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Abstract

In this paper, irresolute functions in generalized intuitionistic topo-
logical spaces were introduced. Regarding these functions, we at-
tempted to unveil the notions of some minimal and maximal irreso-
lute functions. In addition, the generalized intuitionistic topological
spaces were extended by using their open sets which are finer than of
it and their basic characterizations were investigated. Some continu-
ous functions in the extension of generalized intuitionistic topological
spaces are also been discussed in this paper.
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1 Introduction

The concept of an intuitionistic set which is a generalization of an ordinary
set and the specialization of an intuitionistic fuzzy set was given by Coker[2].
After that time, intuitionistic topological spaces were introduced [3]. A.Csaszar[1]
introduced many closed sets in generalized topological spaces based on their ba-
sics. In 2019 [9], some new generalized closed sets in ideal nano topological
spaces were developed. In 2022 [6], we have introduced a new type of topology
called generalized intuitionistic topological spaces with the help of intuitionistic
closed sets. After that time we introduced and studied p;-maps in generalized
intuitionistic topological spaces. In addition we have introduced and defined a
new structure of minimal and maximal z;-open sets in generalized intuitionistic
topological spaces. In 2011 [10], the subject like minimal and maximal continu-
ous, minimal and maximal irresolute, T-min space etc. were investigated on basic
topological spaces.

In 2022 [7], the characterizations of nlag-closed sets are proved. In that paper au-
thors has been used Kuratowski’s closure operator. Taking it as an inspiration we
introduce p-irresolute functions in generalized intuitionistic topological spaces
throughout this paper. Also, some minimal and maximal j;-irresolute functions
were introduced and studied in detail.

The aim of this paper is, to introduce the p;(A)-topology which is finer than p;-
topology by using the formula U U (V' N A), where U and V are u;-open.
In addition, some important and interesting results were discussed by using ;-
continuous maps on the extension of i -topology. Also, some counterexamples
are given to support this work.

2 Preliminaries

Definition 2.1 (6). A iy topology on a non-empty set X is a family of intuitionistic
subsets of X satisfying the following axioms:

1. e K
2. Arbitrary union of elements of . belongs to ji;.

For a GITS (X,ju1), the elements of 1 are called pj-open sets(briefly pr-ops) and
the complement of r-open sets are called jir-closed sets(briefly r-cds).

Note:[6] C,,, (0) # 0, Cy,, (X) = X, 1,,,(0) = D and I, (X) # X.
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Definition 2.2 (6). Let (X,ji7) be a GITS.

1. A proper non-null pr-ops G of (X, ju1) is said to be a mn-jr-ops if any jug-
ops which is contained in G is () or G.

2. A proper non-null pir-ops G(# M,,,) of (X, 1) is said to be a mx-pir-ops set
if any pr-ops which contains G is M, or G.

Definition 2.3 (6). Let (X,11;) and (Y,01) be the topological spaces. A map f:
(X, 1) — (Y,01) is called,

1. mn-pr-cts if f~1(G) is a pr-ops in (X, ur) for every mn-jir-ops G in (Y,07).

2. mx-pr-cts if f7YG) is a pr-ops in (X, pg) for every mx-p-ops set G in
(Yor).

Results: [6]

1. Every p-cts map is mn- i -cts.
2. Every py-cts map is mx-fi7-cts.
3. Mn-p-cts and mx-p7-cts maps are independent of each other.

4. It f: X,ur) — (Y,op) 1s pr-cts and g: (Y,07) — (Z,pr) 1s mn-pi;-cts then
gof: (X,ur) — (Z,pr) is mn-piz-cts.

5. f: X,up) — (Y,op) is pr-cts and g: (Y,07) — (Z,pr) is mx-pi;-cts then gof:
(X,pur) = (Z,pr) 18 mX-fi7-0pS.

Definition 2.4 (4). Let X be a ji;-topological spaces. A subset A of X is said to be
pr-dense if C,,,(A) = X. Clearly, X is the only ji;-closed set dense in (X, jiy).

Theorem 2.1. Let (X, 1) be a GITS with closed under intersection property. Then
CMI (A U B) = OMI (A) U CM (B)

Proof: Since AC AUBand B C AUB, C,,(A) Cc C,,(AUB)and C,,(B) C
C,,(AU B). Now we have to prove the second part, Since A C C,,(A) and
BCdC,(B), AUB C Cy,(A)UC,,(B) which s ji;-closed. Then C,,(AUB) C
C,,(A)UC,,(B). Hence the theorem.
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3 pur-irresolute in GITS

Definition 3.1. A mapping k: (X,jui;) — (Y,071) is said to be a

1. semi py-irresolute function(briefly Sp-irresolute) if the inverse image of
semi [i1-open sets(briefly Sur-ops) in (Y,o1) is Spr-op in (X, jig).

2. pre pr-irresolute function(briefly Puy-irresolute) if the inverse image of pre
(r-open sets(briefly Pur-ops) in (Y,o;1) is Pug-op in (X, ji).

3. apuyg-irresolute function if the inverse image of au-ops in (Yo1) is apig-
open in (X, py).

4. Bur-irresolute function if the inverse image of Biir-opsin (Y,01) is Bu-open
in (X, pr).

Theorem 3.1. Let k: (X,11;) — (Y,01) be a semi pr-irresolute function if and only
if the inverse image of semi p-cds in (Y,o1) is semi pr-closed in (X, ).

Proof:

Necessary part: Letk: (X,uu1) — (Y,01) be a semi jir-irresolute function and A be
a semi piy-cds in (Y,o1). Since fis Sur-irresolute, k™ '(Y — A) = X —k '(A) is
Sur-open in (X, juy). Hence k= 1(A) is Spz-closed in (X, jiz).

Sufficient part: Assume that k= '(A) is Suz-closed in (X,ur) for each Sy;-closed
set in (Y,o1). Let V be a Sur-ops in (Y,o1) which yields that Y — V is Su-cds in
(Yor). Then we get k(Y — V) = X — kCD(V) is Sus-closed in (X, ;) this
implies kY (V') is Sur-open in (X, ju;). Hence Kk is Syr-irresolute.

Theorem 3.2. Ifk is Su-irresolute then Kk is Sp-cts.

Proof: Suppose k is Spy-irresolute. Let A be any Suj-ops in (Y,o1). Since every
pr-ops is Spr-open and since A is Spir-open, K1 (A) is Sur-open in (X, ji1). Hence
k is Spy-cts.

Remark 3.1. Since every Su-ops need not be pj-open, we cannot deduce the
reversal concept of the above statement.

Theorem 3.3. Let (X,1i;), (Y,01) and (Z,p;) be three jir-topological spaces. For
any Sup-irresolute map k: (X,uy) — (Y,01) and any Su-cts h: (Y,o1) — (Z,p1)
the composition h o k: (X,ju1) — (Z,py) is Spy-cts.

Proof: Let A be any pir-ops in (Z,pr). Since his Sur-cts, h™'(A) is Sur-open in
(Y,o1). By using K is semi jur-irresolute, we get k™' [h™1(A)] is Sur-open in (X, uz).
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But k™' [h71(A)] = (ho k)"1(A). Therefore, inverse image of ji;-ops in (Z,p;g) is
Sur-openin (X,pur). Hence h o k: (X,1ur) — (Z,pr) is Spy-cts.

Theorem 3.4. Ifk: (X,1u;) — (Y,o7) and h: (Y,01) — (Z,p;) are both Spr-irresolute
then h o k: (X,u1) — (Z,p1) is also Suy-irresolute.

Proof: Let A be any Sur-ops in (Z,pr). Since k and h are Sup-irresolute, h™'(A)
is Spir-open in (Y,o1) and k[ (A)] is Spr-open in (X, 7). Hence (hok)™!(A)
=k [h71(A)] is Sur-open and so h o k: (X, 1) — (Z,p1) is Spy-irresolute.

Theorem 3.5. Let k: (X, i) — (Y,01) be a Pug-irresolute(resp. ojir-irresolute
and Bur-irresolute) function if and only if the inverse image of Pur-closed(resp.
apr-closed and [ur-closed) sets in (Y,o1) is Pu-closed(resp. ayir-closed and
Bur-closed) in (X, jiy).

Proof: We can prove this theorem as we have done in the theorem 3.2.

Theorem 3.6. If fis Pu-irresolute(resp. air-irresolute and [(3jir-irresolute) then
fis Puj-continuous(resp. air-cts and Blr-cts).
Proof: We can prove this theorem as we have done in the theorem 3.3.

Remark 3.2. Since every Puj-open(resp. au-open and [i-open) set need not
be pr-open, we cannot deduce the reversal concept of the above statement.

Theorem 3.7. Let (X,111), (Y,01) and (Z,p;) be three pr-topological spaces. For
any Pug-irresolute(resp. our-irresolute and Bug-irresolute) map k: (X, 11) —
(Y,or) and any Pu-cts(resp. ar-cts and Bug- cts) h: (Y,o1) — (Z,pr) the compo-
sition h o k: (X,ju1) — (Z,pr) is Pu-cts(resp. apur-cts and Buy-cts).

Proof: We can prove this theorem as we have done in the theorem 3.5.

Theorem 3.8. If k: (X,u;) — (Y,01) and h: (Y,o1) — (Z,p;1) are both Pyi;-
irresolute(resp. ayir-irresolute and [yr-irresolute) then h o k: (X,ju1) — (Z,p1) is
also Pur-irresolute(resp. ajuiy-irresolute and [jir-irresolute).

Proof: We can prove this theorem as we have done in the theorem 3.6

4 Minimal and Maximal i ;-irresolute
Definition 4.1. Let (X,1i;) and (Y,01) be the topological spaces. A map k: (X, jiz)

— (Y,o1) is called,

1. mn-pug-irresolute if the inverse image of every mn-pr-opsin (Y,0r) is mn-pi;-
openin (X, ji1).
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2. mx-p-irresolute if the inverse image of every mx-pr-ops in (Y,01) is mx-jiy-
open in (X, i).

Example 4.1. Let X = {a,b,c,d} and Y = {t, u,v, w} with ur = {0, < X, 0, {b} >,
< X,0,{d} >, < X, {a,d},0 >, < X, {a},0 >, < X,0,0 >, < X,0,{c,d} >,
< X,0,{c} > < X, {d},0 >, < X, {d},{b} >} and o; = {0, < X, 0, {v} >, <
X, 0,{w} > < X,0,{u,v} > < X,0,0 >, < X, {v},0 >, < X, {v}, {w} >}.
Define k: (X,u;) — (Y,o1) by k(a) = t, k(b) = w, k(c) = u and k(d) = v. Hence k
is a mn-py-irresolute map.

Theorem 4.1. Every mn-p-irresolute map is mn-ji;-cts.

Proof: Let k: (X,u;) — (Y,01) be a mn-py-irresolute map. Let G be any mn-i;-
ops in (Y,o1). Since k is mn-jy-irresolute, ll(l(A) is a mn-py-ops in (X,juy). That
isk™'(A) is a pr-ops in (X,j11) Hence k is mn-ji-cts.

Remark 4.1. The reversal statement of the above theorem is not necessarily true.
In example 4.3, k is mn-pr-cts but not mn-ji-irresolute. Since k= 1(;X,w,0;) =
/X,b,0; which is not minimal pr-open in (X, ).

Theorem 4.2. Every mx-ji-irresolute map is mx-jir-cts.
Proof: We can prove this theorem as we have done in the theorem 4.4.

Remark 4.2. The reversal statement of the above theorem is not necessarily true.
In example 4.2, k is mx-ji;-cts but not mx-ji-irresolute. Since k= (;X,v,w; =
i X,d,b; which is not mx-p-open in (X, ji).

Remark 4.3. In example 4.2, k is a mn-pr-irresolute map but not mx-jir-irresolute.
In example 4.3, k is a mx-pr-irresolute map but not mn-p-irresolute. That is mn-
wr-irresolute maps and mx-p-irresolute maps are independent of each other.

Remark 4.4. Since mn-p-ops and mx-p -ops are independent of each other,
1. mn-py-irresolute and mx-ji;-cts are independent of each other.
2. mx-pg-irresolute and mn-p-cts are independent of each other.

Theorem 4.3. Letk: (X ;) — (Y,01) be a mn-p-irresolute map if and only if the
inverse image of each mx-py-closed in (Y,01) is a mx-p-closed in (X, jiz).

Proof: We can prove this theorem by using the result, if G is a mn-p-ops if and
only if G° is a mx-pr-closed set.

Theorem 4.4. Ifk: (X,ju;) — (Y,01) and h: (Y,01) — (Z,p;) are mn-ji;-irresolute
then h o k: (X,;u1) — (Z,p1) is a mn-p-irresolute map.

Proof: Let G be any mn-ji;-ops in (Z,p;y). Since his mn-p-irresolute, h™'(G) is a
mn-pir-ops in (Y,01). Also since k is mn-py-irresolute, k' [h~1(G)] = (hok)}(G)
is a mn-pp-ops in (X, ur). Hence h o k is mn-pur-irresolute.
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Theorem 4.5. Letk: (X ;) — (Y,01) be a mx-piy-irresolute map if and only if the
inverse image of each mn-py-closed in (Y,01) is a mn-pr-closed in (X, juiy).

Proof: We can prove this theorem by using the result, if G is a mx-jr-ops if and
only if G¢ is a mn-p-cds.

Theorem 4.6. Ifk: (X,;i;) — (Y,01) and h: (Y,01) — (Z,p;) are mx-jir-irresolute
then hok: (X,;ur) — (Z,p1) is a mx-py-irresolute map.
Proof: Similar to that of theorem 4.11.

S The Simple Extension of ;/;-topology over a 1:;-set

In (X,pt;) a subset A of X, we denote by 1i;(A) the simple extension of y; over
A, that is the collection of sets UU(VNA), where U,V € p;. Note that p7(A) is
finer than ;.

Theorem S5.1. If A is p;-dense subset of the space (X, i), then A is also j;-dense
in (X, pur(A)).

Proof: Since u;(A) is finer than juy, 1y C pur(A). This gives C,,a)(A) C C,, (A).
To prove C,,,(A) C Cp,a)(A). Let x € Cy,(A) and let G be a ji-ops of x in
pr(A). Then xeG = HU(JNA) where H,J € py. If x€H then HNA # () and GNA
# (0. If x€JNA then JNA # 0 and GNA # (. Hence x € Cy,(a)(A). Therefore
Cury(A) = Cpu (A).

Theorem 5.2. Let (X,j11) be a ju-topological space with closed under intersection
property. Let A be a ji;-dense subset of the space (X, ji1). Then for every pr-open
subset G of the space (X,j1;(A)) we have C,,,(G) = C,,,4)(G) and for every fi;-
closed subset F of the space (X, j11(A)) we have 1,,,(F) = I, a)(F).

Proof: Let V € py. Since pr(A) is finer than iy, C, ) (V) C Cy (V). Now to
prove, C,, (V) C Cpay(V). Letx € C,, (V) and let G be a pur-open neighborhood
of xin (X,j11(A)). Then x€G = HU(JNA) where H,J € ;. If x€H then HNV # ().
Again if x € JNACJ then JNV # () and hence JNVNA # (), since JNV € u; and
since A is p-dense. Thus also in this case GOV # () and hence x € C,,;(4)(V).
This implies C,, (V) C C,, (V). Henceforth C,, (V) = Cy,a(V') for each
Ve ur. Let G € pui(A) then G = HU(JNA) where H,J € . Clearly C,,(H)
= Cuy)(H). Since J € pur(A) and since A is a ji;-dense subset of (X, jur(A)),
CM(A)(JQA) = CM(A)(J) = CM(J) = CM(JﬂA). Thus OM(A)(G) = CM(H) U
C,,(JNA) =C,,,(HU(JNA)) = C,,,(G). Proceeding like this we can prove I,,,(F)
= [M(A)(F)'

Corolary 5.1. Let (X,j11) be a GITS with closed under intersection property. If

A is a py-dense subset of the space (X, pir). Then for every V € u(A) we have
L, (Cuy (V) = 1,,04)(Cpuyay(V')). Hence the set V is a regular jir-open subset of
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(X, pu1) if and only if it is regular p-open in (X, 17 (A)).
Proof: From the previous theorem we have 1, (C,,(V)) = 1,,(Cua)(V)) =

Ly (4)(Cryay (V)

6 The characterization of extension on /i;-topology

Remark 6.1. If k: (X,uu;(A)) — (Y,01) is pj-cts. Then the restriction of k on
(X, 1) [Shortly, K\(X, j11)] need not be pir-cts.

Example 6.1. Let X = {a,b,c} and Y = {u,v,w} with u; = {0, < X,0,{a} >,
< X,0,{b} > < X,0,0 > < X,0,{a,b} > < X, {a,0},0 >}, u;(A)
< X,0,{a} > < X,0,{b} > < X,0,0 >, < X,0,{a,b} > < X,{a,b},0
< X, {b},0 >} and or = {0, < X,0,{u} > < X,0,{v} > < X,0,0 >,
< X, {v},0 >}. Define k: (X,ju;1(A)) — (Yo1) by k(a) = u, k(b)—vandk( ) =
w. Hence k is j1;(A)-cts. But k(X pi1(A)) is not pur-cts, since k™' (< X, {v},0 >)
:<X,{b},@>§é,u1

Remark 6.2. Since ji;(A) is finer than (17, some elements of 11;(A) does not be-
longs to iy and the elements of p;(A) which is not in ji; need not be mn-ji;-open
in (X,pur). For, U C UUVNA) ¢ pr and U € p(A), UJVNA) should not be
mn-pir-open in (X,1y(A)). By the previous example, we may conclude that every
mx-pir-ops in (X, 11 (A)) need not be pr-open in (X, ).

Remark 6.3. A function k is mn-pu(A)-cts in (X, ji;(A)) then k(X p1) is mn-jur-
cts. In example 6.2, A function f is mx-yi;(A)-cts in (X, j17(A)) then f|(X,jur) need
not be mx-i-cts.

7 Conclusions

In example 4.2, k is a mn-x-irresolute map but not mx-zi-irresolute and in
example 4.3, k is a mx-pr-irresolute map but not mn-z;-irresolute. This exam-
ples evinces mn-i -irresolute maps and mx-p;-irresolute maps are independent
of each other. Remark 6.1 propounded the restriction of the function K on (X, ;)
need not be a i -continuous function. In remark 6.3, we discussed the connec-
tions between minimal ;-open sets in (X,x7) and in (X, (A)). We hope that we
improved some results concerning 7 (A)-topological spaces. We will extend our
research in kernel and contra continuous of y;-topological spaces.
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