
Issues in making courseware exploitable
and issues in making exploitable courseware

Douglas Sivrter* and Phil Siviter**

*School of Computing Information Systems and Mathematics, South Bank University
**Department of Computing, University of Brighton

Part 1 of the paper, 'Issues in making courseware exploitable', is about dealing with the legacy of
large volumes of incompatible non-integrated courseware which are currently being generated
within initiatives such as the Teaching and Learning Technology Programme (TLTP). We
suggest strategies for allowing end-users to apply courseware management techniques belatedly to
current courseware developments, thereby offering ways of making the emerging courseware
more exploitable than it otherwise would be. Part 2 of the paper, 'Issues in making exploitable
courseware', takes a forward-looking approach which recognizes that future courseware
development efforts must pre-empt these problems of incompatibility and non-integration.
Courseware development must mature to the stage where it makes use of courseware design
standards, embraces a host of essential lessons from conventional software development, and
recognizes the importance of courseware management issues.

Introduction

There are currently substantial investments being made in courseware development in the
UK, in particular in the HÈFCs' Teaching and Learning Technology Programme
(TLTP), and the hope which underpins these development efforts is that Higher
Education institutions will eagerly adopt and exploit the freely available courseware
which emerges from them. Unfortunately, there are many reasons why this is probably
going to be an over-optimistic assumption (Laurillard et al, 1993). The bottlenecks which
can impair the successful exploitation of courseware range from cultural to technical, and
are quite diverse. In this paper we discuss some of these bottleneck issues and suggest
approaches to dealing with them. We deliberately restrict our discussion to technical
bottlenecks, and therefore discuss issues of courseware design, courseware development,
and courseware management

We first suggest strategies for dealing with a current courseware management challenge,

22

ALT-] Volume 3 Number I

i.e. is' it possible to take the current legacy of large volumes of incompatible non-
integrated courseware and somehow make it feel more integrated and compatible than it
actually is, thereby enhancing its exploitability?

Sorting out courseware management 'after the event' is of course the wrong way to
proceed (but inevitable if the currently emerging courseware is to be exploited at all). We
therefore take a forward-looking approach and suggest that it is essential and inevitable
for the courseware-development community to move forwards to a technical culture
which embraces courseware design standards (Jacobs, 1993) and embraces a host of
essential lessons from the mainstream software development world. In such a culture,
courseware-management facilities will not be a totally neglected aspect of development as
they are today, but will instead be regarded as an essential aspect of the courseware life-
cycle. Courseware management will also benefit from dealing with courseware objects
which are substantially more co-operative than today's 'dumb' courseware.

Part I Issues in making courseware exploitable (tidying up the
current mess)

Large-scale vs. Small-scale, Courseware vs. Lessonware
Within the UK there are now many courseware-development efforts which have
progressed well beyond the small cottage-industry approach, and there is a growing trend
towards large-scale developments via consortia of institutions. Collaborative develop-
ments are increasingly being shown to be more viable (both educationally and
economically) than small-scale isolated developments. It is not just the scale of the
development activities which has substantially increased; the courseware itself is larger
and more sophisticated than it has ever been (a fact which is mostly attributable to
advances in computer software and hardware). Most previous developments of computer-
assisted learning material would be more appropriately labelled as lessonware; they
usually tackle only a small fraction of what anyone in an academic institution would call
a course. By contrast with previous small-scale lessonware products, today's consortium-
based developments are trying to produce large-scale courseware which might embody
hundreds of pieces of lessonware. As the size and sophistication of the courseware grows,
and as more complex patterns of use emerge, many new problems are encountered and
new courseware management requirements emerge.

Limitations of current authoring tools
It is, of course, tempting simply to extrapolate upwards and assume that large-scale
courseware can be built out of lots of pieces of small-scale lessonware, an assumption
which is fine in principle but complicated in practice. Though there are now many
wonderful software packages which support the development of small-scale lessonware,
there is much less software support for managing the development and delivery at the
larger courseware level. Authors can (and do) argue endlessly over their favourite
development tools, but they are usually just comparing the built-in facilities for making
clever things happen on screen. None of these lessonware tools provide ready-made

23

Douglas Siw'ter and Phil Siv/ter Courseware exploitation

sophisticated support for developing and endlessly reconfiguring very large collections of
CAL modules; nor do they offer sophisticated support for integrating CAL resources into
Computer Supported Collaborative Learning frameworks; nor do they offer sophisticated
support for integrating resources developed using a diverse range of software tools and
applications. These excellent lessonware tools are simply not geared up to address large-
scale courseware management issues.

Problems of diversity
Most of the consortium-based developments in the UK at this time have realized that off-
the-shelf solutions to courseware management requirements are not readily available, and
hence they have either resorted to building their own solutions or have sadly neglected the
problems altogether. There are now far too many instances of projects reinventing each
other's wheels, i.e. they individually discover the same sets of problems, then partly solve
them with in-house developments while remaining totally oblivious to anyone else solving
the same problems. Usually, the in-house solutions have failed to consider the extra
complexities of ensuring that their products remain open, and almost no effort has gone
into pursuing compatibility with solutions produced by different projects. Far from
removing technical bottlenecks, we now have a culture of generating them.

As more sophisticated courseware becomes more widely available, academic staff will try
to experiment with new ways of exploiting it (we hope). We should recognize that if
willing and eager university staff (those not suffering too badly from the Not-invented-
here syndrome) try to exploit the currently emerging courseware, they will face a range of
technical barriers which will probably deter their enthusiasm and make them give up. The
current courseware development efforts are producing diverse courseware. Diversity in an
educational sense (in content and in pedagogic style) is an asset, but accidental diversity
in courseware management techniques and in basic software management techniques just
translates to bewildering incompatibility for the typical end-user, and is therefore a
liability.

Partial solutions to current courseware management problems
The courseware development scene is still very young and has not yet matured to the
stage where it collectively embraces useful, non-restrictive standards for design and
development. As a result of this, end-users now face large volumes of incompatible non-
integrated courseware from a diverse range of courseware development initiatives.

We present a framework called HyperCourseware which immediately offers partial
solutions to these problems. In the latter part of this paper, we also assert that the
HyperCourseware framework can be expanded to form the basis for genuinely open
courseware which can achieve substantially higher levels of courseware compatibility.

The HyperCourseware framework
HyperCourseware is not a new idea; our first attempts at providing a HyperCourseware
Management System date back to a project which started in 1989 (Siviter & Brown,
1992). A minimal description of HyperCourseware structuring principles is as follows:

24

ALT-] Volume 3 Number I

• A Course is a hierarchical network of Topics.

• A Topic is a collection of Educational Activities.

• An Educational Activity i s . . . (virtually anything that an author decides):
— described educationally e.g. presentations, assignments, assessments, simulations;
— technically implemented using anything, e.g. authoring tools, programming

languages, software applications (spreadsheets, databases, etc.), multimedia
audio-visual applications, away-from-machine activities.

The above framework is sufficiently general to allow virtually any courseware structure to
be generated, but sufficiently precise to allow software tools to support the manipulation
of such structures. A HyperCourseware Management System is a set of software tools
which enables the creation and endless adaptation of courseware structures and which
partially or totally automates the creation of interactive views of the courseware
structures. A HyperCourseware Management System therefore enables non-programmers
to manipulate large collections of 'lessonware objects' which may have been developed
using a diverse range of authoring tools.

Dealing with the legacy of incompatible courseware
A classic scenario within universities is for lecturers to pick and mix from a variety of
texts in order to deliver the particular perspective on a subject which they feel is most
appropriate. It is a rare occurrence for any lecturer to run a unit totally based on a single
set textbook. For courseware to be acceptable to academic staff, it must offer the same
kind of pick and mix adaptability that text sources currently provide. Academic staff
must have realistic options locally to customize courseware or even embark on major
reconfigurations of the material - the courseware must be capable of evolving. As the
simplest of examples, a lecturer might like to edit the Aims and Objectives section of a
piece of courseware the day before she uses it with a new group of students. A more
involved example might be a lecturer creating a totally new courseware structure but
populating it with many pieces of existing lessonware, i.e. no new development of
resources takes place but a new course is created out of existing resources. Is this
courseware development or courseware management?

There is now a national requirement for efforts to be made to bring together the many
strands of courseware development. Consumer universities (i.e. all of us) need to have
much higher level courseware-management facilities which shield them from technical
incompatibilities within the courseware. In effect, there needs to be an after-the-event
fudge towards integration which is now a necessary but a poor substitute for integrated
design. HyperCourseware can make some contribution to this belated integration. It
offers conceptual support by providing a formalized but non-restrictive framework for
courseware structures. It offers practical support in the form of HyperCourseware
Management Systems: software tools and templates which directly support end-users in
courseware manipulation.

25

Douglas S/Wter and Phil SMter Courseware exploitation

Part 2 Issues in making exploitable courseware (avoiding a future
mess)

The previous section discussed after-the-event fudges which are now required in order to
allow existing diverse lessonware to be used and re-used in larger courseware structures
and hence be more exploitable. This after-the-event fix can at best be described as a
shallow integration which relies on a fairly crude management of multiple software
applications and the generation of multiple 'educationally friendly' views of available
resources. How can this shallow integration be improved upon in future? What can we
learn from many years of producing incompatible courseware?

The need to learn from the software development world
Within this discussion, it is useful to regard courseware as just a specialized form of
software. Obviously, educationists can point out an infinite number of ways in which
courseware differs from other forms of software, but there is no escaping the fact that
courseware is still software, and there are many lessons which courseware development
could and should learn from other areas of software development. The world of
commercial software has been forced to address issues of software management, software
development, software evolution and maintenance, interoperability of software, etc. The
courseware-development community in comparison seems to be barely aware of the
problems looming over the horizon. This is tragic, given that an awareness of these
problems might have enabled the courseware-development projects to exploit some of the
solutions which have emerged within other software development scenarios.

Courseware standards vs. software standards
There will always be a requirement for unrestrained, exploratory development, especially
in areas as sophisticated as education, but there are also immense benefits to be derived
from standardization in areas which are frankly boring, routine software-development
issues. Nobody in their right mind would look at a PC in 1994 and say: 'Because I don't
like Windows I would prefer to build my own graphical user interface'. Yet similar
nonsensical decisions have been made in relative ignorance about a range of software
development issues. It is salutary to note that the art of reinventing boring old-fashioned
wheels is alive and well within the world of courseware development (and, as many
observers have pointed out, because the courseware development world is relatively new
and inexperienced, the reinvented wheels frequently turn out to be square).

The time is right (indeed, overdue) for a much greater effort, preferably on a national
scale, to be directed towards establishing courseware development standards. Before, the
instructional design experts scream about how prematurely suffocating these standards
might be, we would emphasize that the areas best suited for standardization are not
concerned directly with instructional design but with the underlying software
development issues. The standardization efforts we are advocating have a clear aim of
enabling exploratory instructional design rather than constraining it.

It must be appropriate for the courseware development community to recognize that it is
wasting opportunities to benefit from current experiences from mainstream software

26

Volume 3 Number /

development. Furthermore, given that mainstream software development is advancing
more quickly than courseware development, it would be preferable specifically to try to
close the experience gap by looking forward to emerging software trends. There are many
examples, e.g. there are massive increases in software productivity to be gained from
exploiting reusable object-based software components. Microsoft's Object Linking and
Embedding, Apple's OpenDoc, and IBM's Distributed System Object Model are
examples of a software-development idea which will have a profound impact on how all
software (and therefore also courseware) will be developed. Yet it is probably true that
only a small minority of courseware developers have any idea of what these ideas
represent, and an even smaller proportion are gearing up ready to exploit these inevitable
ideas.

There are two overlapping areas of concern. One is as mentioned above: what can (or
must) courseware development learn from software development? The other is the
identification of generic issues purely within courseware development (generic issues
which may have only tentative parallels in software development) and the attempt to
engender standards for dealing with these generic courseware development issues.

Moving HyperCourseware towards a Framework for Open Courseware
One on-going development within our HyperCourseware projects has been to map out
the courseware development terrain in a way which can draw attention to areas which all
courseware development projects have in common, i.e. to identify what are genuinely
generic problems associated with courseware management, courseware design, course-
ware development, and so on. The on-going development of HyperCourseware has also
been concerned with providing techniques and tools for addressing these generic issues.
The HyperCourseware framework strives to be totally flexible so that in principle any
approach to courseware development can be mapped onto the framework, somehow. As
a result of this work we now have:

• a conceptual framework for courseware and a vocabulary which can be used a
reference model, i.e. any courseware design can be compared with the reference model,
if only to verify that the design has, in some way, suitably addressed a known
collection of essential issues;

• demonstrator products which practically illustrate many courseware design issues;

• a collection of tools and templates which genuinely enable courseware developers to avoid
being distracted by the mundane reinvention of software-development wheels, and instead
to raise their sights to the genuinely difficult aims of good instructional design.

Current developments
Our HyperCourseware Management System is object-based. It has well-defined internal
protocols which allow us endlessly to evolve the tools and which allow end-users to evolve
courseware. Even so, it is fair to say that HyperCourseware is not yet a truly open system.
It currently provides an elegant way of linking diverse applications (as do a few other
systems such as Microcosm from Southampton University), but these approaches are still

27

Douglas SMter and Phil SMter Courseware exploitation

well short of true openness. Much of our current research effort is going towards sub-
stantially upgrading the HyperCourseware Reference Model so that it can seriously
contribute to a Framework for Open Courseware. In effect, we are now developing
distributed HyperCourseware.

The software-development world pursues goals like 'exceptional ease of use', 'application
integration', and 'evolutionary development'. These are all goals which the courseware
development world also needs to pursue. Some of the most dramatic gains in software
development are emerging from strategies which apply object-orientation techniques to
client/server systems. By adopting similar strategies for courseware development it should
be possible to establish a Framework for Open Courseware based on the idea of Co-
operative Courseware Objects.

Co-operative Courseware Objects are of course communicating objects which require
standard protocols. We believe that the internal protocols for our current Hyper-
Courseware system can form the basis for such protocols, hence we are currently engaged
in a redesign and redevelopment effort in order to demonstrate this.

We also believe that a Framework for Open Courseware is an eventual necessity for the
courseware development community. We are tentatively trying to explore what it might
look like.

References

Jacobs, G. (1993), 'Standards', ASSOCIATION FOR LEARNING TECHNOLOGY Journal, 1, 1, 2-3.

Laurillard, D. Swift, B. & Darby, J. (1993), 'Academics' use of courseware materials: a
survey', ASSOCIATION FOR LEARNING TECHNOLOGY Journal, 1, 1, 4-14.

Siviter, D. & Brown, K. (1992), 'HyperCourseware', Computers and Education, 18, 1-3,
January, 163-70.

28

