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Abstract - The application of species distribution 

modeling in deserts is a useful tool for mapping 

species and assessing the impact of human induced 

changes on individual species. Such applications are 

still rare, and this may be attributed to the fact that 

much of the arid lands and deserts around the world 

are located in inaccessible areas. Few studies have 

conducted spatially explicit modeling of plant species 

distribution in Egypt. The random forests modeling 

approach was applied to climatic and land-surface 

parameters to predict the distribution of ten important 

plant species in an arid landscape in the northwestern 

coastal desert of Egypt. The impact of changes in land 

use and climate on the distribution of the plant 

species was assessed. The results indicate that the 

changes in land use in the area have resulted in 

habitat loss for all the modeled species. Projected 

future changes in land use reveal that all the modeled 

species will continue to suffer habitat loss.  

 

The projected impact of modeled climate scenarios 

(A1B, A2A and B2A) on the distribution of the 

modeled species by 2040 is varied. Some of the 

species were projected to be adversely affected by 

the changes in climate, while other species are 

expected to benefit from these changes. The 

combined impact of the changes in land use and 

climate poses serious threats to most of the modeled 

species. The study found that all the species are 

expected to suffer loss in habitat, except 

Gymnocarpos decanderus. The study highlighted the 

importance of assessing the impact of land 

use/climate change scenarios on other species of 

restricted distribution in the area and can help shape 

policy and mitigation measures directed towards 

biodiversity conservation in Egypt. 

 

Keywords - climate change -  land use change -  

random forests - species conservation importance 

(SCI) index - species distribution models (SDMs). 

 

I. INTRODUCTION 

 

A. Species Distribution Models (SDMs) 

Species distribution models (SDMs) were founded in 

ecology and natural history based on gradient 

modeling and niche theory  [1], [2], [3]. Habitat or 

species distribution models (SDM) are defined as 

models that ‘statistically relate the geographical 

distribution of species or communities to their present 

environment’ [4]. Species distribution models (SDM) 

are also known as: bioclimatic models; climate 

envelopes; ecological niche models (ENMs); habitat 

models; resource selection functions (RSFs); and 

range maps [2]. The premise of these models is that 

environmental factors control the distribution of 

species and consequently communities [1], [4], [5].  

 

Prediction of species distribution started early on by 

descriptive studies conducted by ecologists interested 

in understanding the relationship between patterns of 

species in relation to geographical settings and 

environmental gradients [2]. Later the evolution in 

ecology and other related fields coupled by the 

emergence of numerical analysis and quantitative 

approaches has greatly influenced species 

distribution modeling. Quantitative approaches of 

species distribution modeling developed as a result of 

convergence of two lines of research trends in 

ecology and geography. The first line started in 

ecology as field-based research that studied species-

habitat relationships. These studies later adopted 

quantitative approaches by applying statistical 

analysis techniques (e.g. linear multiple regression 

techniques), then the advanced regression 
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techniques (e.g. Generalized Liner Models (GLMs) 

and boosted regression techniques) were developed 

to overcome limitations of the linear paradigm. The 

second line emerged in geography, and specifically in 

physical geography, through the advancement in 

geographic information systems and remote sensing 

techniques [2]. The integration of GIS and remote 

sensing has allowed the development of methods for 

interpolation of global climate and modeling global 

surface elevation, in addition to provision of spectral 

data that were employed in species prediction 

models. The development of the field of species 

distribution modeling and mapping has been driven 

by the need to map vegetation patterns over large 

areas for resource management and conservation 

planning, and to predict the effects of environmental 

changes on vegetation distribution  [1], [5].  

 

A suite of statistical and machine-learning techniques 

has been developed for conducting SDMs [6]. 

Although many approaches are used for the species 

distribution modeling, no rules exist to provide 

guidelines on the best modeling approach to use [3]. 

It is also likely that some approaches may be better 

for prediction of one species over another. This is 

related to many factors that include: the nature of the 

data used (quantity & quality); the nature of the 

predicator variables used; the spatial scale used 

(resolution and the extent); and the relevance of the 

environmental predicators used to the ecological 

characteristics of the species being predicted [4], [7], 

[8], [9], [10]. 

 

B. Applications of SDMs for Studying Global 

Changes 

The use and application of SDMs for different 

purposes is growing rapidly [11], because SDMs 

provide useful tools for understanding the gaps in 

knowledge of species distribution. More recently they 

have been used to assess potential impacts of 

changes in environmental and climatic conditions on 

the distribution of species [12], [4], [3], [13]. In most 

cases these studies deal with different land use/land 

cover and climatic scenarios.  

 

The study by Sala and his colleagues [14] is one of 

the first studies that provided projection of changes in 

biodiversity at the global scale under different 

scenarios of climate and land use change by 2100. 

The study provided scenarios of change in the ten 

widely known terrestrial biomes plus the fresh water 

aquatic ecosystems. They based their scenarios on 

how the change in some drivers (for example; 

climate, vegetation, land use, and levels of carbon 

dioxide) will trigger changes in biodiversity.  

 

Over the last three decades, numbers of General 

Circulation Models (GCM’s) have been developed. 

The Data Distribution Center (DDC) of the IPCC 

distributes a number of datasets, derived from 

various general circulation models (GCMs). These 

models are available on the web at: http://www.ipcc-

data.org/. Due to the coarse resolution of these data, 

they are mostly used to assess the potential impact of 

change in climate at a broad scale. This coarse 

resolution does not suit applications aiming at 

assessing the climate change impact on agriculture 

and biodiversity at finer scales [15], [16]. Therefore, 

many attempts have been made for downscaling and 

disaggregating GCM outputs (for example; [17], [16]). 

Spatial disaggregation based on WorldClim data [15] 

as baseline climate was applied to 24 different GCMs 

used in the IPCC4th assessment report for different 

emission scenarios and for seven different 30-year 

running mean periods [16]. The data are freely 

available through the CGIAR Research Program on 

Climate Change, Agriculture and Food Security 

(CCAFS) web: http://www.ccafs-climate.org/data/. 

The data have been used to assess the response of 

different species to the simulated changes in climate 

(for example, [18], [19], [20]). 

 

Arid lands in general and deserts specifically, are 

poorly studied areas with regard to the assessment of 

their biodiversity and understanding the distribution of 

species in their vicinity [21]. This is likely related to 

the harsh nature of these areas and the 

inaccessibility of parts of the desert areas. The few 

studies that used species distribution modeling 

techniques in desert ecosystems were successful in 

providing tools for modeling the distribution patterns 

of species. Yet SDM approaches have rarely been 

used for addressing the influence of environmental 

changes (climate, land use change or any other 

disturbances) on the distribution of species in arid 

lands. This may be because arid lands are some of 

the most poorly studied areas in the world. Species 

distribution modeling techniques were used in the 

current study to project the impact of environmental 

changes on the distribution of ten important plant 

species in the northwestern coastal desert of Egypt. 

This region has experienced rapid change in land 

use/land cover recently due to coastal development 

projects. Species distribution modeling techniques 

and available environmental predictors (bioclimatic 
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and land-surface parameters) were used here to: 1) 

predict the potential distribution of ten important plant 

species; 2) study the effect of land use change on 

distribution of the modeled species; and 3) project the 

potential changes in distribution of the species under 

different climate/land use scenarios. 

 

II. MATERIALS AND METHODS 

 

A. Study Area 

The study area is part of the northwestern coastal 

desert of Egypt. It extends for 40 km from El-hamam 

town to westward to El-Alamein town and from the 

Mediterranean coast southward to Moghra Oasis 

(Figure 1), occupying an area of about 2800 km2 

located between 30° 10' to 30° 55' and N 28° 55' to 

29° 25' E.   

 

The area has a short rainy season, which occurs 

mostly during winter from November to April but may 

extend to May. Little precipitation occurs during the 

rest of the year [22], [23]. The mean annual 

precipitation ranges from100 to 150 mm/year, thus the 

area considered arid (rainfall zones of 0-300 mm) [24]. 

The climatic records [25] indicate that the total 

monthly evapotranspiration in the coastal area 

exceeds the total annual precipitation. This reflects 

the arid conditions and the water deficiencies that 

prevail in the area. A north-south climatic gradient was 

noticed in this region, with an increase in 

environmental aridity and ‘thermal continentality’ 

towards the South [26]. The vegetation of the region is 

dominated by dwarf shrubs less than one meter [24]. 

The agricultural activities in the northern part have 

resulted in changes throughout the area that might 

have impacted species distributions.  

 

The Omayed Biosphere Reserve (OBR) a.k.a. 

ElOmayed Protected Area (OPA) is located in the 

northern part of the study area (Figure 1). The 

protected area is considered as one of the largest 

terrestrial protected area in Egypt [27]. 

 

B. Data Collection  

Field visits were conducted to survey the plant 

species in the area, where more than 800 plots were 

selected randomly in order to account for the major 

physiographic variation in the study area. Plant 

species were recorded and identified according to 

“Students' Flora of Egypt” by Täckholm [28] and 

nomenclature of the species was updated following 

“Flora of Egypt” by Boulos [28], [29], [30], [31], [32] 

and the Latin names of the species were updated 

following the “Flora of Egypt: Checklist” by Boulos 

[33]. Species distribution modeling could be 

developed based on the presence-only data or 

presence-absence data [35]. In the current study, both 

presence and absence data were employed in 

modeling.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig .1. Location of the studied area: a) Egyptian 

governorates’ administrative boundaries; b) the 

northwestern coastal desert showing location of the study 

area northeast of Qattara Depression; and c) the study 

area as shown through part of Landsat Thematic Mapper 

2011 image. The location of Omayed Biosphere Reserve 

(OBR) is highlighted, core zones in red, buffer zone in 

green and transition zone in blue (After [34]). 

 

C. Predictors 

The accuracy and the predictive power of any habitat 

distribution model depend on the quality and the 

accuracy of the field data employed and the choice of 

the environmental variables used to build the model 

[40]. In the current study, a number of land-surface 

parameters and bioclimatic variables were used to 

build the plant species distribution models (Table 1). 

Ecological land-surface parameters derived from 
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digital elevation models (DEMs) are considered 

important for mapping vegetation, especially if 

combined with other parameters including spectral 

indices derived from satellite imagery [41]. A digital 

elevation data SRTM V4.1 (Jarvis et al. 2008) were 

used for the derivation of land-surface parameters. 

The land-surface parameters employed in the study 

(Table 1) included slope; a terrain roughness index 

(TRI) that provides an quantification of the level of 

undulation and the complexity of the surface [42]; 

topographic wetness index (TWI) [43]; and a slope 

length and steepness (LS) factor. All the land-surface 

parameters were derived using the Automated 

System Geoscientific Analyses version 2.0.7 [44].  

 

Climatic conditions are recognized as the most 

important environmental variables responsible for the 

patterns of species distribution at broad scales [45]. 

However, the availability of climatic data layers of 

appropriate resolution has been rare for researchers 

intending to do species distribution mapping, 

especially in understudied areas [3]. Recently, 

interpolated global climatic data layers that represent 

the previous and current climatic conditions were 

made available to the public (for example; WorldClim 

[15] and CliMond [46]). ‘WorldClim’ is available with 

global coverage at a spatial resolution of 1 km2 and 

can be downloaded from http://www.worldclim.org. 

The WorldClim data include monthly mean total 

precipitation and mean, minimum, and maximum 

temperature in addition to nineteen other bioclimatic 

variables. The current study used thirty environmental 

variables (Table 1) representing important factors for 

plant survival; including bioclimatic variables, 

topographic variables and light controlling factors. The 

incorporation of light controlling factors in modeling 

plant distribution was recommended, particularly in 

studies that involve assessment of the impact of 

climate change on plant distribution [47]. Solar 

insolation indices were derived from the digital 

elevation data and included in the analysis. The 

distance to the coast was also included as a factor in 

modeling plant species distribution to account for 

maritime influences due to proximity to the 

Mediterranean Sea. All the layers representing the 

variables employed in the analysis were re-sampled to 

match the spatial resolution of the DEM used. 

 

D. Modeling Approach 

The data used in the current study were collected 

systematically using field surveys through which the 

presence/ absence observations were recorded for 

each species. Generalized linear models (GLMs) or 

ensembles of regression trees such as random forests 

(RF) or boosted regression trees, (BRT) are 

recommended in cases where presence/absence data 

are available [3], [48], [6]. The current study applied 

the machine learning ensemble method random 

forests (RF) to predict the distribution of the selected 

species using climatological and topographical 

factors. The collected presence/absence data were 

divided randomly to two sets; 70% for calibrating the 

models and 30% for testing and evaluating the 

models. All the analyses were conducted within the 

framework of the open source statistical computing 

environment of R 2.13.1 [49]. The ‘randomForest’ 

package [50] was used for carrying out the random 

forests analyses. Random forests analysis (RF) has 

been used in some studies for modeling species and 

predicting changes in species distribution under 

different climate scenarios [51], [52], [10], [53], [54]. It 

is one of the ‘ensemble modeling’ techniques that 

have recently been used successfully in ecological 

modeling [3]. It is composed of an ensemble of [55] 

classification and regression trees (CART) [56]. The 

RF approach has the advantage of being a non-

parametric approach that can produce a highly 

accurate classification results and can process a 

larger number of independent variables [57]. It has 

been recommended for being robust to outliers and 

noise [57], [58], [59], [56], [60], [61].  

 

In RF model, an ensemble of classification and 

regression tree (CART) models is created by training 

each model on a bootstrap sample of the original 

training data set. The output from each CART model 

is then subjected to a voting process whereby the 

most common vote is selected for producing the final 

results of a classification and the average of all the 

tree results is obtained in the case of performing 

regression. The size of the random forests model (i.e. 

the number of trees) and the number of variables to 

be used for splitting nodes at each tree in the random 

forests model need to be specified by the analyst 

depending on the study. The selection of these 

parameters is based on the combination that 

minimizes the out-of-bag error (oob). Out-of-bag error 

estimation is used as an assessment of the accuracy 

of the model. It is estimated by keeping out (out-of-

bag) one third of each bootstrap replica generated 

from the original training data and using it to test the 

tree models. The use of oob error for evaluating the 

performance of the RF models is considered a robust 
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unbiased method [57]. The optimum combination of 

the number of trees in the RF model and the number 

of variables to be used for splitting nodes was 

determined based on trials, which revealed that 

models with a size of 750 trees and four splitting 

variables at each node attained the lowest error rates. 

A general model for predicting each species was fit 

using all the variables, whereby an assessment of the 

importance of each variable in fitting the model was 

estimated. The percentage of increase in mean 

square error (MSE) was caused when a variable that 

is randomly permuted and introduced to the model 

was used as basis for selection of variables to create 

a reduced model for each species. 

 

Table 1. Variables used in building the models of species distribution in the study area. 

 

Variable Abbreviation Source 

Annual mean temperature Bio1 

Baseline climate data [15] available from: 
http: //www.worldclim.org 

Predicted climate data [16] available from:  
http: //www.ccafs-climate.org/data/ 

 

Mean diurnal range (mean of monthly (max temp - min temp)) Bio2 

Isothermality (mean diurnal range/temperature annual range) (*100) Bio3 

Temperature seasonality (standard deviation *100) Bio4 

Max temperature of warmest month Bio5 

Min temperature of coldest month Bio6 

Temperature annual range (max of warmest month-min of coldest 
month) 

Bio7 

Mean temperature of wettest quarter Bio8 

Mean temperature of driest quarter Bio9 

Mean temperature of warmest quarter Bio10 

Mean temperature of coldest quarter Bio11 

Annual precipitation Bio12 

Precipitation of wettest month Bio13 

Precipitation seasonality (coefficient of variation) Bio15 

Precipitation of wettest quarter Bio16 

Precipitation of coldest quarter Bio19 

Aspect Aspect 

Derived from SRTM DEM 
[18] Available from: 

http: //srtm.csi.cgiar.org 

 

Across-slope plan curvature PlCurv 

Curvature  [62] Curv 

Diffusion insolation DiffInsol 

Direct insolation DirInsol 

Downslope profile curvature PrCurv 

Direct/diffusion insolation ratio DiffToDir 

Elevation Elev 

LS factor LS 

Proximity to sea ProxtoSea 

Slope [62] Slope 

Terrain roughness index according to [63] TRI 

Topographic Wetness Index (TWI) [43] TWI 

Total insolation TotInsol 

 

E. Models Evaluation  

The accuracy and credibility of habitat distribution 

models should be considered in the context of the 

intended applications [4]. Accuracy assessment and 

uncertainty about the data used in developing these 

models should be reflected in and accounted for by 

any further analysis that might use the products of 

these models [64]. An account of the most commonly 

used measures for accuracy assessment of the 

species distribution models can be found in [3], [11]. 

The most commonly used threshold-dependent 

measure for assessing accuracy of habitat distribution 

models is the Kappa statistic; however kappa has 

been criticized for producing a biased accuracy 

assessment. Allouche and colleagues [65] described 

the bias encountered when using Kappa statistic [66] 

and suggested using the true skill statistic (TSS) [67] 

as an alternative method for assessing the accuracy 

of habitat distribution models. In the current study, 

both Cohen’s kappa and the TSS are used as 

threshold-dependent measures in assessing the 

accuracy of the produced models along with the 

overall accuracy, sensitivity (the proportion of the 

correctly predicted presence observations), and 

specificity (the proportion of the correctly predicted 

http://www.worldclim.org/
http://www.ccafs-climate.org/data/
http://www.cgiar-csi.org/data/srtm_90m_digital_elevation_database_v4_1/uot;http:/srtm.csi.cgiar.org
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absence observations). The threshold-independent 

area under the receiver operating curve (AUROC) [68] 

was also used to assess the accuracy of the models. 

 

𝑘𝑎𝑝𝑝𝑎

=  
(

𝑎 + 𝑏
𝑛

) −
(𝑎 + 𝑏)(𝑎 + 𝑐) + (𝑐 + 𝑑)(𝑑 + 𝑏)

𝑛2

1 −
(𝑎 + 𝑏)(𝑎 + 𝑐) + (𝑐 + 𝑑)(𝑑 + 𝑏)

𝑛2

 

𝑇𝑆𝑆 =  ((
𝑎

𝑎 + 𝑐
) + (

𝑑

𝑏 + 𝑑
)) − 1 

 

Where a, number of test presence records which were 

correctly predicted by the model; b, number of test 

absence records which the model predicted as 

presence; c, number of test presence records which 

the model predicted as  absence; d, number of test 

absence records that were correctly predicted by the 

model; n, the total number of the test records. 

 

F. Studying the Combined Impact of Land Use and 

Climate Change 

 
Species distribution modeling is used frequently to 

predict the potential changes in species distribution 

under different change scenarios [48], [47]. Prediction 

of the potential shift in plant distribution under different 

climate change scenarios is considered as one of the 

important applications of the species distribution 

models [69], [47]. Most of the studies that project the 

impact of climate change on species distributions 

have been applied on global or regional scales (for 

example; study by Sala and colleagues [14], and 

study by Skov and Svenning [70]). However, there is a 

need for applying the same principles at the 

landscape level which will be of great help to 

conservation efforts at this scale [71]. The information 

provided by such tools is considered crucial for 

decision making related to land management and 

conservation planning [72], [4]. Most of the studies 

that have predicted the potential change in plant 

species under climate change scenarios have focused 

on temperate regions (for example; [45], [73], [71]). 

The current study provides an assessment of the 

potential impact of climate change on the distribution 

of ten plant species in a desert ecosystem.  

 

Mapping the distribution of all the species recorded in 

the study area is a lofty goal that cannot be achieved 

in one single study due to the insufficiency of the 

occurrence records and additional logistical 

challenges. To overcome this problem, the current 

study sought to focus on predicting the distribution of 

‘important’ species with sufficient occurrence records. 

Important species were defined as those serving 

crucial functions and providing important services in 

any ecosystem. This could include, for example, sand 

stabilizing and nitrogen-fixing plants. Many of the 

species recorded in the coastal area are considered 

‘multipurpose’ species providing multi-use for local 

inhabitants [36], [37]. The current study focused on 

ten important species based on their importance 

values as indicated by the Species Conservation 

Importance (SCI) [38] and the number of occurrence 

records for each species. The value of the index 

includes information related to the conservation 

status, commonness, biological type, and utilitarian 

value of each species. The value of the SCI are in the 

range from 0.2 to 1,with values approaching 1 

indicating species with high importance value and 

those approaching 0.2 indicating species with a low 

importance value [38], [39]. The species with SCI 

value of 0.55 or more and sufficient number of 

occurrence records (> 100) were modeled. 

 

Land use/land cover maps representing different 

dates (1988, 2011 and projected 2023) were used to 

assess the impact of land use change on the 

distribution of the ten modeled plant species [34]. 

Each of these LULC maps represents a different 

stage of human influence on the landscape, with an 

increase in human impact with time. The maps were 

reclassified into two categories only to create digital 

Boolean layers.  Natural areas category represent all 

the areas that have not been transformed by human 

activities and the man-made category that includes all 

the artificially created areas (For example urban, 

roads, orchards and croplands). The natural areas 

were assigned values of one, while those considered 

man-made were assigned values of zero.  The 

Boolean layers representing each date were multiplied 

by the layers that represent the potential distribution of 

each of the modeled ten species. Thus the reduction 

or the expansion in the area occupied by each 

species under each land use scenario was estimated. 

 

For projecting the potential distribution of the ten 

species of interest under different climatic scenarios, 

predicted climate changes according to the CSIRO Mk 

2.0 &Mk3.0 GCMs [74] were employed. These models 

are used to represent the predicted climate over the 

period 2010-2040 under different emission scenarios; 
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A2A and B2A are high greenhouse emission 

scenarios, while A1b is a medium emission scenario. 

The data were retrieved from the CGIAR Research 

Program on Climate Change, Agriculture and Food 

Security (CCAFS) web: http://www.ccafs-

climate.org/data/. The projected distribution of the 

plant species in the study area according to the used 

climate scenarios were compared to their potential 

distribution under the baseline climate. Twelve 

scenarios were developed for each species (Table 2) 

to estimate the change in species habitats under the 

combined impacts of changes in land use and climate. 

The increases and the decreases in the habitat area 

for each species under the different scenarios were 

estimated. 

 
Table 2. Scenarios of climate and land use change used in the study. The annual mean temperature and the annual precipitation predicted for the 

period 2010–2040 by each climate change scenario are compared to the baseline climate that represents an average for the period 1950-2000 [15] 

 

Climate change scenarios 

Land use change scenario 

No land use 
Natural landscape 

(1) 

Current land use scenario 
(2011) 

(2) 

Simulated future scenario (2023) 
(3) 

a)  Average Climate (1950-2000) Baseline climate/Natural Baseline climate/2011 Baseline climate/2023 

b) A1B (+1.03 ºC & -12.23 mm) A1B/ Natural A1B/2011 A1B/2023 

c) A2A (+1.14 ºC & +3.11 mm) A2A/ Natural A2A/2011 A2A/2023 

d) B2A (+1.28 ºC & -6.34 mm) B2A/ Natural B2A/2011 B2A/2023 

 

 

III. RESULTS& DISCUSSION 

 

A. Species Distribution  

A total of 244 species were recorded in the study 

area, out of which 57% are perennials, 38% are 

annuals and the remaining are biennials or short lived 

perennials. Species recorded in the study area belong 

to fifty taxonomic families. Compositae (Asteraceae), 

Gramineae, Leguminosae (Fabaceae) and 

Chenopodiaceae are contributing the most to the flora 

of the region; this is in accordance with the study by 

Shaltout [75].The use of SII facilitated the selection of 

the species based on their importance. The 

distribution of 10 out of the 244 species recorded in 

the study area was modeled (Table 3).   

 

Eight models out of the ten attained an area under the 

curve (AUC) value over 0.7, which indicates that these 

models are of moderate performance [76]. Astragalus 

spinosus and Stipagrostis obtuse models attained 

AUC values exceeding 0.65, which indicates that the 

models are better than random. Based on kappa 

values, Astragalus spinosus, Echinops spinosus, and 

Stipagrostis obtuse models are considered of poor 

performance as they had kappa values less than 0.4 

(Table 3). The models of seven species out of the ten 

performed fairly well as indicated by all the used 

measures of accuracy assessment. Both models of  

 

Haloxylon salicornicum and Noaea mucronata 

exhibited good performance with kappa and TSS 

exceeding 0.5, AUC above 0.8, and overall accuracy 

above 81%.  

 

The accuracy and the predictive power of any species 

distribution model depends on the quality and the 

accuracy of the field data employed and the choice of 

the environmental variables to be used in the model 

[40]. Taking into account the limitation of the 

resolution of the environmental data employed in the 

study, particularly the climatic variables used for 

predicting the distribution of species in the study area, 

the results obtained are considered acceptable. The 

availability of high resolution environmental predictors 

is important for modeling the distribution of species at 

landscape scales [77], [47]. Such high resolution 

environmental data is difficult to obtain for the poorly 

studied areas. The deficiency in geographic 

databases (topographic and climatic databases) 

representing areas in developing countries and 

underdeveloped areas was and is still one of the 

major problems that faces researchers.  

 

The pattern of species distribution is often related to a 

number of environmental variables. Predictive models 

of species distribution could include variables selected 

based on a theoretical basis following conceptual 

model [78]. The conceptual framework for modeling 
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plant species suggested by Franklin [1] was revisited 

by Austin and Van [47]. They emphasized including 

environmental predictors that are considered direct 

factors influencing plant growth and distribution. This 

included light, temperature, nutrients, water, carbon 

dioxide and biotic interaction.  

 

Although it is important to include the variables that 

correlate to the species distribution and also show 

meaningful biological relationships [78]; some studies 

fail to include some factors of importance. Austin and 

Van [47] highlighted the need for inclusion of light as a 

predictor in models predicting distribution of plant 

species, which has been overlooked by many studies. 

They argued that light as a predictor has an important 

influence on distribution of plant species. In the 

current study, light was included in modeling species 

of the study area expressed as total insolation, direct 

insolation, diffusion insolation, and direct/diffusion 

insolation ratios. Each of these factors was found to 

be important for modeling plant species in the study 

area. Diffusion insolation was found to be important 

for predicting all the species except for Echinops 

spinosus, for which direct insolation was found 

important (Table 4). Austin and Van [47] maintained 

that the difference in light regime between north and 

south-facing aspects can result in differences in 

temperature equal to that resulting from a shift of 200 

km in latitude. 

 
Table 3. The modeled important plant species selected out of the 244 species recorded in the study area; abbreviations used; estimated species 

importance index (SII) values; number of occurrences recorded in the study area; and the measures used to assess the accuracy of the random forests 

models predicting their distribution. Accuracy assessment measures presented are:  Sensitivity; Specificity; True skill statistic (TSS); Cohen’s Kappa 

statistic; the overall accuracy; and the area under the curve (AUC) statistic of the receiver operating characteristic (ROC). 

 

Species Abbreviation SII 
Number of 

occurrences 
Sensitivity Specificity TSS Kappa Accuracy AUC 

Anabasis 
articulata 

(Forssk.) Moq. 
Ana_art 0.72 454 0.92 0.509 0.429 0.447 73.790 0.790 

Asphodelus 
aestivus Brot. 

Asp_aes 0.64 119 0.533 0.882 0.415 0.405 81.855 0.828 

Astragalus 
spinosus 
(Forssk.) 
Muschl. 

Ast_spi 0.64 137 0.442 0.784 0.226 0.191 72.470 0.664 

Deverra 
tortuosa (Desf.) 

DC. 
Dev_tor 0.76 212 0.589 0.828 0.417 0.417 75.709 0.764 

Echinops 
spinosus L. 

Ech_spi 0.64 103 0.489 0.847 0.335 0.314 78.138 0.703 

Gymnocarpos 
decanderus 

Forssk. 
Gym_dec 0.64 250 0.835 0.62 0.455 0.401 69.355 0.744 

Haloxylon 
salicornicum 

(Moq.) Bunge ex 
Boiss. 

Hal_sal 0.6 184 0.709 0.845 0.554 0.507 81.452 0.840 

Noaea 
mucronata 

(Forssk.) Asch. 
and Schweinf. 

Noa_muc 0.56 211 0.73 0.849 0.579 0.547 81.855 0.872 

Stipagrostis 
obtuse (Delile) 

Nees 
Sti_obt 0.56 208 0.651 0.697 0.348 0.296 68.548 0.671 

Thymelaea 
hirsuta (L.) 

Endl. 
Thy_hir 0.76 300 0.784 0.682 0.466 0.444 72.177 0.789 

 

 

 

 

 

 

 

 



Journal of Renewable Energy and Sustainable Development (RESD)      Volume 1, Issue 2, December 2015 - ISSN 2356-8569 

251 
 

Table 4. Variables selected for the predictive models for each species based on the percentage increase in MSE when a given variable was randomly 

permuted and introduced into the model. See Table 1 for variable abbreviations and Table 3 for species binomial abbreviations. 

 

Variable Ana_art Asp_aes Ast_spi Dev_tor Ech_spi Gym_dec Hal_sal Noa_muc Sti_obt Thy_hir 

Bio2 + + + + + + + 
 

+ + 

Bio3 + + 
     

+ 
 

+ 

Bio4 + + + + + + + + + + 

Bio12 + + + + + + +  
 

+ 

Bio13 
 

+ 
     

+ 
 

+ 

Bio15 
       

 
 

+ 

Bio16 + + + + + + + + + + 

Bio19 
 

+ 
  

+ 
  

 
 

+ 

ELv + + + 
 

+ + + + + + 

LS 
  

+ 
    

+ 
  

Slope 
   

+ + 
  

 + 
 

TRI 
  

+ + 
   

 
  

TWI 
 

+ + + + 
  

+ + + 

ProxtoSea + + + + + + + + + + 

DiffInsol + + + + 
 

+ + + + + 

DirInsol 
 

+ + + + 
     

DiffToDir 
        

+ + 

 

 

In the current study, generally seventeen out of the 

original thirty environmental variables contributed to 

the modeling of the species in the study area. Of the 

climatic variables, the mean of temperature diurnal 

range, temperature seasonality, annual precipitation 

and precipitation of the wettest quarter were the 

common climatic factors in controlling the distribution 

of most the modeled species (Table 4). Climatic 

variables representing annual cycle (for example 

annual mean temperature and annual precipitation) 

seem to control the general vegetation cover over the 

broad scale.  

 

Bornkamm and Kehl [24] divided the western desert 

into five zones characterized by different vegetation 

cover and plant communities based on the mean 

annual rainfall. The study area falls within Zone I and 

Zone II of this classification. The vegetation cover of 

Zone I (semi-desert with mean annual rainfall > 20 

mm) is composed of dwarf shrubs dominated by 

Thymelaea hirsuta. Zones II and III are full-desert 

(with mean annual rainfall 10-20 mm) with 

communities dominated by Asphodelus microcarpus 

and Plantago albicans. Climatic factors that represent 

seasonality (e.g. mean of temperature diurnal range, 

temperature seasonality and precipitation of the 

wettest quarter) are more important for the distribution 

of the species at local scales as is suggested by the 

results of the current study. The results indicate that 

the land-surface parameters are of influence on the 

distribution of species. Topographic factors such as 

elevation, diffusion insolation, direct insolation, and 

topographic wetness index were found to be important 

in predicting most of the modeled species (Table 4). 

Hammouda [79] in a study focusing on the Omayed 

area (part of the study area) found that species 

distribution and plant community composition are 

influenced by topography, the nature and origin of the 

parent material, in addition to the land use and degree 

of human intervention. Land-surface parameters 

controlling moisture availability were found to be of 

importance for species distribution by some studies 

that focused on assessing the quantitative 

relationships between environmental variables and 

vegetation in the northwestern desert (for example; 

[80], [81], [82], [83]). Ayyad and Ammar [81] found 

that abundance and the distribution of the perennials 

are more affected by factors controlling moisture 

availability through run-off; such as slope and 

curvature. Ayyad and Ammar [84] also, found factors 

controlling moisture availability (for example; slope 

inclination, topographic position, nature of surface, soil 

depth and soil texture) which are the most important in 

controlling vegetation composition in the area. Ayyad 

and El-Ghareeb [83] found that the micro-variations in 

the soil were attributed to variations in topography and 
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the nature of parent materials on the distribution of 

species in the area. The results of the current study 

also showed that the proximity to sea is one of the 

common important factors for predicting all the 

modeled species.  Communities of the coastal dunes 

dominated by Echinops spinosus and Thymelea 

hirsuta and those of the inland ridges dominated by 

Gymnocarpos decanderus and Deverra tortuosa are 

stated to be the most diverse in the area [85]. 

However, these communities are stated to be 

threatened due to the establishment of summer 

resorts on the coastal dunes and the establishment of 

the irrigation network on the non-saline depressions 

[86]. 

 

B. Effect of Climate and Land Use Changes on 

Species Distribution 

 

1. Effect of land use change  

Species distribution models are increasingly used for 

prediction of the potential distribution of the species in 

response to disturbance or changes resulting from 

human intervention. Predictive habitat distribution 

models are used as important tools for assessing the 

impact of land use change and other forms of human 

interference on different species. Habitat distribution 

models have proven to be useful for modeling both 

commonly distributed species [87] as well as rare 

species [12], [54]. Some studies used models with 

AUC values > 0.6 for projecting the impact of climate 

change on plant distribution [71]. However, the 

intention here was to be more conservative and use 

only the models that showed reasonable performance 

according to all the accuracy assessment measures 

to assess the impact of both land use and climate 

change. As a result, only seven species were 

mapped to assess the impact of change in land use 

on their distribution (Figure 2). Assessment was done 

by comparing the area occupied by each species 

under no land use change in the area (theoretically 

natural landscape) to that in the years 1988 and 

2011. The results show that all species face reduction 

in their habitats (Figure 3). The results also show that 

all the species are at risk for increased reduction of 

their habitats under the projected land use change by 

the year 2023.  

 
Noaea mucronata attained the maximum loss in 

habitat area in 1988 (7.47% of the potential area; 

Figure 3), this increased five folds by 2011 (37.74%) 

and six folds by 2023 (44.79%). The major loss for 

this species occurs between the years 1988 and 

2011. This trend is noticed for all the modeled 

species. Halmy and colleagues [34], [38] assessed 

the change in the landscape between the years 1988 

and 2011 and found that the landscape has 

experienced changes by which many natural areas 

were transformed to new uses. The study concluded 

that the landscape is trending towards being more 

artificial. This explains the dramatic increase in loss 

of areas occupied by each species between the years 

1988 and 2011. The projected loss in the species’ 

area between the years 2011 and 2023 was shown to 

be lower than that between 1988 and 2011. Noaea 

mucronata, Asphodelus aestivus, and Deverra 

tortuosa (Figure 3) are most affected by the changes 

in land use in the period 1988-2011 and will continue 

to be at risk of habitat loss by the year 2023. The 

distribution of these three species is concentrated in 

the northern part of the landscape. This part of the 

landscape has been the most modified by human 

activities, and will continue to face more modifications 

pressures in the future.  

 
The urban sprawl, agricultural activities and other 

activities occurring in the area have resulted in 

habitat loss. These recent changes in the region 

place the plant species and their habitats under 

threat. In the late 1980s, establishment of summer 

resorts on the coastal dunes started to reshape the 

landscape of the area. Quarrying activities increased 

as a result of the establishment of these resorts. 

Mining and cutting of the limestone ridges in the area 

provide building materials necessary for the 

establishment of the resorts. This may have 

contributed to the fragmentation, destruction and loss 

of habitats.  Species inhabiting the coastal dunes and 

the non-saline depression habitats are stated to be 

threatened due to the establishment of summer 

resorts on the coastal dunes and the establishment of 

the irrigation network on the non-saline depression 

[86]. Factors such as habitat size reduction or habitat 

fragmentation represent the most serious causes of 

species loss. However, arrangement and connectivity 

of habitat patches are also of great importance. 

Habitat fragmentation makes it difficult for wildlife to 

maintain stable populations [88], [89]. The current 

study did not assess the fragmentation in the habitat 

of each species or estimated the degree of 

connectivity among patches. This will be part of future 

work planned to include more species with restricted 

distribution in the area. 
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Fig .2. Some of the species modelled; (a) Anabasis articulata, (b) Asphodelus aestivus, (c) Astragalus spinosus, (d) Deverra tortuosa, (e) 

Gymnocarpos decanderus, (f) Haloxylon salicornicum, (g) Noaea mucronata, and (h) Thymelaea hirsuta. 
 

 

(a) 
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(c) (d) 
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Fig .3. Change in habitat area due to change in land use in 1988, 2011, and the projected change by 2023. The loss is expressed as 

percentage of the potential habitat area for each species under the baseline climate and no land use. See Table 3 for species binomial 

abbreviations. 
 

2. Effect of climate change 

 
 

Many studies have focused on projecting the impact 

of climate change on the distribution of plant species 

[45], [90], [14], [73], [91], [92], [71]. Most of these 

studies have been applied on global or regional scale. 

The current study attempts to assess the potential 

impact that climate change might have on the 

distribution of some plant species at the landscape 

scale within a desert ecosystem. 

 
Under the CSIRO GCM models, the different emission 

scenarios used in the current study are predicted to 

lead to changes in the temperature and precipitation 

of the area (Table 2 & Figure 4). The study area is 

expected to experience an increase in annual mean 

temperature under the three applied scenarios, with 

B2A expected to result in the highest increase in 

temperature. Not all the scenarios predict reduction in 

the annual mean precipitation of the area. The area is 

expected to experience increase in the annual mean 

precipitation by 3.11mm compared to the average 

over the period 1950-2000 under the A2A scenario. 

Climate has an influence on species distribution at 

broad scale [45], [93].The results show that at the 

landscape level and the change in climate under the 

different emission scenarios have resulted in changes 

in the modeled species distribution. Although the 

differences among the climate scenarios developed 

by the different models up to 2050  are stated to be 

minor [94], [95], the current  results show that the 

expected impact of each of the used climate scenarios 

on the modeled species is different (Figure 4).  

 
Noaea mucronata, Asphodelus aestivus, and 

Anabasis articulataare are expected to be at risk of 

loss of habitat under all the employed scenarios. The 

high emission scenarios B2A and A2A cause higher 

impact on these species compared to the low 

emission scenario (A1B). For example, under B2A 

Noaea mucronata,  Asphodelus  aestivus, and 

Anabasis articulata are expected to lose about 96%, 

58% and 17% of their potential area respectively, 

while under A1B each are expected to lose 85%, 

29%, and 13% of their potential area respectively 

(Figure 5). Scenario A1B, on the contrary, is expected 

to cause more loss in area for Asphodelus aestivus 

and Deverra tortuosa (29% and 7%, respectively) 

compared to the A2A scenario (23% and 2%, 

respectively). For Gymnocarpos decanderus, and 

Haloxylon  salicornicum the A1B scenario is expected 

to cause loss in the area of their habitat (1.2% and 

2.2%, respectively), while these species are expected 

to gain habitat under the other two high emission 

scenarios (20.5 and 5.8% under A2A scenario, 

respectively). Under the A1B scenario, there will be an 

expected reduction in the annual precipitation and 

precipitation of the wettest quarter compared to the 

average observed for the period 1950-2000 (Figure 

4). On the contrary, under the A2A and B2A 

scenarios, the area is expected to experience 

increase in both annual precipitation and precipitation 
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of wettest quarter compared to the average observed 

for the period 1950-2000. These factors were found to 

be important for the occurrence of Asphodelus 

aestivus, Deverra tortuosa, Gymnocarpos 

decanderus, and Haloxylon salicornicum (Table 4). 

Thymelaea hirsute seems to favor the change in 

climate under the three different scenarios. The 

species is expected to gain habitat under these 

scenarios. The decrease in temperature seasonality 

and the increase in annual precipitation, precipitation 

of wettest month, precipitation of wettest quarter, and 

precipitation of coldest quarter under A2A and B2A 

compared to the average for the period 1950-2000 

may explain this expected gain in habitat for 

Thymelaea hirsute under these scenarios. Noea 

mucronata is expected to be the most affected of the 

modeled species by the change in climate under the 

employed scenarios. Noea mucronata seems to be 

sensitive to the increase in temperature seasonality 

that is expected to increase under the three scenarios. 
 

 

Fig .4 Mean of the climatic variables contributed in modeling plant species in the study area. The mean is calculated over the whole study 

area for each scenario (A1B, A2A & B2A) and for the baseline climate that represents the mean for the period 1950- 2000. 
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Fig .5. Gain/loss in habitat area under three climate change 

scenarios combined with different land use scenarios: a) no 

land use; b) current land use; and c) projected land use 

scenario by the year 2023. Gain/loss is expressed as 

percentage of the potential habitat area for each species 

under the baseline climate and no land use. See Table 3 

for species binomial abbreviations. 
 

3. Land use and climate change combined effect 
 

The results show that while the change in land use in 

the study area resulted in loss of the area of the 

potential habitat for all species, the change in the 

climate under the employed scenarios may result in 

gain in area for some species. The expected loss in 

the area of Noaea mucronata, Asphodelus aestivus, 

and Anabasis articulata (96%, 58%, and 17%, 

respectively) under the high emission climate change 

scenario B2A is higher than the expected loss under 

the projected change in land use by the year 2023 

(44%, 32%, and 15%, respectively). Under the 

scenarios of combined change in climate and land use 

either under the current land use or that projected by 

2023, all the species are expected to suffer loss in 

area (Figure 5). An exception to that is Gymnocarpos 

decanderus, which is expected to gain area under the 

combined scenario of A2A emission and each of the 

current land use scenarios and the projected land use 

by 2023. However, this increase is less than 5% of the 

potential area suitable for the species under A2A/2011 

scenario and less than 1% under A2A/2023 scenario. 

The results reveal the serious fate that plant species 

might face under scenarios of climate and land use 

change. Immediate actions are needed to ensure that 

species as Asphodelus aestivus (Figure 6) and Noaea 

mucronata (Figure 7) are not declining in other places 

across the northwestern coast. The current study 

modeled the distribution of the species in part of the 

phytogeographical region and the status of these 

species needs to be known over the whole 

phytogeographical region. More future studies to 

assess the status of the species in the area, 

especially those of restricted distribution, are still 

needed. Based on the findings of these results, 

measures should be taken to maintain these species 

in the flora of the region. 
  

IV. CONCLUSIONS 

 
The application of random forests to the employed 

climatic and land-surface parameter data proved to be 

successful in predicting the distribution of the plant 

species in the arid land landscape. The performance 

of the species distribution models in the current study 

could be attributed to the resolution of the 

environmental predictors used. At the landscape level 

the use of finer scale environmental predictors, 

especially climatic factors, may increase the prediction 

power of distribution models. The inclusion of 

environmental predictors that represent light proved to 

be of importance for the prediction of some of the 

modeled species in the study area. 

The study found that the expected impact of the A1B, 

A2Aand B2A scenarios on the distribution of the 

modeled species is variable. In arid lands some 

species might be adversely affected by the change in 

climate under certain scenarios, while others might 

benefit from these changes. Land use change poses 

more risk on most of the species modeled compared 

to climate change. The impact of land use is not 

differential while that of climate change is. Change in 

land use in the area resulted in habitat loss for all the 

modeled species. Land use change impact could be 

faster and more substantial in reducing the size of 
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plant species habitat. If the current trend in land use 

change continues, all species will continue to suffer 

habitat loss. The combined impact of land use and 

climate change pose serious threats to most of the 

species modeled. Under combined scenarios of 

change in land use as projected by 2023 and change 

in climate, all the species are expected to suffer loss 

in habitat, except Gymnocarpos decanderus.The 

results show that some species such as Noaea 

mucronata and Asphodelus aestivus may suffer 

serious threats in the area under the combined land 

use climate change scenarios. So, actions are needed 

to ensure that these species are not threatened 

across the northwestern coast and in Egypt.  This 

also, highlights the importance of assessing the 

impact of land use/climate change scenarios on other 

species of restricted distribution in the area.The 

application of species distribution modeling in desert 

and arid lands can provide a useful tool for mapping 

species and assessing the impact of human induced 

changes on different species. Such applications are 

still rare, and this may be attributed to the fact that 

most of the arid lands and deserts are located in 

inaccessible or lightly populated areas. Most of these 

areas are also located in less developed areas where 

the systematic surveys of the natural resources are 

not conducted on a regular basis. The lack of 

environmental predictors of appropriate landscape 

resolution to be used for modeling species in such 

areas is another factor to be considered.  The current 

study will promote more studies that map plant 

species distribution and assess the risk to important 

species as a result of human interference. Future 

studies are needed to assess the magnitude of 

fragmentation in each species habitat and to estimate 

the degree of connectivity among patches. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig .6 Potential distribution of Asphodelus aestivus under different land use and climate scenarios.1, 2 and 3 represent the natural   

landscape, current land use and future land use by 2023, respectively; and a, b, c and d represent the average climate (1950-2000), A1B, 

A2A and B2A climatic scenarios, respectively. 
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Fig .7 Potential distribution of Noaea mucronata under different land use and climate scenarios.1, 2 and 3 represent the natural landscape, 

current land use and future land use by 2023, respectively; and a, b, c and d represent the average climate (1950-2000), A1B, A2A and 

B2A climatic scenarios, respectively. 
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