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ABSTRACT

The use of computational intelligence (CI) in solar photovoltaic (SPV) systems has been on the rise due to the increasing 
computational power, advancements in power electronics and the availability of data generation tools. CI techniques 
play an important role in modelling, sizing, forecasting, optimizing, analysing and predicting the performance and 
control of SPV systems. Thus, CI techniques have become an essential technology as the energy sector seeks to meet the 
rapidly increasing demand for clean, cheap, and reliable energy. In this context, this review paper aims to investigate 
the role of CI techniques in the advancements of SPV systems. 

The study includes the involvement of CI techniques for parameter identification of solar cells, PV system sizing, 
maximum power point tracking (MPPT), forecasting, fault detection and diagnosis, inverter control and solar tracking 
of SPV systems. A performance comparison between CI techniques and conventional methods is also carried out to 
prove the importance of CI in SPV systems. The findings confirmed the superiority of CI techniques over conventional 
methods for every application studied and it can be concluded that the continuous improvements and involvement of 
these techniques can revolutionize the SPV industry and significantly increase the adoption of solar energy. 

Index-words: Solar photovoltaic systems; Computational Intelligence;  Maximum power point tracking; Fault detection 
and diagnosis.
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I.	 INTRODUCTION

Sustainable   development  necessitates  collective 
efforts to build an inclusive, sustainable, and resilient 
future for society and the planet. This means that 
the three pillars of sustainability; namely, economic 
growth, social inclusion, and environmental 
protection, must be balanced. It is in 2015 when 
the United Nations General Assembly developed 
seventeen Sustainable Development Goals (SDGs) as 
part of Agenda 2030 to ensure a sustainable future for 
all [1]. 

Fig. 1. Sustainable development goals.
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The SDGs address all aspects of sustainability and 
represent an ambitious step toward actionable 
targets for sustainable development across all sectors 
of society. Figure 1 shows the SDGs. Sustainable 
Development Goal 7 (SDG 7) is one of the most crucial 
goals and it calls for access to affordable, reliable and 
sustainable energy for all. Energy is a key source of 
economic growth in every nation and lack of access to 
energy supplies is a constraint to human and economic 
development.

Fig. 2. Installed capacity of SPV.

Presently, fossil fuels provide approximately 80% 
of the world’s energy [2]. The use of fossil fuels 
emits greenhouse gases and it is a threat to our 
environment. Thus, concerning SDG 7, for achieving 
the environmental goals for the future, many nations 
are strongly promoting the utilization of renewable 
energy sources. Renewable energy sources are 
sustainable and very low in pollution. In the same 
context, among different renewable energy sources, 
solar PV (SPV) is one of the fastest-growing renewable 
technologies as given in Figure 2. 

The global interest in SPV is growing as the prices of 
photovoltaic (PV) modules and solar batteries continue 
to fall, as well as advances in power electronics. 
In addition, there are many new innovative 
technologies, such as computational intelligence 
(CI) and the internet of things (IoT), which are being 
used to advance SPV systems, thereby improving 
solar energy’s competitiveness in the marketplace. CI 
techniques play an important role in modelling, sizing, 
forecasting, optimizing, analysing and predicting the 
performance and control of SPV systems. 

They have the potential to reduce energy losses, lower 
energy costs, and facilitate and accelerate the global 
adoption of solar energy. CI techniques can also be 

used during the manufacturing of solar cells, allowing 
for the production of high-quality solar modules. Thus, 
CI techniques have become an essential technology as 
the energy sector seeks to meet the rapidly increasing 
demand for clean, cheap, and reliable energy. 

This paper provides a comprehensive review of the 
application of CI techniques for modelling, sizing, 
optimizing, forecasting, fault detection and diagnosis, 
and control of SPV systems. It also gives a comparison 
between CI techniques and conventional methods for 
each application type. The rest of the paper is arranged 
as follows: Section 2 gives an overview of commonly 
used CI techniques. Section 3 covers the methodology 
and the involvement of CI techniques in different 
SPV systems sectors. After that, Section 4 discusses 
the findings of the study and Section 5 provides the 
conclusion for the study.

II. OVERVIEW OF COMMONLY USED 
COMPUTATIONAL INTELLIGENCE TECHNIQUES

Computational intelligence refers to the theories, 
designs, applications and developments of biologically 
and linguistically inspired computational paradigms 
[3]. Artificial neural networks, fuzzy systems, and 
evolutionary computation are the three main pillars of 
CI. The next section gives an outline of CI techniques. 

A.	 Artificial  Neural Networks 

An artificial neural network (ANN) is a mathematical 
method that tries to simulate how biological neural 
networks work [4]. Artificial neurons learn from 
previous or given examples so that if they encounter 
such a situation again in the future, they will be able to 
solve it. Artificial neural networks (ANNs) have been 
useful in various areas including the field of medicine, 
neurology, mathematics, engineering, economics, and 
meteorology [5]. 

There are numerous types of ANNs, including feed-
forward neural networks, recurrent networks, and 
radial bias neural networks. ANNs need training 
data sets and a learning algorithm for them to work. 
A commonly used learning algorithm is the back-
propagation algorithm. When training ANNs, the 
network is given an input to give an output. The 
network output is then compared to the desired or 
correct output and if there is a difference, the synaptic 
weights are adjusted in such a way that decreases the 
error [6]. 

The process of adjusting the weights and running 
through the inputs is repeated until the errors are 
within the desired tolerance. After the training has 
reached the desired level, the weights are then held 
constant and the network will be ready to be used to 
make decisions and solve problems. 
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B.	 Fuzzy Logic 

Lotfi Zadeh developed fuzzy logic (FL) in 1964 
to address uncertainty and imprecision that are 
prevalent in many real-world engineering problems 
[7]. FL mimics decision-making in humans because it 
takes all possible intermediate values between “yes” 
and “no”. Fuzzy logic is centred on the fuzzy sets 
theory, a theory that explains the classes of objects 
with ambiguous boundaries where the membership is 
a matter of degree [8]. A fuzzy logic controller consists 
of a fuzzification module, a rule-based inference 
system, and a defuzzification module.

The fuzzification module is responsible for 
transforming crisp system inputs into fuzzy values 
using membership functions while the inference 
system determines the output linguistic variables 
based on the fuzzy rules stored in the knowledge base. 
The defuzzification module then converts a linguist 
variable from the inference engine into a crisp output 
value. Fuzzy logic controllers have been utilized in 
different applications such as pattern recognition 
[9], robotics [10], aerospace [11], and many other 
applications.  

C.	 Evolutionary Computation

Evolutionary computation is a class of population-
based metaheuristic optimization algorithms that 
employ biological evolution-inspired mechanisms 
such as reproduction, mutation, recombination, and 
selection [12]. These evolutionary algorithms proved 
to be highly successful in several applications, 
especially for non-linear and multi-objective 
optimization problems. The section below gives an 
overview of commonly used evolutionary algorithms 
in PV systems.

1. Genetic Algorithms
A genetic algorithm (GA) is a search and optimization 
method that is devised to mimic the theory of natural 
selection [13]. Genetic algorithms are inspired by how 
living organisms adapt to the severe realities of life. 
A GA is implemented through three main operators 
namely; (a) selection operator (b) crossover operator 
and (c) mutation operator. When using this algorithm, 
the first stage is to select the initial population of 
genes. Then a fitness function is calculated for finding 
the best genes in the population. 

The genes that possess the best fitness function 
values are selected for producing the next generation 
of genes using the crossover and mutation operators. 
The crossover operator is used to combine two 
chromosomes and exchange segments of their genetic 
material. The mutation operator is responsible for the 
random changes of some genes in the DNA sequence. 
GAs can be used for optimizing engineering designs 

[14], robotics [15], and many other applications. In [16], 
a genetic algorithm is applied for the optimum design 
of laminated composite structures.

2. Particle Swarm Optimization
Particle swarm optimization (PSO) is an optimization 
technique that is inspired by natural phenomena 
such as bird flocking and fish schooling [17]. Using 
the flocking analogy, the PSO algorithm maintains a 
swarm of individuals known as particles, with each 
particle representing a potential solution. Every 
particle in the swarm has a fitness value that is mapped 
using the objective function, and each particle also has 
an individual velocity that determines its motion’s 
direction and range. 

The particles share the information gleaned from 
their respective search processes. The position of 
each particle depends on two parameters: (a) the best 
solution obtained by a particle itself (pbest), and (b) the 
best particle in the neighbourhood (gbest). The particles 
continuously revise their direction and velocity to 
move towards the best position which ultimately 
results in each particle moving to the global optimum. 
PSO has been utilized for several complex applications 
such as water management [18], central position 
control in metallurgical processes [19] and robotics 
[20].

3. Simulated Annealing
Simulated annealing (SA) is a metaheuristic global 
optimization technique inspired by metallurgical 
annealing, in which the metal is rapidly heated to a 
high temperature and then slowly cooled to improve 
the metal’s properties [21].  Using SA, the objective 
function represents the thermodynamic energy. At 
high temperatures, the algorithm allows for large 
movements in the search space, increasing the 
likelihood of accepting solutions that do not improve 
on the previously discovered one. This mechanism 
prevents the algorithm from becoming stuck in a local 
solution.

At low temperatures, however, the perturbation and 
likelihood of accepting a worse solution are greatly 
reduced. SA has been successfully utilized for several 
applications such as vehicle routing [22], farm layout 
optimization [23] and mechanical designs [24].

III. SOME NOVEL APPLICATIONS OF CI 
TECHNIQUES IN SPV SYSTEMS

A.	 Methodology

The main aim of this review paper is to provide 
relevant recent achievements of CI techniques in the 
advancements of SPV systems. Improvements in the 
applicability of SPV systems increase the renewable 
energy penetration in the world energy market 
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thereby reducing the use of fossil fuels and leading to 
sustainable development. CI techniques have been the 
driving force for improving the design and control of 
SPV systems.

To  come up  with a comprehensive review paper, a 
strict selection criterion was used. The research articles 
used in this work were searched from top academic 
research databases such as Scopus, Web of Science, 
IEEE Xplore and ScienceDirect. The articles are in the 
period, 2010 to 2022. The minimum requirement for 
each publication used was to have at least 10 citations. 
This requirement was implemented to make sure that 
the used material is relevant and credible. 

An exception to this requirement was made for 
articles published in 2021 and 2022 since they did not 
have enough citations because of the timeframe. After 
meeting the minimum requirement, the articles were 
then selected depending on the performance of the 
CI techniques per given application. The performance 
of the CI techniques was measured using different 
indexes such as the root mean square error (RMSE), 
absolute error (AE) and efficiency (η). The papers with 
the best performance were then selected. 

Moreover, only the papers that show a clear validation 
of the performance of the presented CI technique 
were selected. The best conventional methods per 
application were also included in this review paper 
to give a detailed comparison. The articles focused on 
seven different SPV system areas namely: 

•	 	Parameter identification for solar cell modelling.
•	 	PV system sizing.
•	 	Maximum power point tracking.
•	 	Solar irradiance and energy production forecasting.
•	 	Fault detection and diagnosis.
•	 	Inverter control.
•	 	Sun tracking.

B.	 Parameter Identification for Solar Cell 
Modelling

Accurate modelling of solar cells is a critical stage in 
SPV research. Due to the non-linear current-voltage 
characteristics of solar cells, it is very important 
to identify appropriate parameters for modelling 
the equivalent circuits of solar cells. There are two 
common equivalent circuits used to model solar cells; 
the single diode model (SD) and the double diode model 
(DD). The single-diode model has five parameters 
and the double-diode model has seven parameters.       
Figure 3 shows the parameters for the single-diode 
model.

Fig. 3. An equivalent circuit for a single-diode solar cell model.

Finding the optimum values for these parameters is 
very crucial for modelling, controlling and sizing SPV 
systems. The literature presents so many methods for 
accurate estimation of the parameters of the solar cell 
and these methods can be grouped into two categories: 
analytical-numerical methods and CI-based methods. 
Analytical-numerical methods are mostly based on 
solving equations to determine solar cell parameters.

In [25] and [26], an analytical-numerical method was 
presented for solar cell parameter identification. 
The approach was based on curve fitting by utilizing 
the least square error method to form the system 
equations and then solving the equations using a 
modified Newton-Raphson (NR) method. In [27], a fast 
and accurate method based on the reduced forms of 
the original five-parameter system and experimental 
data was presented. 

The approach was useful for a more general 
characterization of a PV model and only works if 
the experimental data sets for solar irradiance and 
temperatures are available. Some other analytical-
numerical methods proposed for parameter 
identification of solar cells are given in [28, 29]. These 
conventional methods are easy to implement but 
they have many disadvantages such as the need for 
experimental data and relying on assumptions that 
can lead to the loss of accuracy when determining the 
solar cell equivalent circuit parameters.

CI techniques were also suggested for parameter 
identification of solar cell models because of their 
ability to solve complex and non-linear problems. 
In [30], genetic algorithms (GAs) were successfully 
applied for identifying solar cell parameters. In [31], an 
efficient approach based on the salp swarm algorithm 
(SSA) was presented for extracting the parameters of 
the equivalent circuit of solar cells. 

The SSA was evaluated using the sine cosine algorithm, 
virus colony search algorithm (VCS), ant lion optimizer 
(ALO), gravitational search algorithm (GSA) and 
whale optimization algorithm (WOA). The simulation 
results showed that the SSA provides the highest 
level of accuracy and can be adopted in designing SPV 
systems. Other important CI techniques reported in 
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the literature for solving the parameter identification 
problem include the JAYA optimization algorithm 
[32], simulated annealing (SA)[33], artificial bee swarm 
optimization algorithm (ABSO) [34], particle swarm 
optimization (PSO) [35], ANN [36], and Harris hawks 
optimization (HHO) [37]. Hybrid techniques have 
also been suggested for the parameter identification 
of solar cells. In [38], the Levenberg-Marquardt (LM) 
method was combined with simulated annealing to 
estimate the five parameters of a single-diode model. 
A combination of particle swarm optimization and 
simulated annealing was also presented for parameter 
identification [39]. The performance of these methods 

was evaluated using the root mean square error 
(RMSE) given by,

                                    (1)

where N is the number of data points, y(i) presenting 
the ith measurement and  (i) is its corresponding 
predicted value. Table I gives the performance of 
different techniques for parameter identification of 
solar cell models. 

TABLE I: COMPARISON OF CI AND CONVENTIONAL TECHNIQUES FOR PARAMETER IDENTIFICATION 
OF SOLAR CELL MODELS.

C.	 PV System Sizing

Accurate sizing is one of the crucial elements to 
consider when designing PV systems. This includes 
finding the optimum number of PV modules, optimum 
battery storage, MPPT controllers and inverter sizes 
as well as the optimum placement and tilt angles of 
PV modules. Accurate sizing is essential because it 
ensures that the load demand is met and allows the 
design of cost-effective systems that are practically 
credible in the renewable energy marketplace. 
Analytical methods have been used for sizing PV 
systems. In [40], an analytical model based on the 
statistical analysis of the solar irradiation data was 

presented. The model showed satisfying results 
after validation. The performance of these proposed 
techniques was measured in terms of the correlation 
coefficient (r) given by,

                           (2)

where x
i
 represents values of the x-variable in the 

sample,  is the mean of the x-variable, y
i
 represents 

the values of the y-variable in the sample and ȳ 
is the mean of the y-variable. In [41], the authors 
suggested a technique based on the Markov chain 
and beta probability density function for the sizing 
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of photovoltaic generators. The obtained results 
were compared with the Sandia method, in which 
the proposed method proved to be more reliable. A 
model based on artificial neural networks and genetic 
algorithms was presented in [42] to generate the sizing 
curve for a stand-alone PV system. The technique 

was compared to the numerical methods and was 
considered very promising. Another technique for 
PV system sizing worth noting is the radial bias 
function neural network (RBFNN) method reported 
in [43]. Table II presents the performance of different 
techniques for PV system sizing.

TABLE II: COMPARISON OF CI AND CONVENTIONAL TECHNIQUES FOR PV SYSTEM SIZING.

D.	 Maximum Power Point Tracking

Maximum power point tracking (MPPT) controllers 
are algorithms that are included in PV battery charge 
controllers or inverters to extract the maximum 
available power from a PV module for any given 
temperature and irradiance [44]. For any set of 
temperatures and irradiance, the operating point of 
a PV module corresponds to a unique point on the 
current-voltage (I-V) curve. The operating point on 
the I-V curve also corresponds to some point on the 
power-voltage (P-V). For the PV module to produce 
the highest power output, its operating point must 
correspond to the maximum point on the P-V curve 
known as the Maximum Power Point (MPP) as shown 
in Figure 4. 

If the irradiance or temperature changes, the position 
of the MPP also shifts. Therefore, it is the responsibility 
of the MPPT controller to continuously track the 
position of the MPPT for any given environmental 
condition. Generally, an MPPT controller is comprised 
of a DC-DC converter which is controlled by an 
algorithm to force the solar module’s operating point 
to be at MPP at all times. Connecting the PV module 
directly to the load makes the module’s operating 
point dictated by the load. Thus, the PV module only 
operates at MPP if the load impedance matches the 
input impedance to the DC-DC converter as seen by 
the PV module, otherwise it can operate at any point 
on the P-V curve which might not be the MPP.

Fig. 4: I-V and P-V curves of a PV module.

MPPT techniques can be categorized as conventional 
techniques and CI-based techniques. The performance 
of the MPPT controllers was evaluated in terms of 
tracking efficiency calculated using the following,

                      (3)

where  P
MPP

 represents the measured maximum power 
point for each controller and P

ideal MPP
 represents 

the desired/ideal maximum power point for given 
environmental conditions. One of the widely used 
conventional MPPT techniques is the Perturbation 
and Observation (P&O) controller. 
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The studies [45-47] have shown how different types 
of the P&O method have been utilized by several 
researchers. Another well-known conventional 
technique is the incremental conductance (InCon) 
technique. Refs [48, 49] present the applications of 
different types of the InCon technique for maximum 
power point tracking. Some other conventional 
MPPT techniques include the Fractional Open-Circuit 
Voltage (FOCV) [50], and Fractional Short-Circuit 
Current (FSC) [51]. Recently, CI-based MPPT methods 
have been utilized and proved to be highly successful 
to solve the MPPT problem. In  [52-54], fuzzy logic 
controllers were utilized for MPPT and they showed 
better tracking efficiency as compared to conventional 
techniques. Artificial neural networks were used 

for MPPT in Refs [55-57]  and their performance was 
satisfactory. 

Hybrid MPPT techniques were also reported in the 
literature where either a conventional technique is 
combined with a CI-based technique or combining 
two CI-based MPPT techniques. Examples of hybrid 
techniques are the GA-ANN based MPPT technique 
given in [58], a grey wolf–assisted perturb and observe 
algorithm (GWO-P&O) [59] and an adaptive neuro-
fuzzy inference system (ANFIS) based technique 
[60]. Other CI-based MPPT techniques of interest 
include ANFIS-PSO-based technique [61] and genetic 
algorithms [62]. Table III presents the performance 
comparison of different techniques for MPPT.

TABLE III: COMPARISON OF CI AND CONVENTIONAL TECHNIQUES FOR MPPT.

E.	 Forecasting 

Forecasting in SPV systems can be grouped into two 
types named: (a) solar irradiance forecasting and (b) 
forecasting of energy production. Solar irradiance 
forecasting involves the estimation of the irradiance 
expected to be received over a certain period. Energy 
production forecasting focuses on the estimation of 
the power output from the PV modules. The forecast 
information is very crucial for the management and 

control of solar PV hybrids systems as well as for 
energy trading [63]. Several methods of different 
architecture and complexity have been explored to 
solve this forecasting problem. Forecasting in SPV 
systems can also be grouped as short-term, mid-term 
or long-term forecasting and different forecasting 
methodologies have been utilized depending on the 
type of problem. The performance of the techniques 
in this category was evaluated using the RMSE given 
by Equation (1).
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1. Irradiance Forecasting
Forecasting solar irradiance is essential for grid-
connected photovoltaic (PV) plant performance 
and power estimation. Both conventional and 
modern techniques have been used for irradiance 
forecasting. In [64], the authors presented a statistical 
Fourier trend model for short-term solar irradiance 
forecasting. Their model was able to achieve around 
90% forecasting accuracy and produced better results 
as compared to other popular statistical models. In 
[65], an automated convolutional neural network long 

short-term memory (CNN-LSTM) architecture was 
designed for forecasting solar irradiance. 

The proposed model outperformed other models in 
terms of the MAE, RMSE and Pearson metrics. Other 
techniques that show better results as applied to 
solar irradiance forecasting include deep recurrent 
neural networks (DRNNs) [66] and convolutional 
neural networks. Table IV shows a review of different 
techniques as applied to solar irradiance forecasting 
as well as their performances.

TABLE IV: COMPARISON OF CI AND CONVENTIONAL TECHNIQUES FOR SOLAR IRRADIANCE 
FORECASTING.

2. Forecasting of the Power Production
The power generated by photovoltaic modules is 
affected by solar irradiation and temperature. As a 
result, predicting the output power is a hot topic for 
photovoltaic experts to research. The literature reports 
different kinds of methods to tackle this problem. In 
[68], a seasonal decomposition least-square support 
vector regression model was proposed to forecast 
monthly solar power output. 

After a comparative study, it was found that the 
ESDLS-SVR model performed better as compared to 
other statistical models such as the autoregressive 
integrated moving average (ARIMA) and seasonal 
autoregressive integrated moving average (SARIMA).

Another method was presented in [69], to forecast a 
day-ahead power output from PV plants based on the 

least-square optimization technique. To validate the 
model, the methodology was compared with previous 
studies and the results were promising.

An ANN-based model was also used to forecast the 
average power output from PV modules [70]. In this 
model, GAs were utilized to optimize the parameters 
of the ANN architecture. The findings showed that 
the proposed model performs better than other 
forecasting models such as ARIMA.

Other important techniques that have been used for 
forecasting the output power of PV modules include 
the variation auto-encoder-driven deep learning 
approach [71] and gated recurrent unit recurrent 
neural networks (GRU-RNN) [72]. Table V shows 
the performance of different techniques for energy 
production forecasting.
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TABLE V: COMPARISON OF CI AND CONVENTIONAL TECHNIQUES FOR ENERGY PRODUCTION 
FORECASTING.

F.	 Fault Detection and Diagnosis

PV systems typically operate in harsh outdoor 
environments. The PV system is prone to different 
types of system faults and defects when operating in 
such a setting. These faults and defects can come from 
the PV array itself or the components connected to 
it. PV array-related faults can be grouped into three 
categories depending on their time characteristics. 
Figure 5 shows PV array-related faults. Other faults 
that come from components connected to the PV 
arrays include MPPT faults and inverter faults. 

Numerous fault detection and diagnosis techniques 
have been developed and suggested to identify the 
type and location of different failures in a PV system. 
The main idea is to develop a robust technique that can 
detect evolving faults quickly to increase the system's 
reliability and lifetime. Fault detection methods listed 
in the literature include visual methods, imaging 
techniques, electrical methods and computational 
intelligence techniques. For this application, the 
techniques were evaluated using the prediction 
efficiency given by,

                                 (4)

where P
c
 is the number of correct predictions made and 

N is the total number of test examples. In [73], a fault 

and diagnosis procedure based on the probabilistic 
neural networks (PNN) was presented. The proposed 
technique demonstrated a higher efficiency as 
compared to the feed-forward back-propagation 
artificial neural networks for noiseless and noisy data. 

An enhanced ensemble learning technique was 
utilized in [74] to detect and diagnose the faults in 
a grid-connected PV system. The testing results of 
this technique indicated a high prediction accuracy 
of 99.96 %. In [75],  a technique based on supervised 
machine learning was presented. 

The technique was tested using real grid-connected 
PV data and the results showed the effectiveness of 
the proposed method. A statistical technique based 
on the univariate and multivariate exponentially 
weighted moving average (EWMA) was also used for 
fault detection of PV systems [76]. 

This technique was implemented using real data and 
the results proved its capabilities in detecting partial 
shading. Some other fault detection techniques worth 
noting are the decision tree algorithm [77],  laterally 
primed adaptive resonance theory (LAPART) [78], 
regression-based approach [79], machine learning 
(k-nearest neighbours) [80], fine-tuning naive 
bayesian model [81] and ANFIS [82]. Table IV presents 
the performance analysis of different techniques for 
fault detection and diagnosis.
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Fig. 5. PV array-related faults.

TABLE VI: COMPARISON OF CI AND CONVENTIONAL TECHNIQUES FOR FAULT DETECTION AND 
DIAGNOSIS.
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G.	 Inverter Control

In PV systems, there exist DC/AC inverters responsible 
for generating the 3-phase AC voltage for the load. 
The main aim of inverter control is to regulate the AC 
output voltage and frequency to make sure that it has 
low harmonic distortions. This is to make sure that 
the power that is being supplied to the load is of good 
quality. Different techniques have been developed 
and suggested for inverter control of PV systems. 
The performance of the proposed techniques in this 
section was evaluated using total harmonic distortion 
(THD) given by,

                   (5)

where V
1
  is the fundamental voltage and V

h
 represents 

the hth harmonic voltage. In [83], the authors proposed 
a multilevel inverter for SPV systems based on fuzzy 
logic control. The proposed system showed improved 
performance as compared to two-level inverters 
and under low to medium power range. In [84], a 
technique based on the IoT and  ANN was proposed 
for monitoring and controlling a SPV system. The 
proposed method was simulated in MATLAB/

Simulink environment and the results were compared 
to the proportional-integral (PI) controller. 

The results showed that the proposed technique was 
efficient and able to monitor the THD, voltages and 
phase angle variations within the required limits. In 
[85], a 3-phase three-level inverter was designed and 
implemented for controlling the current and voltage 
of a SPV system. The control was realized using a PI 
controller. The performance of this technique was 
satisfying and it can also be applied for very high 
powers. A quasi-Z-source inverter was also suggested 
for inverter control of SPV systems [86]. The developed 
topology was implemented using a proportional-
integral sinusoidal (PIS) controller. In [87], an adaptive 
sliding mode (SM) control was utilized for a two-level 
inverter to control a grid-connected SPV system. 

The proposed technique showed better results as 
compared to other schemes at different load and 
solar irradiance levels. Some other inverter control 
techniques worth noting include the adaptive neuro-
fuzzy inference system and proportional-integral-
derivative control (ANFIS-PID) [88], pulse-width-
modulation (PWM) control scheme [89] and vector 
control (VC) [90]. Table VII shows the performance of 
different techniques for inverter control.

TABLE VII: COMPARISON OF CI AND CONVENTIONAL TECHNIQUES FOR INVERTER CONTROL.

H.	 Solar Tracking System

Solar tracking systems are controllers used to guide PV 
modules towards the sun. They improve the efficiency 
of PV modules by making sure that the modules are 
always aligned with the rotating sun. It was proven 
that solar trackers increase the power output of solar 
panels up to 60% more than a stationery system [91].

There are mainly two types of solar trackers; single-
axis and dual-axis tracking controllers. Different 
mechanisms have been developed and proposed for 

solar tracking. The performance of these techniques 
is measured in terms of the increase in power output 
(IPO) as compared to a stationary system.

                (6)

where P
T
 is the power generated by the studied 

tracking system and P
F
 is the power from a fixed flat-

plate system. In [92], a dual-axis programmable logical 
controller (PLC) was designed and implemented for 
solar tracking. The controller was compared with 
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a fixed-angle PV system and the results confirmed 
the superiority of the proposed method. In [93], an 
ultraviolet (UV) sensor-based dual-axis solar tracking 
system was presented. For validation, the proposed 
technique was compared to a fixed-angle system and 
a light-depended resistors (LDRs) based solar tracking 
system. The results showed that the proposed 
technique is reliable and profitable. An FL controller 
is suggested for the design of a dual-axis solar tracking 
system as reported in [94]. 

This controller was fully automatic and it was able 
to consider the changes in weather patterns. In [95], 
a technique based on DELTA PLC was proposed. 
The tracking was performed with the help of LDR 
sensors and magnetic reed switches to control the 
direction and the speed of the gear motor. The power 
generation from the proposed system showed a 
significant increase as compared to that obtained from 
a fixed system. Table VIII presents the performance of 
different techniques for solar tracking.

TABLE VIII: COMPARISON OF CI AND CONVENTIONAL TECHNIQUES FOR SOLAR TRACKING SYSTEMS.

IV. DISCUSSION

In this paper, more than 300 articles were reviewed. 
The main emphasis was to provide relevant 
achievements of CI techniques in SPV systems. The 
paper gives a comparison of different CI techniques as 
well as conventional methods in each application in 
terms of their performance. This section provides the 
findings of the study.

Parameter identification of solar cell models is very 
crucial since it is the backbone for SPV modelling and 
design. Several techniques of different complexities 
were proposed to tackle this problem. Generally, the CI 
techniques showed better performances as compared 
to conventional methods with the SSA achieving the 
RMSE of 1.30 × 10-8 for both the SD and DD models. 
Other CI techniques that performed well for both the 
SD and DD models are the GA, JAYA algorithm, PSO 
and SA.

The best conventional method was the Newton-
Raphson technique with the RMSE of 1.98 × 10-6. 
However, this technique was only tested for a SD 
model. A conventional method which was tested for 
both the SD and DD models is the Adaptive-Newton 
Raphson and it performed fairly with a RMSE of     
4.83 × 10-3. It can be concluded that CI techniques have 
significantly improved the parameter estimation of 
solar cell models and it is very vital for the accurate 
modelling of SPV systems.

Accurate sizing of the components of a SPV system is 
very important when designing solar systems. Over-
sizing of SPV systems would lead to unnecessary 
higher investments whereas under-sizing may cause 

an insufficient power supply to connected loads. Both 
conventional and CI techniques were utilized for sizing 
SPV systems. The performance of these techniques 
was measured using the correlation coefficient. A CI 
technique based on ANN and GAs was found to be the 
best with a correlation coefficient of 0.9998 followed 
by the RBFNN method. The best conventional method 
was the Markov chain technique which showed a 
correlation coefficient of 0.9650. For this application, 
it can be concluded that the involvement of CI has 
improved the sizing of SPV systems.

Maximum power point tracking controllers play 
a pivotal role in maximizing the power output of 
solar modules. In general, a MPPT controller is a DC-
DC power converter controlled by an algorithm to 
always force the PV module to operate at its MPP. 
The best of both the conventional and CI techniques 
were reviewed and they all showed an outstanding 
performance for MPPT. The best technique was 
a CI-based method (ANFIS) with an efficiency of 
99.97%. A GA-ANN method also gave an outstanding 
performance with an efficiency of 99.94%. Some other 
CI techniques that performed well for this application 
are FL, ANFIS-PSO and GWO-P&O. Conventional 
techniques also showed an impressive performance 
with the best technique (P&O) with an efficiency of 
99.75%. The incremental conductance was the second-
best conventional technique with an efficiency of 
99.70%. From the above-presented analysis, it is 
clear that CI techniques have been instrumental in 
designing MPPT controllers.

Forecasting in SPV systems involves solar irradiance 
forecasting and energy production forecasting. Solar 
irradiance forecasting focuses on estimating the 
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irradiance to be received at a particular place and time 
whereas energy production forecasting deals with 
predicting the power output from PV modules. 

Generally, it was observed that forecasting is very 
difficult when it comes to SPV systems and it was 
deduced from high RMSE values in both cases. 
However, CI techniques performed better than 
conventional methods and the automated CNN-LSTM 
was the best technique for irradiance forecasting 
with a RMSE of 0.0136. A conventional technique 
that showed better results for irradiance forecasting 
was the statistical Fourier trend model with a RMSE 
of 0.1964. For energy production forecasting, the 
GRU-RNN was found to be the best with a RMSE of 
0.0802. The least-squares optimization model was the 
conventional technique with better results for energy 
production forecasting with a RMSE of 0.1020. It can 
be then concluded that CI techniques have improved 
both irradiance forecasting and energy production 
forecasting of SPV systems.

Fault detection and diagnosis techniques are very 
important to ensure the maximum performance 
of SPV systems. Several methods were developed 
and suggested for fault detection and diagnosis. 
CI techniques proved to be more efficient in this 
application as compared to conventional methods. 
A technique based on enhanced ensemble learning 
was found to be the best with an efficiency of 99.96%. 
Other CI techniques that performed well include 
decision tree algorithm, PNN and different machine 
learning techniques. A conventional method that 
performed fairly was the Fine-Tuning Naïve Bayesian 
model, with an efficiency of 98.59%. Based on the 
given analysis, it can be concluded that the adoption 
of CI techniques for fault detection and diagnosis has 
a greater impact on the development of SPV systems.  

In PV systems, inverters are used to transform DC to 
AC for the loads. Inverter control involves regulating 
the output AC voltage and frequency to ensure the 
supply of power of good quality to the loads. In this 
application, both the conventional and CI techniques 
demonstrated outstanding performance for inverter 
control. The best technique was the IoT-ANN, a CI 
technique, with a maximum THD of 2.61%. An ANFIS-
PID method was the second best with a THD of 2.70%. 
Conventional techniques proved their relevance for 
this application with their best technique with a THD 
of 2.96%. For this application, CI techniques were the 
best, but conventional methods were also competing 
in the same range.

Solar tracking systems are important for ensuring 
that the PV modules are always aligned with the 
rotating sun. All techniques presented for this 
application performed well. The FL controller was 
the best technique with an IPO of 36% and it was the 
only CI technique in this application. Conventional 

methods that showed better performance were the 
PLC and DELTA PLC, both with an IPO of 25%. It 
can be concluded that CI techniques have shown an 
improvement as far as solar tracking is concerned 
but there is still room for the adoption of more CI for 
solving this particular problem.

V. CONCLUSIONS

This paper explores the role of CI techniques in 
the advancements of SPV systems for sustainable 
development. The conclusion that can be drawn 
from this work is that CI techniques are involved in 
every aspect of SPV systems and have significantly 
improved the adoption of SPV systems. This paper 
compares different CI techniques and conventional 
methods in terms of performance. In all SPV areas 
studied, CI techniques proved to be superior to 
conventional methods. In the literature, several 
CI techniques have been developed and suggested 
for different applications, however, selecting an 
appropriate technique for a given application is of 
prime importance. Thus, the findings from this work 
can assist other researchers to choose suitable CI 
techniques for a given application. This paper also 
serves as a reference for all academics interested in 
studying the application of computational intelligence 
in SPV systems.
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