The parameter  representing the probability of error generation is
usually influenced by a number of factors, such as the experience of
the testing personnel, the testing strategy adopted, and the number of

Estimated parameter values for the proposed model

Parameters Goodness of Fit
Criteria

a b p  RMSPE R2
134 0.140238 0.998417 0.0125628 30.64387 .96641

Effect of Introduction of Fault and Imperfect Debugging on Release Time

80

reviews in debugging etc. It is possible to decrease the value of  to a
certain extent, but usually this has to be achieved at a higher testing
cost. As specified above total expected software cost includes cost of
testing and the cost of fixing a fault during testing and operation phase
for perfect and imperfect debugging. Cost of fixing an error is
different for both perfect and imperfect debugging however it remains
unchanged due to error generation. But the cost of testing is a function
of both perfect debugging probability p and fault generation
probability  . Since the testing cost parameter C depends on the
testing team composition and testing strategy used, If the probability
of perfect debugging is to be increased and probability of error
generation is to be decreased, it is expected that extra financial
resources will be needed to engage more experienced testing
personnel, and this will result in an increase of C. In other words, C
should be a function of the testing level and error generation, denoted
by C(p,) and hence this function should possess the following
two properties:
1. C(p,) is a monotonous increasing function of p and (1-).
2. When p1, and 0  , C(p,).

The second property implies that perfect debugging is impossible in
practice or the cost of achieving it is extremely high. Although there
are many cost functions that can satisfy these conditions, a simple, but
reasonable function that meets the two properties above is given by:

  
CC(p)

1 p 1


 
 …(3.10)

Hence, the cost model (2.9) can be modified as

    
  
CTMin C(T,p) C p C (1 p) m (t) C p C (1 p) m () m (t)1 2 f 3 4 f f 1 p 1

        
 

 …(3.11)

P. K. Kapur, D. Gupta, A. Gupta, P. C. Jha

81

In the next section we will determine optimal release time for software
minimizing the total expected cost subject to the desired reliability
constraint.

3.4 Optimal Release Policy

The optimization problem minimizing the total expected software cost
in order to determine optimal release time T*

 subject to the software
reliability not less than a specified reliability objective can be
formulated as follows

   1 2 f 3 4 f f
CTMin C(T) C p C (1 p) .m (T) C p C (1 p) . m () m (T)

1 p(1)
            

Subject to 0))]()((exp[)|(RTmxTmTxR  Where 0 < R0 < 1 and x > 0.

Using the principles of calculus and assuming that the values of all the
parameters of the proposed SRGM have been estimated including p
and  form the past failure data, the above optimization problem can
be solved as follows:

Taking partial derivates of C(T) with respect to T and equating it to
zero, we have

   bp(1)T bp(1)T
1 2 3 4

C CC p C (1 p) abe C p C (1 p) abe 0
T 1 p(1)

   
            

…(3.12)
From (3.12) we observe that

2 1

C(t)
(D D)(1 p(1))

 
  

 …(3.13)

Where 1 1 2 2 3 4D C p C (1 p) , D C p C (1 p)      …(3.14)

(t) abexp(bp(1)t) (0) ab () 0         …(3.15)

From (3.15) it can be seen that (t) is a decreasing function in time.

Effect of Introduction of Fault and Imperfect Debugging on Release Time

82

Result 1:
If

  2 1

C ab >
D 1 (1)  D p 

then C(T) is decreasing for 0T < T and

increasing for T > T0 thus, there exist a finite and unique T=T0 (>0)
minimizing the total expected cost. And if

  2 1

C ab
D 1 (1)


  D p 

then C '(T) 0 for T 0  and hence C(T) is

minimum for T = 0.

Further reliability of software defined as “given that the testing has
continued up to time T, the probability that a software failure does not
occur in time interval (T,T x) (x 0)  ”. Hence the reliability of
software is represented mathematically as

 m(T x) m(T)R(x | T) R(T x | T) exp     …(3.16)
Using (3.16) we obtain

 ()(| 0) , (|) 1m xR x e R x   …(3.17)
Result 2:
From (3.17) it is observed that (|) , 0R x t t is a increasing function
of time. Thus 0(| 0) R x R there exist T=T1(>0) such that 0(|) R x T R
and if 0(| 0) R x R then 0(|) 0  R x t R t and T=T1=0.

Combining the cost and reliability requirements we state the following
theorem for optimal release policy for the proposed SRGM of
imperfect fault debugging and error generation.

Theorem 2: Assuming

3 1 4 2 0C C 0, C C 0,C 0, x 0, and 0 R 1       

(a)
   0 0 1

2 1

Cif ab > & (| 0) 1, * max(,)
D 1 (1)

R x R T T T
D p 

  
  

(b)
   0 0

2 1

Cif ab > & (| 0) 0, *
D 1 (1)

R x R T T
D p 

  
  

P. K. Kapur, D. Gupta, A. Gupta, P. C. Jha

83

(c)
   0 1

2 1

Cif ab & (| 0) 1, *
D 1 (1)

R x R T T
D p 

   
  

(d)
   0

2 1

Cif ab &0 (| 0), * 0
D 1 (1)

R R x T
D p 

   
  

Using the above theorem we can determine the optimal release time
minimizing the total expected software cost under a desired reliability
level constraint.

4. Numerical Examples and Sensitivity Analysis

4.1 Numerical Example of Release Time Problem for

Imperfect Fault Debugging SRGM

Assuming that the parameters a and b of Imperfect Fault Debugging
SRGM due to Kapur et al the SRGM have already been estimated
using the collected failure data and estimated values of a and b are
142.32 and 0.1246 respectively. Further assuming that cost of perfect
fault debugging during testing and operation phase i.e. C1 and C2 to be
$200 and $110 respectively, cost of imperfect fault debugging during
testing and operation phase to be same i.e. C3 = C4 =$1500 and cost of
per unit testing C=$10. Following the theorem 1 we obtain the optimal
release time T* = 56.28, optimal level of perfect debugging p* =
0.8897 and optimal total expected software cost C(T*) = 33365.047
and achieved level of reliability R(T*) = 0.9398. Where as for the
release time problem discussed by Min Xie T* = 55.196, optimal level
of perfect debugging p* = 0.85 and optimal total expected software
cost C(T*) = 37931.44 and achieved level of reliability R(T*) =
0.9117. Thus we can see that if we include separate cost of fixing
faults perfectly and imperfectly it has significant effect on optimal
release time and cost depending upon the values of the various costs
associated with the cost model. Note that the above release time
problem is solved in way as done by Min Xie which gives optimal
values of p and T* however it is imperative to estimate the level of
perfect fault debugging i.e. p from the SRGM used to describe the
failure phenomenon using the collected failure data, and not as a
decision to be obtained from release time problem to be obtained from

Effect of Introduction of Fault and Imperfect Debugging on Release Time

84

release time problem. In the next numerical example we have
determined the optimal release time minimizing the cost function
subject to reliability constraint assuming that value of perfect
debugging and error generation parameters are estimated using
collected failure data.

4.2 Numerical Example of Release Time Problem for an

SRGM Incorporating Two Types of Imperfect Debugging

Assuming that the parameters a, b, p and α of proposed SRGM have
already been estimated using the collected failure data and estimated
values of a, b, p and α are 134, 0.14024, 0.99842 and 0.01256
respectively. Further assuming that cost of perfect and imperfect fault
debugging during testing i.e. C1 and C2 to be $200 and $110
respectively, cost of perfect and imperfect fault debugging during
operation phase to be same i.e. C3 = C4 =$1500 and cost of per unit
testing C=$10. If minimum reliability requirement by the release time
is 0.85, following result 1 and 2 we obtain T0 = 25.6162 and T1
=38.3983. Then finally following theorem 2 we obtain T* = 38.3983.
The minimum total expected software cost at T* i.e. C(T*) =
$55235.55 and number of faults removed by the release time m(T*) =
135.

4.3 Sensitivity Analysis

We have conducted, a sensitivity analysis of the release time problem
formulated for the proposed model to study the effect of variations in
minimum reliability requirement by the release time, most sensitive
costs involved in cost function and level of perfect debugging, on the
optimal release time and total expected software testing cost.
Although we can analyze the sensitivity of all the parameters of the
SRGM and Cost model but due to the limitation on size of paper we
still can evaluate the optimal release time problem for various
conditions by examining about the behavior of some parameters and
costs that have the most significant influence.

P. K. Kapur, D. Gupta, A. Gupta, P. C. Jha

85

We define
MOV OOVRelative Change(RC)

OOV


 …(4.1)

Where OOV is the original optimal values and MOV is the modified
optimal values obtained when there is a variation is some attribute of
the release time problem.

4.3.1 Effect of Variations in Minimum Reliability Requirement

by the Release Time

The optimal value of the release time obtained for the desired
reliability level may be too late as compared to the scheduled delivery
time, in such a case the management and/or the user of a project based
software may agree to release the software at some lower reliability
level with some warranty on the failures, which in turn will change the
optimal release time to an earlier time and consequently lower the
cost. On the other hand if the scheduled delivery is later than the
optimal release time the management may wish to increase the desired
reliability level at some addition testing cost.

Assuming the values of parameters and various costs associated with
cost model to be same as in section 4.2. If minimum reliability
requirement by the release time increased to 0.95 (about 12%
increase) then we obtain T* = 46.73 (about 21.7% increase) and its
RC is 0.217229. The minimum total expected software cost at T* i.e.
C(T*) = $60542.43 (about 9.6% increase), its RC is 0.096077 and
number of faults removed by the release time m(T*) = 136 and if
minimum reliability requirement by the release time decreased to 0.75
(about 12% decrease) then we obtain T* = 34.27 (about 10.7%
decrease) and its RC is -0.10757. The minimum total expected
software testing cost at T* i.e. C(T*) = $52984.85 (about 12.48%
decrease), its RC is -0.12483 and number of faults removed by the
release time m(T*) = 134. Figure 2 plots the relative change in the
optimal release time and cost for the case of 12% increase and
decrease in reliability objective.

Effect of Introduction of Fault and Imperfect Debugging on Release Time

86

Figure 2:
Relative Change in optimal release time
and cost for 12% increase and decrease

in reliability

-0.2

-0.1

0

0.1

0.2

0.3

1 2

Variation

R
C

Time Cost Reliability

4.3.2 Effect of Variations in Costs Involved in the Cost Model

Here we investigate the sensitivity of variations in various costs
involved in the cost model. If any of the cost fixing an error in testing
phase or operation phase for perfect and \or imperfect debugging and
cost of per unit testing time varies during the testing process, it will
have significant changes in optimal testing cost and release time. We
have studied the sensitivity of cost of perfectly fixing an error in
testing and operation phase. Sensitivity for the rest of the costs can be
carried in a similar manner.

If we assume that the values of parameters of the SRGM to be same
given in section 4.2 and assuming that cost of perfect and imperfect
fault debugging during testing i.e. C1 and C2 to be $200 and $110
respectively, cost of perfect and imperfect fault debugging during
operation phase to be same i.e. C3 = C4 =$2000 and cost of per unit
testing C=$2. If minimum reliability requirement by the release time is
0.85, following result 1 and 2 we obtain T0 = 39.61 and T1 =38.3983.
Then finally following theorem 2 we obtain T* = 39.61. The minimum
total expected software cost at T* i.e. C(T*) = $55958.87 and number
of faults removed by the release time m(T*) = 134.

Now if cost of fixing a fault perfectly and imperfectly in operation
phase i.e. C3 and C4 is increased by 25% i.e. from $2000 to $2500,

P. K. Kapur, D. Gupta, A. Gupta, P. C. Jha

87

then we obtain T* = 41.38 (about 0.4% increase) and its RC is
0.0447562. The minimum total expected software cost at T* i.e. C(T*)
= $57053.21 (about 1.9% increase), its RC is 0.019556 and number of
faults removed by the release time m(T*) = 136 and if C3 and C4 is
decreased by 25% i.e. from $2000 to $1500, then we obtain T* =
38.398 (about 3% decrease) and its RC is –0.030605. The minimum
total expected software cost at T* i.e. C(T*) = $55235.55 (about 1.2%
decrease), its RC is –0.01293 and number of faults removed by the
release time m(T*) = 135. Figure 3 plots the relative change in the
optimal release time and cost for the case of 25% increase and
decrease in cost of fixing an error in operation phase.

 Figure 3.

Relative Change in optimal release time
and cost for 25% increase and decrease

in cost of fixing errors in operation phase

-0.05

0

0.05

1 2

Variation

R
C

Time Cost

4.3.3 Effect of Variations in level of perfect fault debugging

Finally we investigate the sensitivity of variations in level of perfect
fault debugging parameter p. If the testing personals were skilled
personal the level of perfect fault debugging would be more or vice
versa. Variations in level of perfect debugging have significant effect
on the optimal time of software release. If the level of perfect
debugging increases for a testing process it is expected that the
software can be released earlier as compared to the optimal release
time determined otherwise and vice versa

Effect of Introduction of Fault and Imperfect Debugging on Release Time

88

If we assume that the values of parameters a, b and α of the SRGM
and the cost involved in cost function to be same given in section 4.2
and a reliability level of 0.85 is desired to be achieved and assuming
value of perfect fault debugging parameter p is 0.9. Following result 1
and 2 we obtain T0 = 39.369 and T1 = 40.737. Then finally following
theorem 2 we obtain T* = 40.737. The minimum total expected
software cost at T* i.e. C(T*) = $56649.53 and number of faults
removed by the release time m(T*) = 135.

Now if p is increase by 5%, then we obtain T* = 39.369 (about 0.03%
decrease) and its RC is –0.03357. The minimum total expected
software cost at T* i.e. C(T*) = $55812.96 (about 1.4% decrease), its
RC is –0.01477 and number of faults removed by the release time
m(T*) = 135 and if p is decrease by 5%, then we obtain T* = 42.93
(about 5.3 % increase) and its RC is 0.053869. The minimum total
expected software cost at T* i.e. C(T*) = $58037.50 (about 2.4%
increase), its RC is 0.024501 and number of faults removed by the
release time m(T*) = 136. Figure 4 plots the relative change in the
optimal release time and cost for the case of 5% increase and decrease
perfect fault debugging parameter p.

 Figure 4.
Relative Change in optimal release time
and cost for 5% increase and decrease

level of perfect fault debugging

-0.1
-0.05

0
0.05

0.1

1 2

Variation

R
C

Time Cost Reliability

A similar conclusion can be obtained for the other costs and
parameters of the SRGM such as C1, C2, C, a, b and α taking the
simultaneous changes in two or more costs and SRGM parameters.

P. K. Kapur, D. Gupta, A. Gupta, P. C. Jha

89

5. Conclusion

In this paper first we have formulated and derived optimal release time
minimizing the expected software cost subject for an imperfect fault-
debugging model due to Kapur et al considering effect of perfect and
imperfect debugging separately on the total expected software cost.
Next, we proposed a SRGM incorporating the effect of imperfect fault
debugging and error generation. The proposed model is validated a
data set cited in literature. Then a release time problem is formulated
and solved minimizing the expected software cost subject to a
minimum reliability level to be achieved by the release time for the
proposed model. A numerical illustration is given for both type of
release problem and finally a sensitivity analysis is performed to
determine the effect of variations in minimum reliability level to be
achieved by release time and various costs involved in cost model on
optimal release time and cost.

Reference:

1. Ammann P.E., Brilliant S.S., and Knight J.C, “The Effect of

Imperfect Error Detection on Reliability,” IEEE Trans. Software
Eng., vol. 20, pp. 142-148, 1994.

2. Kapur P.K., Garg R.B., and S. Kumar, “Contributions to Hardware
and Software Reliability”, World Scientific, Singapore.1999.

3. Kapur P.K., Garg R.B., “Optimal Software Release Policies for
Software Reliability Growth Models under Imperfect Debugging”,
Recherché operationanelle/Operations Research, vol 24, pp. 295-
305,1990.

4. Kapur P.K., Agarwal S., Garg R.B., “ Bi-criterion Release Policy
for Exponential Software Reliability Growth Models ”, Recherche
operationanelle/Operations Research, vol 28, pp. 165-180,1994.

5. Kapur P.K. and Younes S., “Modeling an Imperfect Debugging
Phenomenon in Software Reliability,” Microelectronics and
Reliability, vol. 36, pp. 645-650, 1996.

Effect of Introduction of Fault and Imperfect Debugging on Release Time

90

6. Kapur PK, Bhalla VK. “Optimal release policy for a flexible
software reliability growth model” Reliability Engineering and
System safety 1992; 35: 49-54.

7. Kapur PK, Garg RB, Bahlla VK. “Release policies with random
software life cycle and penalty cost” Microelectronics Reliability
1993; 33 (1): 7-12.

8. Ohba M. and Chou X.M., “Does Imperfect Debugging Affect
Software Reliability Growth?” Proc. 11th Int’l Conf. Software
Eng., pp. 237-244, 1989.

9. Pham H., “Software Reliability”, Springer-Verlang Singapore Pte.
Ltd. 2000.

10. Pham H, “A Software Cost Model with Imperfect Debugging,
Random Life Cycle and Penalty Cost,” Int’l J. Systems Science,
vol. 27, pp. 455-463, 1996.

11. Shanthikumar J.G., “A State and Time-Dependent Occurrence
Rate Software Reliability Model with Imperfect Debugging,”
Proc. Nat’l Computer Conf., pp. 311-315, 1981.

12. Slud E., “Testing for Imperfect Debugging in Software
Reliability,” Scandinavian J. Statistics, vol. 24, pp. 555-572, 1997.

13. Xie M., “ A Study of the Effect of Imperfect debugging on
Software Development Cost”, IEEE Transactions on Software
Engineering, vol 29, No 5, May 2003.

