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Abstract

In this paper, some translations of bipolar valued multi fuzzy subnearring of a nearing
are introduced and using these translations, some theorems are stated and proved.
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1. Introduction

In 1965, Zadeh [9] introduced the notion of a fuzzy subset of a set, fuzzy sets are a
kind of useful mathematical structure to represent a collection of objects whose
boundary is vague. Since then, it has become a vigorous area of research in different
domains, there have been a number of generalizations of this fundamental concept such
as intuitionistic fuzzy sets, interval-valued fuzzy sets, vague sets, soft sets etc.

W. R. Zhang [10, 11] introduced an extension of fuzzy sets named bipolar valued
fuzzy sets in 1994 and bipolar valued fuzzy set was developed by Lee [2, 3]. Bipolar
valued fuzzy sets are an extension of fuzzy sets whose membership degree range is
enlarged from the interval [0, 1] to [-1, 1]. In a bipolar valued fuzzy set, the
membership degree 0 means that elements are irrelevant to the corresponding property,
the membership degree (0, 1] indicates that elements somewhat satisfy the property and
the membership degree [-1, 0) indicates that elements somewhat satisfy the implicit
counter property. Bipolar valued fuzzy sets and intuitionistic fuzzy sets look similar
each other. However, they are different each other [3].

Vasantha kandasamy. W. B [7] introduced the basic idea about the fuzzy group and
fuzzy bigroup. M.S. Anithat et.al [1] introduced the bipolar valued fuzzy subgroup.
Sheena. K. P and K. Uma Devi [6] have introduced the bipolar valued fuzzy subbigroup
of a bigroup. Shanthi. V.K and G. Shyamala [5] have introduced the bipolar valued
multi fuzzy subgroups of a group.

Yasodara. S, KE. Sathappan [8] defined the bipolar valued multi fuzzy
subsemirings of a semiring. Bipolar valued multi fuzzy subnearring of a nearing has
been introduced by S. Muthukumaran and B. Anandh [4]. In this paper, the concept of
translations of bipolar valued multi fuzzy subnearring of a nearing is introduced and
established some results.

Definition 1.1. ([11])A bipolar valued fuzzy set (BVFS) B in X is defined as an object
of the form B = {< x, B* (u), B ~(u) >/ xe X}, where B*: X— [0, 1] and B~: X— [-1, 0].
The positive membership degree B*(u) denotes the satisfaction degree of an element x
to the property corresponding to a bipolar valued fuzzy set B and the negative
membership degree B~(u) denotes the satisfaction degree of an element x to some
implicit counter-property corresponding to a bipolar valued fuzzy set B.

Definition 1.2. ([8]) A bipolar valued multi fuzzy set (BVMFS) A in X is defined as an
object of the form B = { ( x, B1*(u), B2"(u), ..., Ba"(u), B17(u), B27(v), ..., Ba(u) )/
xe X}, where Bi*: X— [0, 1] and Bi~: X— [-1, 0], for all i. The positive membership
degrees Bi"(u) denote the satisfaction degree of an element x to the property
corresponding to a bipolar valued multi fuzzy set B and the negative membership
degrees Bi~(u) denote the satisfaction degree of an element x to some implicit counter-
property corresponding to a bipolar valued multi fuzzy set B.
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Definition 1.3. ([4])Let (N, +, -) be a nearring. A BVMFS B of N is said to be a bipolar
valued multi fuzzy subnearring of N (BVMFSNR) if the following conditions are
satisfied, for all i,

(i) Bi* (u~v) > min {Bi* (u), Bi* (v)}

(i) Bi* (uv) = min {Bi" (u), Bi* (v)}

(iii) Bi-(u—v) < max {Bi~(u), Bi (v)}

(iv) Bi(uv) < max{Bi~(u), Bi (v)}, ¥V u, veN.

Definition 1.4. ([8])Let A = { A%, A%, ..., An", A", A2, ..., Ar) and B = ( B1*, BT,
..., Bn*, B17, B2+, ..., Bn") be two bipolar valued multi fuzzy subsets with degree n of a
set X. We define the following relations and operations:

(i) Ac B ifand only if for all i, Ai*(u) < Bi*(u) and Ai~(u) > Bi~(u), V ueX.

(i) AnB = { ( u, min(A1*(u), Bi*(u)), min(A2*(u), B2"(u)), ..., min(An*(u), Bn"(u)),
max (A1 (u), B1~(u) ), max (A2(u), B27(u) ), ..., max (An~(u), Ba(u)) Y/ueX}.

Definition 1.5. Let C = ( C1*, C2¥, ..., G, C17, C27, ..., Cn) be a bipolar valued multi
fuzzy subnearring of a nearring R and seR. Then the pseudo bipolar valued multi fuzzy
coset (SC)P = ( (sC1")P1*, (SC2")P2, ..., (SCn")Pn", (SC1)P17, (SC2)P2, ..., (SCna7)Pn) IS
defined by (sCi*)i*(a) = pi*(s) Ci*(a) and (sCi")Pi(a) = — pi~(s) Ci~(a), for all i and every
aeR and peP, where P is a collection of bipolar valued multi fuzzy subsets of R.

Definition 1.6. [8] Let A = ( Ai*, A%, ..., An', A1, Ax, ..., Ax") be a bipolar valued
multi fuzzy subset of X. Then the height H(A) = { H(A1*), H(A2"), ..., H(An"), H(A1),
H(A2), ..., H(An") ) is defined for all i as H(Ai*) = sup Ai*(x) for all xeX and H(A") =
inf Ai"(x) for all xeX.

Definition 1.7. [6]Let A = ( A%, A", ..., Ai*, A1, A2, ..., Ai") be a bipolar valued
multi fuzzy subset of X. Then °A = A", °A2%,..., °Ac*, OAr, OAo,..., PAn)is defined
for all i as °Ai*(x) = Ai*(x) H (Ai) for all xe X and °Ai~(x) = —Ai"(X)H(A") for all xeX.

Definition 1.8. [6] Let A = ( A1*, A%, ..., An", A1, A2, ..., Ax") be a bipolar valued
multi fuzzy subset of X. Then 2A = (*A1", 2A2", ..., 2An", 2Ar7, 2Ar, ..., 2An)is
defined for all i as 2Ai"(x) = Ai*(x) / H(A") for all xeX and 2Ai~(x) = —Ai(x) / H(AI")
for all xeX.

Definition 1.9. [6] Let A = ( Ai*, A%, ..., An*, A1, A2, ..., Ax") be a bipolar valued
multi fuzzy subset of X. Then ®A = (®Ar*, ®Ay*, ..., @A, @A, ®A, ..., PAnis
defined for all i as ®Ai*(X) = Ai*(X) + 1- H(Ai") for all xeX and ®Ai"(X) = A (X)
—1-H(Ai") for all xeX.
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Definition 1.10. [6] Let A = { A%, A%, ..., Ax', A1, Ax, ..., Ax") be a bipolar valued
multi fuzzy subset of X. Then A is called bipolar valued normal multi fuzzy subset of X
if H(AI") = L and H(Ai") = -1 for all I.

2.Properties

Theorem 2.1.([4]) If B = ( B:*, B2", ..., Ba", B17, B2, ..., Badand C = ( Ci, Co°, ...,
Cn", C17, Co7, ..., Cqo7) are two bipolar valued multi fuzzy subnearrings with degree n of

a nearring R, then their intersection BNC is a bipolar valued multi fuzzy Subnearring of
R.

Theorem 2.2.Let K = ( K1*, K2™... Kn', K17, K2™... Kq™) be a bipolar valued multi fuzzy
subnearring with degree n of a nearring R. Then the pseudo bipolar valued multi fuzzy
coset (a1K)™ is a bipolar valued multi fuzzy subnearring of the nearring R, for every ai
in Rand m in M, where M is a collection of bipolar valued multi fuzzy subset of R.

Proof. Let by, c1 in R and a1eR. For each i, then (aiKi*)m‘+ (b,—c)=m(a)K; (b,—c)>
m;*(a1) min{Ki*(b1), Ki*(c1)} = min{m;*(a1) Ki*(b1), mi*(a1)Ki*(c1)}= min{ (aiKi+ )mr (),
(K" (c) 3. Therefore (a,K; )" (b —c,) = min {(a,K; " (0).(aK;)" (c)) } for by,
cieR. And for each i, then (a,K " (b)) =m (a)K; (bc)> mi*(ar) min{Ki*(ba),
Kifeo}s  min{mi@)Ki'(by), mia)Kie}=  min{ (@K )" ). @K )" @)
Therefore (a,K; )" (bc,) = min { (a,K; " (b), (a,K; )" (c,) 3, for all by, c1eR. For each
L @K T f—e)=m @)K B—e)< mi(@) max {Kiby), Ki(e)} =
max{mi-(a)Ki-(b), mi-@)Kic)}= max{(aK " (o), (aK )" (c)}. Therefore
(alKi’)m; (b, —c,) £ max {(aiKi’)mf (), (alKi’)m; (c,)}, for b1, cieR. Also for each i,
then (3K J* (bc)=m (@)K (oc)<s mi(a) max{Ki(h), Ki(c)} =
max{m;~(a1)Ki"(b1), mi-(a1)Ki(c1)}= max{(aiKi’)m; (bl),(aiKi’)mf (c,)}. Therefore

(K " (e <max {(a,K; )" (b).(a,K; )" (c)3, for all by, cieR. Hence (a:K)™ is a
bipolar valued multi fuzzy subnearring of the nearring R.

Theorem 2.3. If K = { K1, Ko*, ..., Kn", K17, K27, ..., Ky7) is a bipolar valued multi
fuzzy subnearring with degree n of a nearring R, then®K = (®°K1*, ®Ky*, ..., ®Kn*, K1,
K7, ..., ®Kyis a bipolar valued multi fuzzy subnearring of R.
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Proof. Let ai, by in R. For each i, ®Ki*(ai— b1) = Ki*(ai— b1)+1-H(Ki*)> min{Ki*(a1),
Kitf(b)}+1-H(K)=  min{Ki*(@)+1-H(K"), Ki*(b)+1-H(K")}=  min{®K*(as),
®K;i*(b1) }implies ®Ki*(ai— b1) > min{®Ki*(a1), ®Ki*(b1) } for all a1, b1eR. And for all i,
Ki*( aib1) = Ki*(aib1)+1-H(Ki*)= min{Ki*(a1), Ki*(b1) }+1-H(Ki") = min{K;*(a1)+1-
H(Ki*), Ki*(b)+1-H(Ki")}= min{®Ki*(a1), ®Ki*(b1)}which implies ®Ki*(aib1) >
min{®Ki*(a1), ®Ki*(b1) } for all a1, b1eR. Also for all i, ®K;j~(ai— b1) = Ki~(a1— b1)-1-
H(Ki")< max{Ki(a1), Ki"(b1) }-1-H(Ki") = max{Ki (a1)-1-H(Ki"), Ki"(b1)-1-H(Ki")}=
max{®Ki~(a1), ®Ki~(b1)}implies ®Ki~(a1— b1) < max{®Ki(a1), ®Ki~(b1) } for all a1, b1eR.
And for all i, ®Ki(aib1) = Ki(aib1)-1-H(Ki)< max{Ki(a1), Ki(b1)}-1-H(Ki)=
max{Ki(a1)-1-H(Ki"), Ki(b1)-1-H(Ki)}= max{®Ki=(a1), ®Ki(b1)}implies ®Ki~(aib1)
< max{®Ki(a1), ®Ki~(b1) } for all a1, b1eR. Hence ®K is abipolar valued multi fuzzy
subnearring of R.

Corollary 2.4. Let K = ( Ki%, K2¥, ..., Kn", Ki7, K27, ..., Ky7) is a bipolar valued multi
fuzzy subnearring with degree n of a nearring R.

(i) If ecR, then for each i, ®Ki*(e) = 1 and ®Ki~(e) = -1, where e is an Identity element
of R;

(ii)For each i, there exists eeR such that Ki*(e) = 1 and Ki*(e) = -1 if and only if
®Ki*(a1) = Ki*(a1) and ®Ki~(a1) = Ki~(a1) for all a1eR;

(iii)For each i, there exists aieR such that Ki*(a1) = Ki*(e) and Ki~(a1) = Ki(e) if and
only if ®Ki*(a1) = 1 and ®Ki(a1) = -1, for somea; eR;

(iv)For each i, if there exists a;eR such that Ki*(a1) = 1 and Ki~(a1) = -1, then ®K;*(a1) =
1 and ®Ki(a1) = -1;

(v)For each i, if Ki*(e) = 1, Ki~(e) = -1, ®Ki*(a1) = 0 and ®Kj(a1) = 0, then Ki*(a1) = 0,
Ki(a1) = 0;

(vi)® (°K)=°K,

(vii)®K is a bipolar valued normal multi fuzzy subnearring of R containing K;

(viii) K is a bipolar valued normal multi fuzzy subnearring of R if and only if ®K = K;
(ix)If there exists a bipolar valued multi fuzzy subnearring P of R satisfying ®P < K;
then K is a bipolar valued normal fuzzy subnearring of R;

(X)If there exists a bipolar valued multi fuzzy subnearring P of R satisfying ®P < K,
then ®K = K.

Proof. (i), (ii), (iii), (iv), (v) and (x) are trivial.(vi) Let a1, b1eR. For each i, then ®(®K;*)
@) = ®Ki*(a1)+1-2Ki*(e)= {Ki*(e)+1-Ki*(e)}+1{Ki*(e)+1-Ki*(e)}= Ki*(a1)+1-Ki*(e)
= ®Ki*(a1). Also for each i, ®(®Ki")~(a1) = ®Ki(a1) -1-®Ki(e)= {Ki (a1)-1-Ki~(e)}-1-
{Ki (e)-1-Ki(e)} = Ki(a1)-1-Ki(e) = ®Ki(a1).Hence ® (®K)= ®K.(vii) Let eeR.
Clearly Ki*(e) = 1 and Ki=(e) = —1. Thus ®K is a bipolar valued normal multi fuzzy
subnearring of R and K <=®K.(viii) If K* = K, then it is obvious that K is a bipolar
valued normal multi fuzzy subnearring of R. Assume that K is a bipolar valued normal
multi fuzzy subnearring of R. Let a;eR. Then ®K;*(a1) = Ki*(a1)+1-Ki*(e) = Ki*(a1) and
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®Ki~(a1) = Ki~(a1)-1-Ki(e) = Ki~(a1). Hence ®K = K. (ix) Suppose there exists a bipolar
valued multi fuzzy subnearring P of H such that ®P < K. Then 1 = ®P;* (e) < K" () and
-1 =%Pi(e) > Ki(e). Hence Ki*(e) =1 and Ki~(e) = -1.

Theorem 2.5. If K = ( Ki*, Ko, ..., Kv", K17, Ko7, ..., Kqi7) is a bipolar valued multi
fuzzy subnearring with degree n of a nearring R, then’K = (°Ki*, °K,*, ..., °Ky*, Ky,
oKy, ..., %Knis a bipolar valued multi fuzzy subnearring of R.

Proof. Let aj, b: in R. For each i°Ki*(ai— b1) = Ki*(ai—b1)H(Ki")> min{Ki*(a1),
Kt () IHK) = min{Ki*(a)H(K"), Ki*(b)HKM)}= min{°Ki*(a1), °Ki*(bs)¥implies
OKi*(a1i—b1) > min{°Ki*(a1), °Ki*(b1)} for all a;, bieR. And for all i, °Ki*(aib1) =
Ki*(aib1))H(Ki*) > min{Ki*(a1), Ki*(b1)} H(Ki")= min{Ki"(a1))H(Ki*), Ki*(b1))H(Ki")}=
min{°Ki*(a1), °Ki*(b1)}. Thus °Ki*(aib1)> min{°Ki*(az1), °Ki*(b1)} for all a1, b1eR. Also
for all i, °Ki(a—b1) = -K(a— b)HK) <—max{Ki(a1), Ki(b)}H(Ki)=
max{-Ki-(a))H(Ki"), -Ki"(b1)H(Ki)} = max{°Ki (a1), °Ki~(b1)}implies °Ki (ai— b1) <
max{°Ki-(a1), °Ki(b1)} for all a;, bieR. And for all i, °Ki(aib1) =
“Ki(a1bn)H(Ki)<—max{Ki(a1), Ki(b1)} H(Ki) = max{—Ki(a)H(Ki),
—Ki(b1)H(KiN)} = max{°Ki~(a1), °Ki~(b1)}.Therefore °Ki~(a1b1)< max{°Ki~(a1), °Ki~(b1)}
for all a1, b1eR. Hence °Kis a bipolar valued multi fuzzy subnearring of R.

Theorem 2.6. If K = ( Ki*, Ko, ..., Ki", K17, Ko7, ..., Kqi7) is a bipolar valued multi
fuzzy subnearring with degree n of a nearring R, then?K = (*K1*, 2Ky*, ..., 2Ky", 2K1,
AK27, ..., 2Ky )is a bipolar valued multi fuzzy subnearring of R.

Proof. Let a1, b1 in R. For each i, then 2K;*(a1— b1) = Ki*(a1— b1) / H(Ki")> min{Ki"(a1),
Kitfb)} / HK") = min{Ki'(a) / HK", Ki*(b) / HKDI= min{*Ki*(a),
AKi*(b1)}implies 2Ki*(a1— b1) > min{®Ki*(a1), 2Ki*(b1)} for all a1, b1eR. And for all i,
AKi*(aih1) = Ki*(aiby) / H(Ki*) > min{Ki*(a1), Ki*(b1)} / H(Ki")= min{Ki*(a1) / H(Ki"),
Kit(br) / H(K)}= min{®Ki*(a1), 2Ki*(b))}. Therefore AKi*(aib1)> min{®Ki*(a1),
AKi"(b1)} for all a1, bieR. Also for all i, *Ki(a1— b1) = —Ki~(ai— b1) / H(Ki") <-
max{Ki~(a1), Ki(b1)} / H(K)= max{-Ki(a1) / H(Ki), -Ki(a1)) / H(K")} =
max{*Ki~(a1), “Ki~(b1)}implies *Ki~(ai— b1) < max{*Ki(a1), *Ki~(b1)} for all a1, b1eR.
And for all i, 2Ki(aih1)) = —Ki*(aib1) / H(Ki)<-max{Ki~(a1), Ki(b1)} / H(Ki) =
max{-Ki-(a1) / H(K{), -Ki(b1) / H(K)}= max{*Ki(a1), *Ki7(b1)}. Therefore
AKi~(a1b1)< max{*Ki=(a1), *Ki~(b1)}, for all a1, b1eR. Hence 2K is a bipolar valued multi
fuzzy subnearring of R.

Corollary 2.7. Let K = ( Ki*, K2*, ..., K", K17, K27, ..., Kn") be a bipolar valued multi
fuzzy subnearring with degree n of a nearring R.

(i) If for each i, H(Ki*) < 1, then °Ki*< Ki*;

(ii) If for each i, H(Ki") >-1, then °Ki> K-,

(iii) If for each i, H(Ki*) < 1 and H(Ki") >—1, then °K< K;;
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(iv) If for each i, H(Ki*) < 1, then 2Ki*> Ki*;

(v) If for each i, H(Ki") >-1, then 2Ki < Kj~;

(vi) If for each i, H(K;") < 1 and H(K;") >-1, then®K> K;

(vii) If for each i, H(Ki*) < 1 and H(K;") >-1, then®K is a bipolar valued normal multi
fuzzy subnearring of R.

Proof. (i), (ii), (iii), (iv), (v), (vi) and (vii) are trivial.

Corollary 2.8. If K is a bipolar valued normal multi fuzzy subnearring of a nearring R,
then (i) °K = K, (ii) 2K = K.
Proof. The proof follows from Definitions 1.8, 1.9 and 1.11.

Theorem 2.9.Let K = ( K1*, K2™... Kn", K17, K2™... Kq™) be a bipolar valued multi fuzzy
subnearring with degree n of a nearring R. If (a1K) ™ and (b:K) ™ are two pseudo bipolar
valued multi fuzzy coset of K, then their intersection (a1K) ™ n(b1K) ™ is also a bipolar
valued multi fuzzy subnearring of the nearring R, for every ai, b1eR and m in M, where
M is a collection of bipolar valued multi fuzzy subset of R.

Proof. The Proof follows from the Theorem 2.1 and 2.2.

Theorem 2.10.Let K = ( Ki¥, K2*... Ky*, K17, K27... Ky7) be a bipolar valued multi
fuzzy subnearring with degree n of a nearring R. If (a:K) ™ and (b:K) ™ are two pseudos
bipolar valued multi fuzzy coset of K and m (a1)< m(b1) or m(a1) > m(b1), then their
union (a1K) ™u(b1K)™ is also a bipolar valued multi fuzzy subnearring of the nearring
R, for every a1, b1eR and m in M, where M is a collection of bipolar valued multi fuzzy
subset of R.

Proof. The proof follows from the Theorem 2.2.

Theorem 2.11. Let K = ( K1, Ko, ..., Kn*, K17, K27, ..., Kn7) be a bipolar valued multi
fuzzy subnearring with degree n of a nearring R. Then K is a bipolar valued multi fuzzy
subnearring of R if and only if each (Ki*, Ki") is a bipolar valued fuzzy subnearring of
R.

Proof. Let a1, b1 in R. Suppose K is a bipolar valued multi fuzzy subnearring of R, for
each i, Ki"(a1—b1) >min {Ki"(a1), Ki"(b1)}, Ki*(aib1) >min {Ki*(a1), Ki*(b1)},Ki~(a1— b1)
< max{Ki~(a1), Ki"(b1)} and Ki~(a1b1) < max{Ki(a1), Ki"(b1)}. Hence each (Ki*, Ki") is
bipolar valued fuzzy subnearring of R. Conversely, assume that each (Ki*, Ki7) is
bipolar valued fuzzy subnearring of R. As per the definition of bipolar valued multi
fuzzy subnearring of R, K is a bipolar valued multi fuzzy subnearring of R.

133



S. Muthukumaran and B. Anandh

References

[1] Anitha. M.S., Muruganantha Prasad &Arjunan. K, “Notes on Bipolar valued fuzzy
subgroups of a group”, Bulletin of Society for Mathematical Services and Standards,
Vol. 2 No. 3 (2013), 52 -59.

[2] Lee K.M., “Bipolar valued fuzzy sets and their operations”, Proc. Int. Conf. on
Intelligent Technologies, Bangkok, Thailand, (2000), 307 — 312.

[3] Lee K.M.., “Comparison of interval-valued fuzzy sets, intuitionistic fuzzy sets and
bipolar valued fuzzy sets”, J. fuzzy Logic Intelligent Systems, 14(2) (2004), 125 —-129.

[4] Muthukumaran. S & B. Anandh, “Some theorems in bipolar valued multi fuzzy
subnearring of a nearing”, Infokara, Vol .8, Iss. 11 (2019).

[5] Sheena. K. P and K. Uma Devi, “Bipolar valued fuzzy subbigroup of a bigroup”
Wutan Huatan Jisuan Jishu, Vol. XVI1, Issue 111 (2021), 134 -138.

[6] Shyamala. G and Santhi. V.K “Some translations of bipolar valued multi fuzzy
subgroups of a group”, Adalya journal, volume 9, Issue 7 (2020), 111 -115.

[7] Vasantha kandasamy. W.B, Smarandache fuzzy algebra, American research press,
Rehoboth -2003.

[8] Yasodara. S, KE. Sathappan, “Bipolar valued multi fuzzy subsemirings of a
semiring”, International Journal of Mathematical Archive, 6(9) (2015), 75 —80.

[9] Zadeh. L.A, “Fuzzy sets”, Information and control, VVol.8, 338-353 (1965).

[LO]W.R. Zhang, Bipolar Fuzzy sets and Relations, a computational Frame work for
cognitive modeling and multiple decision Analysis, proceedings of Fuzzy IEEE
conferences, (1994), 305- 3009.

[11]W.R. Zhang, Bipolar Fuzzy sets, proceedings of Fuzzy IEEE conferences, (1998),
835- 840.

134



