
RUHUNA JOURNAL OF SCIENCE
Vol 8: 67- 75, June 2017

eISSN: 2536-8400 Faculty of Science

DOI: http://doi.org/10.4038/rjs.v8i1.27 University of Ruhuna

 Faculty of Science, University of Ruhuna
Sri Lanka

67

Short paper

A simple algorithm for calculating the area of an

arbitrary polygon

K.R. Wijeweera1, 2 and S.R. Kodituwakku2, 3

1Department of Computer Science, Faculty of Science, University of Ruhuna, Sri Lanka
2Postgraduate Institute of Science, University of Peradeniya, Sri Lanka.
3Department of Statistics and Computer Science, Faculty of Science University of Peradeniya

Correpondence: krw19870829@gmail.com

Received: October 28th 2016, Revised: June 15th 2017, Accepted: June 30th 2017

Abstract. Computing the area of an arbitrary polygon is a popular

problem in pure mathematics. The two methods used are Shoelace

Method (SM) and Orthogonal Trapezoids Method (OTM). In OTM, the

polygon is partitioned into trapezoids by drawing either horizontal or

vertical lines through its vertices. The area of each trapezoid is

computed and the resultant areas are added up. In SM, a formula which

is a generalization of Green’s Theorem for the discrete case is used. The

most of the available systems is based on SM. Since an algorithm for

OTM is not available in literature, this paper proposes an algorithm for

OTM along with efficient implementation. Conversion of a pure

mathematical method into an efficient computer program is not

straightforward. In order to reduce the run time, minimal computation

needs to be achieved. Handling of indeterminate forms and special

cases separately can support this. On the other hand, precision error

should also be avoided. Salient feature of the proposed algorithm is that

it successfully handles these situations achieving minimum run time.

Experimental results of the proposed method are compared against that

of the existing algorithm. However, the proposed algorithm suggests a

way to partition a polygon into orthogonal trapezoids which is not an

easy task. Additionally, the proposed algorithm uses only basic

mathematical concepts while the Green’s theorem uses complicated

mathematical concepts. The proposed algorithm can be used when the

simplicity is important than the speed.

Keywords. Computational geometry, computer graphics programming,

coordinate geometry, Euclidian geometry, computer programming.

1 Introduction

A polygon is defined as the region of a plane bounded by a finite collection of

line segments which forms a simple closed curve. Let v0, v1, v2, …, vn-1 be n

points in the plane. Here and throughout the paper, all index arithmetic will be

 Wijeweera and Kodituwakku Calculating the area of an arbitrary polygon

Ruhuna Journal of Science 68

Vol 8: 67-75, June 2017

mod n, conveying a cyclic ordering of the points, with v0 following vn-1, since

(n - 1) + 1 ≡ 0 (mod n). Let e0 = v0v1, e1 = v1v2, …, ei = vivi+1, …, en-1 = vn-1v0

be n segments connecting the points. Then these segments bound a polygon if

and only if

1) The intersection of each pair of segments adjacent in the cyclic

ordering is the single point shared between them: ei ∩ ei+1 = vi+1, for

all i = 0, 1, 2, ..., n – 1.

2) Non adjacent segments do not intersect: ei ∩ ej = Ø, for all j ≠ i + 1.

3) None of three consecutive points vi are collinear.

These segments define a curve since they are connected end to end and the

curve is closed since they form a cycle and the curve is simple since non

adjacent segments do not intersect. The points vi are called the vertices of the

polygon while the segments ei are called its edges. Therefore a polygon of n

vertices has n edges (O’Rourke 1998).

In the proposed algorithm, the polygon is separated into orthogonal

trapezoids by drawing horizontal lines through each vertex of the polygon.

The area of each trapezoid is computed and added up to find the area of the

entire polygon.

2 Methodology

This section describes the proposed algorithm and its implementation. The C

programming language has been used for the implementation.

2.1 Representation of the polygon

The polygon is represented using two arrays x and y. The points variable

stores the number of vertices in the polygon. (x[i], y[i]) denotes the

coordinates of the ith vertex where i = 0, 1, …, (points – 1).

2.2 Drawing horizontal lines through each vertex of the polygon

The polygon is separated into orthogonal trapezoids by drawing horizontal

lines through each vertex of the polygon. This is done by using findYg

function. First each y-coordinate is stored in yg array. Then sortArray

function is used to sort those y-coordinates in ascending order.

 Wijeweera and Kodituwakku Calculating the area of an arbitrary polygon

Ruhuna Journal of Science

Vol 8: 67-75, June 2017
69

2.3 The refineYg function

Each horizontal line drawn in section 2.2 may go through more than one

vertex in the polygon. In those cases yg array contains duplicate values. The

refineYg function is used to remove those duplicate values from the yg array.

Using a for loop, initially the yg array is copied to yh array. After that only the

distinct values are written to the yg array. The ygn variable will finally contain

the number of distinct elements. Since the yg array is already sorted in

ascending order, duplicate values are always in consecutive cells. The first

element of yg array is set into first element of yh array by yg[0] = yh[0] and

now ygn is 1. Using another for loop, values of yh are copied one by one to yg

only if current value is not equal to the previous. The condition (yh[i - 1] !=

yh[i]) is used for this purpose.

2.4 The pos function

The pos function is used to decide the position of a given vertex (x[v], y[v])

with respect to a horizontal line y = yg[u]. If the vertex is on the horizontal

line then the function returns zero. If the vertex is above the horizontal line

then it returns 1 and if the vertex is below the horizontal line it returns -1.

2.5 The findGaps function

The findGaps function takes u as a parameter which denotes the indices of yg

array. A horizontal line drawn in section 2.2 may intersect edges of the

polygon as shown in Figure 1.

Two consecutive horizontal lines bound a set of orthogonal trapezoids. In

order to compute the area of them, coordinates of the end points should be

calculated. For a given two consecutive horizontal lines, the intersection

points of upper and lower horizontal lines differ depending on the special

Fig. 1. Horizontal lines through vertices

 Wijeweera and Kodituwakku Calculating the area of an arbitrary polygon

Ruhuna Journal of Science 70

Vol 8: 67-75, June 2017

cases as described in this section later. Therefore x-coordinates of the

intersection points corresponding to lower horizontal line are stored in gap1

array and that of upper horizontal line are stored in gap2 array each iteration.

The n1 and n2 variables will contain the number of elements in gap1 and

gap2 arrays respectively.

The purpose of first for loop found in findGaps function is to deal with

intersections of each edge with the given horizontal line y = yg[u]. The end

points of each edge are (x[i], y[i]) and (x[j], y[j]) where i = 0, 1…, (n - 1) and j

= (i + 1) % points. The pi and pj variables decide the positions of the end

points using pos function.

Depending on the way edges intersect with the horizontal line, there are five

possible situations as shown in Figure 2.

From the left each possible situation is names as General Case, Down to

Down Case, Up to Up Case, Down to Up Case, and Up to Down Case

respectively. In the figure, 1 and 2 numbers denote whether that intersection

point considered for gap1 array or gap2 array respectively. Following

subsections describe how to deal with each case.

General Case

If (pi * pj < 0) then end points are on opposite sides of the horizontal line. The

intersection point is (xc, yg[u]). And the equation of the edge can be written

as,

(y – y[i]) / (x – x[i]) = (y[j] – y[i]) / (x[j] – x[i]);

x = (x[j] – x[i]) * (y – y[i]) / (y[j] – y[i]) + x[i];

Since the intersection point is on y = yg[u] line,

xc = (x[j] – x[i]) * (yg[u] – y[i]) / (y[j] – y[i]) + x[i];

This intersection point should be included to both gap1 and gap2 arrays.

Fig. 2. Possible intersections of edges

 Wijeweera and Kodituwakku Calculating the area of an arbitrary polygon

Ruhuna Journal of Science

Vol 8: 67-75, June 2017
71

Down to Down Case

If (pi = pj = 0) then the entire edge goes through the horizontal line as in

second to fifth situations in Figure 2. The values of a and b are computed by a

= i – 1 and b = j + 1. They denote the indices of neighboring vertices of the

end points of the edge. When i = 0 then a = -1, but actually it should be

(points - 1). When j = (points - 1) then b = points, but actually it should be 0.

These two special cases should be handled.

The pa and pb variables store the positions of a and b vertices respectively.

If pa * pb > 0 then it should be either second or third case in Figure 2. If pa <

0, it should be definitely the second situation. In this case both the end points

should be included to gap2 array.

Up to Up Case

If pa * pb > 0 and pa > 0, it is the third situation. In this case both the end

points should be included to gap1 array.

Down to Up Case

If pa * pb < 0 and pa < 0 then it is the fourth situation. In this case i end point

should be included to gap2 array and j end point should be included to gap1

array.

Up to Down Case

If pa * pb < 0 and pa > 0 then it is the fifth situation. In this case i end point

should be included to gap1 array and j end point should be included to gap2

array.

Depending on the way vertices intersect with the horizontal line, there are

three possible ways as shown in Figure 3.

The first two situations are ignored since they do not affect the area between

given two horizontal lines. The second for loop is used to deal with vertex

Fig. 3. Possible intersections of vertices

 Wijeweera and Kodituwakku Calculating the area of an arbitrary polygon

Ruhuna Journal of Science 72

Vol 8: 67-75, June 2017

intersections with the horizontal line. The vertices on the horizontal line are

found by checking the condition y[i] = yg[u]. The pa and pb variables are

found as in previous situation. If (pa * pb < 0), it is the third situation. In this

situation the intersection vertex should be included to both gap1 and gap2

arrays.

2.6 The findSums function

There are ygn number of horizontal lines which can be drawn through vertices

of the polygon as shown in Figure 1. Each horizontal line has two arrays gap1

and gap2. Inside the for loop, initially n1 and n2 are set into zero. Then gap1

and gap2 array values are found using findGaps function for each horizontal

line. The sortArray function is used to sort those two arrays in ascending

order.

2.7 The computeSum function

Figure 4 shows an example diagram of a horizontal line. The numbers

indicate the indices of the gap array in computeSum function. The thick line

segments on the horizontal line shows the intersection regions with the

polygon.

The purpose of computeSum function is to calculate the sum of the lengths of

the thick line segments and store it in sum[index] element of sum array. The

value of sum[index] is set into zero initially. Then the elements of gap array

are added or subtracted from the sum[index] depending on whether their

indices are even or odd respectively.

In each iteration of the for loop inside findSums function, the computeSum

function is invoked for gap1 and gap2 arrays. The sum1 and sum2 arrays

correspond to gap1 and gap2 arrays respectively.

2.8 The getAreaS function

Figure 5 shows an example of polygon parts bounded by two consecutive

horizontal lines drawn through vertices of polygon. The sum1[i] stores the

sum of lengths of thick line segments corresponds to the lower horizontal line.

And sum2[i + 1] stores the sum of lengths of thick line segments corresponds

to the upper horizontal line.

Fig. 4. Intersection regions example

 Wijeweera and Kodituwakku Calculating the area of an arbitrary polygon

Ruhuna Journal of Science

Vol 8: 67-75, June 2017
73

The area variable in getAreaS function stores the area bounded by ith couple

of consecutive horizontal lines. The gap between the two horizontal lines is

(yg[i + 1] – yg[i]). Therefore the area bounded by the two horizontal lines can

be computed by 0.5 * (yg[i + 1] – yg[i]) * (sum1[i] + sum2[i + 1]). This

formula is similar to the area formula for a trapezoid and it can be proved as

follows.

Proof: Let the gap between two horizontal lines is h and N be the number of

trapezoids. Then the height, lower base and upper base of the trapezoids are

(h, a1, b1), (h, a2, b2)…, and (h, aN, bN) respectively. Sum of areas of

trapezoids,

= (h/2) * (a1 + b1) + (h/2) * (a2 + b2) + … + (h/2) * (aN + bN)

= (h/2) * [(a1 + a2 + … + aN) + (b1 + b2 + … + bN)]

2.9 The getArea function

The area variable inside getArea function will store the total area of the

polygon. The for loop accesses each area bounded between consecutive

couple of horizontal lines and sum them up.

3 Results and Discussion

The algorithm was implemented using C programming language. Following

hardware and software were used.

Computer: Intel(R) Celeron(R) M; processor 1.50 GHz, 896 MB of RAM;

IDE: Turbo C++; Version 3.0; Copyright(c) 1990, 1992 by Borland

International, Inc;

System: Microsoft Windows XP Professional; Version 2002; Service Pack 2.

To validate the proposed algorithm, it was compared with an implementation

of Shoelace Method (Wijeweera 2015, O’Rourke 1998). A set of random

polygons as shown in Table 1 were used.

Fig. 5. Polygon parts between two horizontal lines

 Wijeweera and Kodituwakku Calculating the area of an arbitrary polygon

Ruhuna Journal of Science 74

Vol 8: 67-75, June 2017

Table 1. Set of random polygons

Polygon Coordinates of Vertices

1 (10, 10), (110, 210), (90, 80), (250, 60)

2 (60, 240), (10, 190), (50, 20), (110, 150), (150, 190)

3 (140, 90), (200, 240), (40, 190), (70, 10), (280, 80), (210, 130)

4 (60, 60), (300, 130), (240, 220), (100, 250), (20, 200), (40, 20), (260, 70)

5 (100, 240), (130, 80), (270, 210), (190, 20), (150, 60), (90, 10), (10, 80), (80, 100)

6 (150, 40), (50, 10), (10, 190), (120, 250), (230, 220), (130, 90), (240, 160), (240, 30),

(50, 120)

7 (140, 90), (240, 60), (140, 240), (250, 170), (290, 10), (30, 10), (10, 120), (130, 220),

(80, 70), (170, 140)

8 (230, 40), (30, 10), (80, 70), (10, 90), (70, 90), (150, 140), (150, 60), (190, 140),

(80, 250), (210, 200), (280, 10)

9 (90, 90), (150, 160), (130, 220), (240, 70), (250, 10), (160, 110), (110, 30), (40, 10),

(20, 130), (90, 250), (130, 160), (90, 190)

10 (90, 70), (60, 150), (10, 20), (60, 190), (90, 150), (140, 240), (190, 130), (230, 170),

(270, 60), (190, 10), (230, 100), (140, 30), (160, 150)

The number of clock cycles to compute the area of a polygon is not

measurable since the value is too small. Therefore the number of clock cycles

to compute the area of the same polygon 108 times was measured

(Kodituwakku et al. 2013). This was done for each polygon in Table 1 using

Orthogonal Trapezoid Method (OTM) and Shoelace Method (SM). The

results are shown in Table 2.

Table 2. Set of random polygons

Polygon OTM SLM

1 4554 204

2 5345 241

3 9914 291

4 11641 327

5 14408 361

6 20791 406

7 28416 453

8 21939 466

9 33098 490

10 41047 532

According to the results the efficiency of the proposed method is lower than

the existing method.

4 Conclusion

An algorithm to computerize Orthogonal Trapezoid Method was proposed.

And it was experimentally compared against Shoelace Method. The area of

 Wijeweera and Kodituwakku Calculating the area of an arbitrary polygon

Ruhuna Journal of Science

Vol 8: 67-75, June 2017
75

the polygon was computed by decomposing the polygon into a set of

trapezoids. The decomposition was not a trivial task. Currently triangular

polygonal meshes are used in computer graphics programming to model

surfaces (Hearn and Baker 1998). The proposed decomposition technique can

be to generate trapezoidal polygonal meshes.

References

Hearn D, Baker MP. 1998. Computer Graphics, C Version, 2nd Edition, Prentice

Hall, Inc., Upper Saddle River, pp. 305-309.

Kodituwakku SR, Wijeweera KR, Chamikara MAP. 2013. An Efficient Algorithm for

Line Clipping in Computer Graphics Programming, Ceylon Journal of Science

(Physical Sciences), Volume 17: 1-7.

O’Rourke J. 1998. Computational Geometry in C: 2nd Edition, Cambridge University

Press 1-22.

Wijeweera KR. 2015. Finding the Area of an Arbitrary Polygon: Shoelace Formula

and its Implementation in C Programming Language. Retrieved from

http://www.academia.edu/9987996/Finding_the_Area_of_an_Arbitrary_Polyg

on_Shoelace_Formula_and_its_Implementation_in_C_Programming_Languag

e.

Appendix

Program code is supplied as a supplementary file (Appendix, pp i-iv) linked to

Wijeweera and Kodituwakku (2017). Ruhuna Journal of Science 8 (1): 67-75.

DOI: http://doi.org/10.4038/ rjs.v8i1.27

