Assessment of Speech Intelligibility in Five South-Eastern Bantu Languages: Critical Considerations

Marlene Carno Jacobson, Ph.D (Witwatersrand)
Department of Speech Pathology and Audiology, University of the Witwatersrand, Johannesburg
Anthony Traill, Ph.D (Witwatersrand)
Department of Linguistics, University of the Witwatersrand, Johannesburg

ABSTRACT

This paper examines criteria underlying the development of tasks and materials for the measurement of speech intelligibility in five SouthEastern Bantu languages. The chief considerations include utterance length, word familiarity and structure, and phonetic balance. It is established that the foundation research necessary for devising materials in South-Eastern Bantu languages on the same basis as those of English, has not yet been conducted. Salient properties of the relevant African languages include multilingualism, dialectal variation, vocabulary differences between rural and urban speakers of the same language, borrowed words, the simple vowel systems, the fairly elaborate consonant systems, prosodic features, certail syllable structure characteristics, and noun morphology. A rationale for the use of two measures of intelligibility is presented, while the need to adapt many criteria characterising English materials is demonstrated.

OPSOMMING

Hierdie referaat ondersoek die kriteria wat onderliggend is aan die ontwikkeling van take en materiaal vir die meting van spraakverstaanbaarheid in vyf Suid-Oosterlike Bantoe tale. Die hoofoorwegings shitt lengte van uiting, woordbekendheid en -struktuur, en fonetiese balans in. Dit is bevestig dat die basiese navorsing wat benodig is vir die saamstel van materiaal in Suid-Oostelike Bantoe-tale nog nie op dieselfde basis as Engels gedoen is nie. Opvallende kenmerke van die relevante Afrika-tale is veeltaligheid, dialektiese variasies, verskille in woordeskat tussen landelike en stedelike gebruikers van dieselfde taal, leenwoorde, die eenvoudige vokaalsisteme, die betreklik uitgebreide konsonantsisteme. prosodiese kenmerke, sekere eienskappe van lettergreepstrukture, en naamwoordmorfologie. 'n Rasionaal vir die gebruik van twee verstaanbaarheidsmetings is aangebied en die noodsaak om kenmerkende kriteria vir Engelse materiaal aan te pas, word ook uitgewys.

The present paper explores the range of issues confronted on undertaking research which sought to measure the speech intelligibility levels of a series of surgically-treated oral cancer patients each of whom spoke one of five South-Eastern Bantu languages (viz. Jacobson, 1986). The problem was approached by critically "dissecting" the notion of intelligibility in an effort to extract salient properties and, thereafter, by extrapolating applicable criteria of intelligibility measures to the set of phonetico-linguistic conditions characterising these languages. As such, the major concerns underlying speech intelligibility in the present paper are two-fold. The reconciliation of these two aspects forms the rationale for the choice of designated measures of intelligibility, and is represented in the materials themselves.

Nine members of the South-Eastern Bantu family of African languages are recognised and have developed as educational media and literary languages in South Africa (South Africa, 1985):

1. Nguni languages: Zulu, Xhosa, Swazi, and Ndebele, among a total of twelve Nguni languages.
2. Sotho languages: Southern Sotho, Northern Sotho and Tswana, among a total of eleven Sotho languages.
3. Tsonga.
4. Venda.

The present paper happens to deal with the Nguni and Sotho groups of indigenous languages, each of which is sub-divided to form dialect clusters. It was coincidental that the languages spoken by the randomly selected subjects of the study reflect the five most frequently spoken Bantu languages in South Africa, namely, Zulu, Xhosa, Northern Sotho, Southern Sotho, and Tswana.

In view of the number of dialects, some of which are poorly known, certain dialects have been raised to standard forms by taking into account various factors, such as the prominence of a
leader, or tribe size (Ziervogel, Louw, Ferreira, Baumbach \& Lombard, 1967). A second major feature of this group of languages is the profound multilingual situation which characterises speakers of the Bantu languages of South Africa.

No materials appear to have been published previously in the relevant African languages for the specific purpose of measuring intelligibility. Speech discrimination word lists used in audiology (e.g. Baragwanath Hospital, 1977) and phonetic inventories (e.g. Hillbrow Hospital, 1981) did not meet those requirements deemed fundamental to the study concerned, namely, clear evidence of the formulation of a set of criteria for item selection, taking into account previous research on intelligibility.

Speech intelligibility is the property of speech communication involving meaning, and is the quality or state of being comprehended or understood. A signal is intelligible to a listener, and for a speech signal to have intelligibility, both a speaker and a listener must be involved (Lehiste \& Peterson, 1959). Hence, because both speech production and speech perception are involved, distinctly more complexity is implied than is suggested by the use of superficially related terminology, such as articulation, recognisability, identifiability, and discriminability, which do not necessarily pertain to speech communication, consider meaning, or take full account of the listener.

Numerous factors determine this "communicative effectiveness". In the main, these are the social context, message content, the stimulus signal and the medium used for signal transmission, the speaker and his speech mechanism, and the characteristics of the listener. Speech intelligibility is employed by numerous disciplines (e.g. speech pathology, audiology, and acoustical engineering), each of which places differential emphasis on these major elements of the communication process. In the research on which this paper is based, the emphasis was on speaker characteristics with an attempt being made to control all other parameters as closely as possible, so that non-speaker parameters could serve
largely as constants. Essentially, this paper seeks to determine optimal message content in order to measure intelligibility in a valid fashion.

The outstanding feature of speech intelligibility is its performance as an overall index of speech performance (e.g. Yorkston and Beukelman, 1981). As such, it supersedes several related criteria and models which capture a more limited scope. These include qualitative, perceptually-based tools used for differential diagnosis, (e.g. Darley, Aronson \& Brown, 1975), the evaluation of individual components of speech production, such as defective articulation (e.g. Prather, 1960), phonation, or resonance, and models which systematically evaluate the anatomical or physiological locus of disturbance along the vocal tract, such as the "point-place system" of Rosenbek and LaPointe (1978).

The inclusive nature of the concept of intelligibility is further exemplified by its pertinence to different speech-disordered groups (e.g. the cerebral palsied, alaryngeal speakers, cases of congenital orofacial malformations, among numerous others), despite the varying nature of the pathological elements of the speech production process. The concept of intelligibility is therefore sufficiently flexible to house a range of speech production variables, varying in combination and degree. It is thereby possible for each clinical population to bring to research its associated symptomatological milieu and still be investigated under the broad umbrella of intelligibility.

The potential information offered by intelligibility data is diverse, depending on both task selection and on the level of analysis undertaken: the more detailed the analysis, the richer and more versatile the applications of the data. In the literature, the analysis and presentation of intelligibility data assume a variety of forms:

1. Simple percentages of intelligibility reflecting the number of discrete units perceived correctly.
2. Analysis of perception-production confusions to form matrices (e.g. Nichols, 1976).
3. Analysis of the distance between produced and perceived phonemes (in words) in terms of distinctive features: manner, place or voicing differences.
4. Breakdown into analysis of vowel and consonant intelligibility, once the basic word intelligibility scores have been computed.
5. The determination of the patholect for a particular clinical population, or the pattern of phonemic confusions for a particular clinical group.
6. Combination of intelligibility measures with other measures such as speech rate, for example "Intelligible Words per Minute" (IWPM) and "Unintelligible Words per Minute" (UWPM) - Yorkston and Beukelman (1981).
7. Description of auditory or perceptual characteristics of the speech.
8. Development of a classification system for recognition of different groups demonstrating a particular speech disorder.
9. Development of an intelligibility measure which reflects severity of involvement such as Shriberg and Kwiatkowski's (1982) Percentage Consonants Correct (PCC), which is, however, defined as "a measure of articulatory proficiency".

Methods of assessment of surgically-treated oral cancer patients apparently sample the range of procedures generally employed in the examination of intelligibility in English-speaking pathological populations. The range of methods described in current and older research is extensive. However, whereas older research glosses informally through accounts of intelligibility, current research appears to aim at greater qualitative and quantitative specificity,
with certain intelligibility materials even being designed for particular clinical populations and the ranges of severity within them.

Standardised word lists frequently constitute the materials of speech intelligibility assessment, e.g. the CID W. 22 phonetically balanced (PB) word lists (Hirsh, Davis, Silverman, Reynolds, Eldert \& Benson, 1952), as employed in numerous studies (e.g. Skelly, 1973); the Consonant-Syllable Nucleus-Consonant words (Lehiste and Peterson, 1959), as selected and adapted by Tikofsky (1970), for example, for use with dysarthrics; the Fairbanks (1958) test of Phonemic Differentiation (a "Rhyme" Test), as used by Kipfmueller and Prins (1971), for example; the word lists of Black (1957), as used by Yorkston and Beukelman (1981), for example; and Moses' (1969) monosyllabic word lists (as cited by Nichols, 1976). Standardised sentence materials (e.g. the CID "Everyday Sentences") have also been utilised in examining the construct and criterion validity of various intelligibility procedures (Schiavetti, Metz and Sitler, 1981).

Finally, standardised phonetically balanced passages of reading, such as "My Grandfather", "The Rainbow Passage" and "Arthur the Rat", (Fairbanks, 1960), have been employed as elicitation material for intelligibility measurement (e.g. Platt, Andrews, Young and Neilson, 1978). However, the use of read material introduces a prerequisite of patient literacy, which was inappropriate in the research concerned. A further batch of materials includes those designed for specific clinical populations, such as the glossal and labial word lists for surgically-treated oral cancer patients (e.g. Skelly, 1973). In contrast, other research methods are individualistic from the viewpoint of the researcher, for example, the use of read sentences from early reading books in the case of deaf school-leavers (Kyle, Conrad, McKenzie, Morris \& Weiskrantz, 1978), picture description (Markides, 1978), and spontaneous speech samples (Weiss, 1978, cited by Schmidt, 1984). Under the latter circumstances, the properties of the spoken material are clearly far less stringently controlled.

As mentioned above, no similar spectrum of formalised materials exists in the languages under consideration. Nonetheless, within the above range, certain themes and issues pertaining to the choice and characteristics of materials recur with remarkable regularity, thereby illustrating the origins of useful criteria for devising appropriate intelligibility measures. These may be categorised in terms of three key components:
A. The composition of speech materials, which takes into account the message to be communicated, its length, complexity, and spontaneity.
B. The form of response required of the listener, in order that he may register his reaction to or understanding of the message, either by written or spoken means.
C. The choice of general procedural characteristics influencing the reliability and validity of the assessment, such as the manner in which stimuli are presented, and the selection of judges.

The first component, the composition of spoken materials, is the chief area of interest in the present paper. The second component extends beyond the focus selected for the present discussion. Only isolated aspects of the third component are relevant here: irrespective of the nature of the materials that are selected, or the manner in which the listener responds to the signal, the mass of methodological details pertaining to stimulus presentation and listener characteristics is largely independent of the language of the speaker and thus warrants routine consideration. Such factors

Furthermore, this review proceeds from overriding linguistic properties of the five languages, largely of a general, sociolinguistic nature - with implications at a semantic level, and progresses towards the enumeration of more specific, phonetic, phonological and morphological characteristics. All of these considerations affect the choice of individual word items.

2. WORD FAMILIARITY/FREQUENCY

A chief dimension along which word item selection for formal lists may be restricted, is that of vocabulary or work familiarity (e.g. CID W. 22 word lists). Schultz (1964) examines the criterion of high familiarity of CID W. 22 words, analysing the relationship between stimulus and response familiarity, and concludes that although the required educational level of the listener is lowered, certain unique patterns and problems arise (Schultz, 1964). Most researchers still agree, however, that the greater the frequency of the word, the more likely it is of being intelligible (e.g. Black 1952). This phenomenon has been explained in terms of "set" or "expectancy" (ibid. 1952).

In English, word familiarity is usually controlled by consulting Thorndike's list of word frequencies (1932, cited by Hirsh et al. 1952) or that of Thorndike and Lorge (1952, cited by Lehiste and Peterson, 1959).

In the African languages under consideration, only one study, of a most preliminary nature, has investigated word frequency per se (viz. Gowlett \& Rassmann, 1979), in one language. This study considers the 367 most common words in Southern Sotho, while Griesel (1979) lists common Zulu vocabulary items for instruction of learners of the language. Such research provides cursory guidelines regarding word frequency in African languages, and gives rough clues as to culturally relevant items in other Bantu languages. It appeared therefore that word familiarity was a significant consideration but its implementation would be constrained by the paucity of formal indices of word frequency. As such, this criterion would have to be borne in mind informally when formulating materials.

Several interrelated phenomena further complicate the application of the principle of word familiarity to South-Eastern Bantu languages, exerting their influences predominantly on the choice of vocabulary items appropriate for single-word intelligibility testing. These include the factors of multilingualism, vocabulary differences between urban and rural speakers of a language, mutual intelligibility in the face of dialectal variation, and the prevalence of borrowed words.

a. MULTILINGUALISM

A prime factor colouring the "purity" of the Bantu languages spoken by the subjects of the research under consideration, that of the judges, as well as native speakers who were consulted, is the phenomenon of multilingualism (e.g. Wilkes, 1978). This is a normal condition among black South Africans, particularly in the industrial cities and border areas, such as the Western Transkei, where Xhosa and Southern Sotho co-exist, and Eastern Transvaal, where Tsonga, Pedi and Zulu overlap (Lanham, 1978). In fact, in such multilingual communities, a "pure" Northern or Southern Sotho, Tswana, Zulu, or Xhosa speaker has long since disappeared, although a pure form of his language is still used in certain rural areas (Wilkes, 1978). Lanham (1978) cites the example that it is expected that an Nguni speaker will have a good control of a Sotho language if a substantial proportion of the immediate speech community speaks Sotho.

One subject of the research under discussion, a nursing sister, illustrates an apparently normal occurrence. She was raised and educated speaking Southern Sotho, and married a Swazi speaker. After undergoing her professional training in Zulu, she moved to Port Elizabeth for a year and had to learn to speak Xhosa. She currently lives in a Zulu-speaking community in an East Rand urban area, delivers lectures in Zulu, speaks English at home to her husband, converses with other Sotho speakers in Zulu, but feels that her Zulu may be marred by a trace of Sotho "intonation": She also feels that after twenty-five years of speaking Zulu predominantly, her Zulu is better than her Sotho. This history presents a difficult decision in terms of the choice of language for administration of intelligibility tests. Finally, the inherent subjectivity of autobiographical reporting must be considered.

Subjects also claimed that whilst living in their townships surrounding Johannesburg, they had found themselves combining snatches of several languages. This would appear directly attributable to the multilingual milieu in such areas. Hence, it seems that in addition to possession of a language medium for education or rearing, there is an urbanisation of original, "pure" forms and the development of "city dialects".

> The degree of this mixing, the levels on which it occurs, to what extent it takes place systematically and whether or not it differs from speaker to speaker and occasion to occasion, are but a few of the questions of which the answers can only be guessed at, for the simple reason that no researcher has as yet made any attempt to investigate these fields with their wealth of sociolinguistic phenomena (Wilkes, 1978: 110).

While on the one hand, there is the urban black demonstrating an extensive multilingual repertoire, there is on the other, the rural black with his associated vocabulary. In the study under consideration, the source of subjects covered both rural and urban areas, while judges were likely to be urbanised. As such, it was important to take both elements into account in compiling materials, by locating shared linguistic features and by avoiding both extremes as much as possible, so that all items were acceptable to both types of speakers.

b. DIALECTAL VARIATION

While all standards are to some extent idealisations, persistent difficulties arise in devising materials due to the prevalence of dialectal variation in the South-Eastern Bantu languages.

Although more than a dozen Bantu dialects have been investigated, many others have hardly been described. Far more than half of the dialects of which the Nguni and Sotho languages are composed, are as yet undescribed (Wilkes, 1978).

> To what extent these dialects are (still) characterised by deviant or distinctive systems, or have had to make way for other (more dominant) systems, will become clear only when a comprehensive survey of all the South African Bantu language dialects is carried out (Wilkes, 1978).

In the practice of compiling word lists, it was difficult at times to know whether the native speaker being consulted was in fact speaking an unstandardised dialect or not. Furthermore, native speakers frequently disagree on lexical issues, and therefore, without actually consulting a vast range of native speakers, which was beyond the scope of the study, the information provided to the researcher had to be treated cautiously.

c. BORROWED WORDS

A further factor contributing to the difficulty of item selection for
word lists is the influence of English and Afrikaans. In many dictionaries numerous entries representing such influences, are labelled "borrowed words". The large English-Afrikaans vocabulary of Sotho and the phonological principles by which loan words have been incorporated, have been described by Kunene (1963, cited by Lanham, 1978).

Van Wyk (1978) notes that English words were borrowed in the "educational, technical, commercial and industrial spheres", i.e. in those spheres where English is used extensively by blacks. Afrikaans loans on the other hand are drawn from practical spheres, such as clothing, farming, labour, household implements and foodstuffs. The ratio between English and Afrikaans loan words varies in the different languages, depending upon the proximity to either predominantly Afrikaans or English-speaking communities (Van Wyk, 1978).

In drawing up suitable lists of word items, the familiarity of borrowed words to the range of speakers of the relevant languages would be inestimable. Thus, unless these are extremely common, these should be omitted wherever possible in preference to more indigenous words. Conversely, in the urban areas speakers of non-standard varieties of the South-Eastern Bantu languages would find certain standard forms beyond even their passive lexical knowledge. It would therefore seem desirable to avoid selecting word items characterising either extreme, i.e. borrowed or esoteric indigenous words.

The methodological implications of the above factors for word familiarity complicate the task of devising single-word materials. considerably. Their recognition is nonetheless helpful in constraining the selection of word items along appropriate dimensions.

It is pertinent too to consider the control of word familiarity in direct relation to both listeners (judges) and speakers (subjects). For both groups it would be desirable that the language used for test administration is that spoken in the home during childhood, as well as that comprising the vernacular during schooling. Furthermore, in order to avoid the uncontrollable complications resulting from speaker unfamiliarity with word items, an auditory model for imitation should be provided by a proficient speaker of the language who is also familiar with the test materials,

The problematic influence of word familiarity, compounded by the fact that the subjects of the present research did not all speak the same language, could arguably be obviated through the use of a single, cross-linguistic task comprising nonsense words, additionally spanning a progression in phonetic complexity. Such a task would thereby tap phone recognisability, or, viewed differently, articulatory efficacy. However,
(i) such a task would be of limited clinical significance - the production of phonemic distinctions is of greater interest than the capacity for articulatory agility - which is linguistically meaningless;
(ii) it is most probably that only through production of linguistically meaningful units (i.e. words) that it can be established whether target phonemes are recognisable, in spite of phonetic distortion or allophonic variation;
(iii) linguistic variety within the subject sample was not sufficiently problematic that articulatory capabilities of subjects and inferences regarding articulatory functioning would be irretrievable.

3. WORD LENGTH

Single-word intelligibility materials in English have mostly com-
prised monosyllables, as is evident from the original PB-50's (Egan, 1948), CID W. 22 PB word lists (Hirsh et al. 1952) and the Fairbanks Rhyme Test (Fairbanks, 1958). This is perhaps due to the well-documented finding that the greater the number of syllables contained in an English word the more intelligible the word is likely to be (e.g. Black, 1952).

In the relevant African languages, monosyllables are comparatively infrequent. Therefore extracting the criterion of fewest possible syllables per word is perhaps inappropriate, as the effects of multisyllabic words on intelligibility may not be the same as in English. In the Nguni and Sotho languages, the criterion of monosyllabicity is virtually impossible to conform to as trisyllables and bisyllables, respectively, comprise the canonical forms of lexical items, while monosyllables are comparatively infrequent (Cole, 1955). (The canonical forms of lexical entries for Nguni verbs are frequently bisyllabic when constituting singular imperatives, but these items contain some undesirable redundancy, as is discussed later). Monosyllables are therefore insufficiently representative of the relevant languages to constitute an admissible criterion for the word structure of single-word intelligibility materials. Nonetheless, the reasoning behind the use of monosyllabic English words perhaps implies that words should have as few syllables as possible.

In the absence of verb prefixal and suffixal formatives, verb stems in the Nguni and Sotho languages are very commonly bisyllabic (CVCV shape). In the Nguni languages, this bisyllabic word structure represents the singular imperative form and some pronouns. In the Sotho languages, nouns also have a CVCV structure, whereas Nguni nouns mostly have a VCVCV structure due to the noun class prefix always beginning with a vowel. There are very few productive noun suffixes in the South-Eastern Bantu languages.

The Bantu languages are also syllabic tone languages (i.e. each syllable in a word has its particular tone value). The pattern of the syllable is mostly open, taking a CV form (consonant/consonant combination + vowel), but sometimes there is a no word-initial consonant (e.g. "a-ba-ntu": people - Zulu). In the Sotho languages it is not uncommoni to have a CVC syllable shape, where the final consonant is the syllabic nasal, /o/ . The fact that the final consonant always has the same identity, is possibly a source of phonemic redundancy.

Taking into account the present considerations regarding word structure, it is apparent that Xhosa and Zulu vocabulary items of VCVCV form comprise nouns, while in the Sotho languages, the CVCV form demonstrates grammatical variety, including nouns, verbs and pronouns. From a grammatical point of view therefore the nature of bisyllabic Nguni words is more restricted than that of Sotho, and the exclusive selection of singular verb imperatives would add considerable redundancy to the stimuli in terms of both tonal cues and the identity of the final vowel, which would always be $/ \mathrm{a} /$. However, the difference is not seen as significant because the phonological properties of the different word classes are homogeneous in major aspects, and are therefore of no specific interest.

The presence of syllabic liquids and nasals in the Sotho languages (e.g. $/ \mathrm{r} /$ and $/ \mathrm{m} /$) results in several words of a CV structure, which are bisyllabic, and words of a CVCV structure, which are trisyllabic (e.g. "rre" : father, "mmini" : dancer - Tswana). In
view of the fact that such syllable structures are characteristic these two forms would have to be included in the respective Sotho word lists.

4. PHONETIC BALANCE

The principle of phonetic balance, which probably embodies the most stringent form of the notion of "phonetic composition representative of the language" (Egan, 1948), dictates that the relative frequencies of occurrence of component speech sounds in a language, that is, their distribution in normal speech, should be reflected in any word list. In English PB materials, the phonetic composition (balancing) is based on Dewey's frequency count of English sounds in a sample of 100000 words (Dewey, 1923, cited by Egan, 1948).

Tobias (1964) states that phonetic balance is not a meaningful criterion for construction of word lists. He offers the rationale that Dewey's phonetic analysis of the relative frequency of English speech sounds was almost completely of written material. Tobias also observed "startling differences" in phonetic structure between any one PB list and any other. He states that although Egan's original PB-50 lists are not well-balanced phonetically, they are diagnostically superior to the CID W. 22 lists in which the balance is far better. He concludes that since discriminationtesting based upon the PB-50 lists is useful, phonetic balance could not be playing much of a role. Nonetheless, the suggestion to consider the frequency of particular phonemes when devising materials, is pertinent.

No indices of phoneme frequency are known to exist in the relevant African languages. It would seem desirable nonetheless to represent all the phonemes in each language in order to access the manner in which these were articulated by subjects and perceived by judges. An arbitrary decision would be necessary regarding the number of times each phoneme should appear in the relevant word list.

Table 1: Consonant and vowel phonemes of five South-Eastern Bantu languages (*) combined with certain phonetic variants due to constitution of a cluster or nasal compound (C) or dialect (D). Abbreviations: Z. - Zulu; X. - Xhosa; N.S. - Northern Sotho; S.S. - Southern Sotho; T. -Tswana.
Z. X. N.S. S.S. T. 1.

1. GLLABIALS

㐰/	- ejective stop
/ph	- asplrated stop
\% 1	- murmured stop
/b/	- voiced etop
$1 \mathrm{~B} /$	- implosive gitop
/m/	- nacal
fmin	- murmured nasal
1/1	- glide
101	- voicelesa fricative
$18 /$	- volced fricative

3.	RLVBOLARS			,	.	*
	/t'/ - ejective stop	*	.	.	.	
	$1 \mathrm{th} /{ }^{\text {- aspirated atop }}$	-	-	-	-	
	d9/ - murnured atop	-	-			
	/a/ - voiced stop	c	c	-	-	
	10/ - voiceleas fricative	-	-	-	-	-
	/z/ - voiced fricative	*	-			
	/4/ - lateral fricstive	-	-	-	*	
	/b/ - voiced lateral	-	-			
	/n/ - nasal	-	-	-	-	-
	/ns/ - murnured nasal		*			
	/r/ - trill			-	-	-
	/1/ - lateral 11quid	-	-	,	-	-
	/ti/ - ejective lateral stop	c	c	-	-	*
	/tin/ - aspirated lateral stop			-	-	-
	/dy - voiced lateral affricate	c	c			
	/te'/ - ejective affricate	-	-	-	-	-
	/ts ${ }^{\text {n }}$ / - aspirated affricate		-	*	-	-
4.	Labio-alveolars					
	/9s/ - fricative			-		
	/Ds'/ - ejective affricate			-		
	/pah/ - aspirated "double"			*		
5.	alveopalatals					
	/f/ - voiceless fricative	-	*	-	-	-
	13/ - volced fricative			-		
	$1 \mathrm{n} /{ }^{\text {l }}$ - nasal	-	-	-	-	-
	/ph/ - murmured nasal		-			
	/5/ - ${ }^{11 \mathrm{dde}}$	-	-	-	-	-
	/tfy - aepirated affricate		-	-		-
	t $\mathrm{S}^{\prime} /$ - ejective affricate	-	-	-	-	-
	/dy - murnured affricate	.	-			-
	/dy - wolced affricate	-	c			*
6.	Palatal.S					
	/c' / - ejective atop		*			
	$/ c^{\text {h/ }}$ - - aspirated stop		-			
	\{nc') - voiceleas ator		c			
	/f/ - murmured atop		.			
	[n f] - voiced atop		c			
7.	Labiopalatals					
	/ff/ - fricative			D	*	D
	/ $\phi /$ / - volceless fricative			-		
	/B3/ - voiced fricative			-		
	/pI'/ - ejective "double"			-	-	0
	/p \int h/ - aspirated "double"			.	-	0
	/b3/ - aspirated "double"				-	0
${ }^{\text {g. }}$	VELARS					
	/k'/ - ejective stop	*	-	*	-	-
	$/ \mathrm{k}^{\mathrm{n}} / \mathrm{m}^{\text {- aspirated stop }}$.	-	-	.	-
	/x/ - voiceless fricative	D	-	0		*
	(i) - voiced fricative		-	-		
	M 7 - nasal	oc	-	-	-	-
	/kx'/ - ejective affricate	D	-		-	
	/kxh/ - aspirated affricate			-		
	/kt $/$ / - ejective 1ateral	-				
	/8/ - murnured atop	*	-			
	[g] - volced atop	c	c			
9.	$\underline{\text { clottais }}$					
	h/ - voiceless fricative	-	-			-
	/h/ -volced fricative	-		-	-	

		2.	X.	N.S.	s.s.	T.
10.	CLITKS					
	/// - voiceless dental	*	-			
	$/ /^{\text {h/ }}$ - aspirated dental	-	-			
	/n// - nemalised dental	-	*			
	//g/ - delayed voice dental	*	-			
	/n/g/ - fully voiced dental	-	-			
	/nk// - preceding naaal+voiceless	c	*			
	/!/ - voiceless alveopalatal	-	*		-	
	/ h / l - espirated alveopolatal	-	-		*	
	/ni/ - nasalined alveopalatal	-	*		-	
	/!g/ - delayed voice alveopalatal	*	-			
	万! g/ - fully voiced alveopalatal	-	*			
	fok!/ - preceding nesal+voiceless	c	-			
	//// - voiceleas lateral	*	-			
	///'y - aspirated lateral	*	-			
	///8/ - delayed voice lateral	-	-			
	/n/// - nasalised lateral	-	-			
	$1 \mathrm{~s} / / \mathrm{g} /$ - fully voiced lateral	*	-			
	/nk///- preceding nasal woicelese	c	-			
11.	vowels					
	la/	-	*	-	*	-
	e/	-	*	*	*	-
	lel			-	*	-
	/i/	*	-	-	-	-
	b/	*	-	-	-	-
	101			-	-	-
	/u/	-	-	-	-	*

Table l contains the phonemic inventories of Zulu, Xhosa, Northern Sotho, Southern Sotho and Tswana, based on the works of Brown (1971), Cole (1955), Doke (1931), Doke and Mofokeng (1957), Jordan (1966), Khumalo (1981), Mabille and Dieterlen (1961), Ziervogel et al. (1967), Ziervogel, Louw and Taljaard (1981), and Ziervogel and Mokgokong (1975). These inventories are presented in order to identify the phonemic constituents of the South-Eastern Bantu languages and to informally observe differences from English. To capture subtle phonetic differences between ostensibly similar articulations belonging to different languages (e.g. /b/in Zulu as compared to the Sotho languages), finer phonetic specifications are incorporated within the phonemic description (viz. /b/versus /b/: murmured versus voiced $/ \mathrm{b} /$).
The purpose of depicting certain phonetic variants, comprising members of consonant clusters or nasal compounds; is that clusters are particularly complex and therefore most taxing phonetically - quite conceivably affecting intelligibility. For this reason they would add an additional dimension of complexity to intelligibility word lists. In Table 1 elements of clusters or nasal compounds are marked with a "C".
Dialectal variants are incorporated in Table 1 too, primarily to mark alternative correct productions which could be misconstrued as errors, and for the sake of completeness. These are marked with a " D ". In conducting a single-word intelligibility task, dialectal variation would need to be taken into account and should not incur penalty. For example, in Northern Sotho, the labio-alveolar fricative, $/ \Phi /$, may also be produced as $/ 40 /$, or $/ \mathrm{h}$, or /f/)Ziervogel et al. 1967).
Certain segments appear only within ideophones in the canonical forms cited above. An ideophone is an onomatopoeic word form with its own morphology, phonology and prosodic rúles (Kunene, 1978). In view of these properties, the controversial definition of ideophones (Wilkes, 1978), and their frequent appearance within a particular grammatical structure, such as "ho re . .." (Southern Sotho), from which it may be indivisible, it would seem unwise to consider ideophones as word items. This view would hold irrespective of whether an ideophone contained a required phoneme.

Where test materials comprise connected speech, rating scales are commonly used to capture gradations of speech intelligibility. These clearly demand a different type of subjectivity to that of the procedures described previously, in that they rely on appraisals rather than the listener's actual comprehension of speech. However, the appropriateness of different rating scales deserves judicious consideration to ensure the selection of valid indices of speech intelligibility (cf. Schiavetti, Metz \& Sitler, 1981).

Many of the issues concerning response formats are examined by Yorkston and Beukelman (1978). These researchers conclude that it may be beneficial to take advantage of the task hierarchy that apparently exists among quantification procedures, instead of relying on a single measurement technique to quantify speech across the entire performance range. However, this suggestion would appear more suited to clinical practice than research, as in the case of the latter, a standard methodology is necessarily implemented.

THE NATURE OF REDUNDANCY

The foregoing discussion reveals various factors which could increase the redundancy of the speech signal during intelligibility testing. These include the offer of options in identifying stimulus words, the use of linguistic context, the exclusive selection of singular verb imperatives, and an increase in the number of syllables per stimulus word (certainly for English). However, redundancy in a word intelligibility task is an undesirable feature in that it meddles with the attempt to measure "absolute" intelligibility. Meyerson, Johnson and Weitzman (1980) comment on the contribution of redundancy to the intelligibility glossectomees, reporting a 50 per cent discrepancy in intelligibility scores based on single words versus connected speech.

In the present South-Eastern Bantu languages, there is likely to be some degree of redundancy in single words existing independently of that contained in connected speech, largely due to the multisyllabic, tonal nature of words in these languages. As such redundancy is potentially introduced at the word level in the form of semantic and grammatical tonal cues. These properties, in conjunction with fairly consistent syllable shapes and sequences, conceivably provide supplementary cues to single-word intelligibility stimuli.

On a morphological level, furthermore, many single words in the Bantu languages are polymorphic, with all prefixes and some suffixes showing grammatical tone. In this regard, it is noteworthy that in Zulu, for example, noun prefixes are composed of only three vowels and seven consonants (Westphal, 1973). This limited range could possibly aid the listener's decision when the noun stem is doubtful. On the other hand, noun stems are so varied that it is uncertain whether the class prefix effectively contributes any redundancy to the speech signal, in spite of its tonal characteristics and phonetic composition. It would seem, nonetheless, that if grammatical tone does add redundancy to work items, this would operate in the case of nouns predominantly.

In attempting to eliminate all the above-mentioned potential sources of redundancy in a word intelligibility task, the syllable composition of the words would probably need to be restricted to being as short but as representative as possible, the noun class prefix would have to be limited to only one syllable, and the use of options in the response format would be rejected.

CONCLUSION

A detailed account has been presented of paramount considerations in resolving the issue of task and material selection
for the measurement of intelligibility in five South-Eastern Bantu languages. The final outcome of the effort to attain maximally valid measures was therefore arrived at under the following restrictive circumstances:

1. the absence of a Dewey-type index of relative phoneme frequency;
2. the absence of a Thorndike-Lorge-type index of word frequency for languages other than Southern Sotho;
3. the absence of standardised passages of reading;
4. the paucity of intelligibility materials for English-speaking glossectomees to act as guidelines for the development of materials in African languages.

The decision was made to couple two complementary tasks: a single-word task, which may be viewed as a "molecular-intensive" or detailed analytical measure, while rating of a spontaneous speech task comprises a "molar-extensive" or global measure (Hollenbeck, 1978), and maybe regarded as a "molar taxonomy", as it combines a "a number of features, actions, directions, and objects of behaviour" (Sackett, 1978: 25). This decision was determined by three factors which receive elaboration below: the specific research objectives, the emergency of two distinctive genres of intelligibility measures, and the limitations of any single measure of intelligibility in isolation.

Firstly, in considering the purpose of the research, there was dual interest in "how well speech was understood", which indexes overall speech effectiveness, as well as in specific error patterns. It seems logical that there be an underlying commonality to both processes and one would predict that the number of errors relates closely to the understandability of contextual speech. However, two discrete tasks were deemed necessary: it could not be assumed that the percentage word intelligibility based on unstandardised materials would accurately parallel the level of spontaneous speech intelligibility; neither could it be assumed that a word list, assembled on the basis of strict criteria such as phoneme position and syllable structure, would reflect the properties of everyday speech and vocabulary. The use of spontaneous speech samples was therefore important for the criterion validation of an unstandardised work intelligibility task.

Hence, a word intelligibility task incorporating the phoneticophonological properties of the relevant language was desirable in that

1. phonemes could be included in a controlled and structured manner;
2. the lack of context normally provided by syntax would allow evaluation of each phoneme in a minimally redundant form;
3. a numerically specific index of the percentage of intelligible words could be computed;
4. words are the work-horse of intelligibility materials in English, and serve as highly accessible units of speech for a researcher who is not a fluent speaker of a foreign language.
Similarly, a spontaneous speech task was desirable in that
5. ratings of performance on such a task could tackle the construct of speech intelligibility directly as everyday connected speech would be typified, providing a reasonable approximation of the normal communication process;
6. the task promotes the linguistic style and vocabulary of the subject and thereby captures a congruent communicative whole. Isolated words, in contrast, are in danger of falling peripheral to either the judge's or the subject's vocabulary, despite careful item selection.

The particular method whereby spontaneous speech samples may be evaluated, constitutes a separate methodological decision which lies outside the scope of the present paper.

The lists of single words in Zulu, Xhosa, Northern Sotho, Southern Sotho and Tswana, appear in Appendixes 1-5. As far as possible, these were formulated and items selected according to the following criteria:

1. Vocabulary items should be familiar to both rural and urban speakers of the relevant language.
2. The word structure should be highly representative of the particular language in question. A scan of common vocabulary items in Nguni and Sotho languages, combined with the notion of shortest word having least redundancy, suggested that it was most appropriate to include bisyllables in the Sotho languages where the simplest uninflected nouns and verbs have a CVCV (nasal) structure, and trisyllables in the Nguni languages where nouns of a VCVCV structure predominate because of the pre-prefix. Although CVCV verb imperatives are readily available in the Nguni languages, the final V is always $/ a /$ which acts to increase the redundancy of stimuli in that the final vowel is always given.
3. All consonant phonemes in each language should be included twice in the list, once as the first consonant in a word and secondly, in an intervocalic position.
4. Within the scope of these criteria, the number of items presented to the judges was restricted to as few as possible by eliminating the least satisfactory items. This represented an attempt to increase both reliability and validity. The least satisfactory items in the research were those of doubtful conversational familiarity. It was hoped that the remaining items would constitute sufficiently long tests and that these would be more reliable, comprehensive and valid than lists that would have been any shorter.
5. Rigorous balancing of vowel phonemes was not undertaken due to the stringency of primary requirements already mentioned. An attempt was made, however, to keep the frequency of different vowel phonemes equivalent within each word list.

Secondly, the above exposition of intelligibility and related issues reveals two distinguishable categories of assessment methods: the first category, comprising formalised procedures, displays a certain stringency of both item selection (the maximal units of which are sentences), and procedural design (which facilitates quantification and error analysis). However, English procedures of this nature are at times of questionable validity, in terms of the definition of intelligibility provided earlier in this paper, as these could be more accurately regarded as exercises in stimulus discriminability. In the case of South-Eastern Bantu languages, materials of this nature could be formulated through the informal application of principles such as word familiarity, word length, and phonetic balance.

In contrast, less formalised procedures, in that either the material or the assessment procedure itself is irregular, perhaps represent more valid appraisals of intelligibility. These procedures generally have, as a minimal unit, the sentence, and usually consist of either read or spoken samples of connected speech. Hence, these demonstrate high face validity in representing overall speech behaviour, which is of prime interest. However, in this instance, the validity of the listener's task or tool of judgment may be questionable in relation to the construct of speech intelligibility.

These observations suggest that both formal and less formal procedures have merits and demerits, and probably represent complementary entities, which are most effective in unison.

Thirdly, as demonstrated by English materials, although the above range of intelligibility measures and procedures is vast, in most cases, only a portion of overall speech performance is
captured by a single measure，which furthermore，cannot be employed to describe performance across the entire severity range：as all measures have both a ceiling and a floor effect，these are sensitive to performance changes in only a limited range．

These limitations underscore the strength of any single measure of intelligibility in research which is combined with at least one other intelligibility task，or the event of intelligibility comprising only one measure within a battery of measures of speech production， where such a battery also incorporates acoustic，articulatory，and physiological studies．Additional measures then serve as concurrent validation procedures．

If＂the observer＇s perception and subsequent judgment represents the final validity for the identification and measurement of disordered speech＂（Young and Downs，1968：6），the present paper comprises a preliminary step in the direction of reflecting this criterion，that is，intelligibility，among speakers of South－ Eastern Bantu languages．

ACKNOWLEDGEMENTS

The Human Sciences Research Council，Pretoria，and the Senior Bursary Fund，University of the Witwatersrand，Johannesburg， are gratefully acknowledged for their generous financial support of the doctoral research on which this paper is based．

ORTHOCRAPAY	PHONEMIC TRANSCRIPTION	GLOSS
innlanzi	／intt andzi／	－fish
igazi	／igaz1／	－blood
ixhegu		－old man
iqanda	／itanda／	－an egs
umeqo	／ume tor	－a jump
iz1nyo	／izimor	－tootn
insimu	／ints＇imu／	－field
ughotro		－snrivelled thing：homelees person
ufudu	fufugu／	－tortoiac
iviki	／ivik i／	－weck
iphepha	／ip $\mathrm{p}^{\text {b }} \mathrm{p}^{\text {ha／}}$／	－paper
iconsi	／i／msts＇is	－drop of hiquid
unpompi	／ump＇omp ${ }^{\text {a／}}$	－a tap
igeja	／ig＇dia／	－a plough
izinvu	／izi dou／	－shcep
umgamo	fun！g． $\mathrm{m}_{\text {m }} /$	－barrel；drum：＂round peraon＂
imbuzi	／imburi／	－goat
iwashi	／ivaji／	－a watch
indiebe	／indgr．br／	－ear
idrelo	／ibuls	－pasture
induku	／induk＇u／	－a stick
umshado	／um $\operatorname{sag}, \underline{ }$	－a wedding
inantsh1	／inants＇i／	－naartjic fruit
11 anga	／ilana／	－sun；day
inzule	／n ndzule／	－type of indigenous cou
i jaha	／idzana／	－strapping fellow
amakha	famak ${ }^{\text {a／}}$／	－perfume，scent
ingial	／inisi／	－lazy peroon
is iklabhu	／sisike＇atu／	－sheep
$i_{\text {greeke }}$	／i／atk＇r／	－courtyard
ingaondo	／in！grasa	－mind；brain
иха⿱亠䒑䶹	10／／amu／	－Leguan
$i_{\text {grathu }}$	／i／／gathu／	－stride（ n ）
ingxangxa	／in／／gas／／ga／	－a green－striped fros
${ }^{\text {igxolo }}$	／i／／g． $\mathrm{l}^{1 / 2} /$	－bark of tree
icici	／i／i／i／	－earring
ipapa	／ip $\mathrm{p}^{\text {ap }} \mathrm{a} / \mathrm{d}$	－porridge

ORTHCGRAPHY	PHOREMIC TRASSCAIPTION	closs
inzala	／indzala／	－progeny；intercst（on capital）
indlovu	／inḍ̣ıvu／	－elephant
indyebo	／infees／	－treasure；plenty
ityhefu	／ic＇i．fut	－poison（ n ）
intyelo	finc＇r1s／	－information
intlahla	／inti ${ }^{\text {a }}$／a／	－shiny，glossy appearance
ibhokwe	／ib．jkw＇f．／	－goat
iraru	／ixafu／	－tax，hut－tax，poll tax
igronya	fi，noal	－sack－cloth，coarse cloth；sack
$1 \mathrm{krel} \mathrm{e}^{\text {e }}$	／1kx＇ciel	－stabbing assegai，sword，slckie
ihashe	／thaje／	－horse，mount；abcess
imvubu	／1mdeubua／	－hippopotamus
indoda	／ind $\mathrm{Sa}^{\text {a／}}$	－man，husband
intaimi	／nnts＇imi／	－arable field，garden
imfene	／impr＇eref	－baboon
amanz ${ }^{\text {a }}$	／amandzi／	－vater
ikhaya	$/ \mathrm{ikna}_{j} \mathrm{a} /$	－home，residence，dwelling，domicile
ityiphu	／10＇iphu／	－domestic fowl
isidu	／isigo／	－meal，reast
ikratshi	／ikx＇at丁＇i／	－arrogance
itherga	fithana／	－pumpkin：thigh；outpasture；outfarar． outkraal
ubisi	／ubisi／	－（sweet）milk

ORTHOCRAPHY	phonbwic transcription	closs	orthogatery	$\begin{gathered} \text { PHOMBMIC } \\ \text { TRANSCRIPTION } \end{gathered}$	GLoss
icic1	/1/1/1/	- gomething circular: earring:	noka	/nok'a/	- river
		small group	kgogo	/kx'orof	chicken
ixesha	/i//E!a/	- time, period; wateh, clock	topa	tt'ops/	- pick up
ucango	fufana/	- door (not a doorway); cell in a	toro	/tars/	- drcam: prickly pear
		honeyc.anb	${ }^{\text {bjala }}$	/P3a2a/	- plant; beer
		- conversstion	botse	/bots 'e/	- beautiful
incoko	/in/ak's/	- old man	ngaka	/ Dak'a/	doc
ixhego			mong	/mant	- mater, omer; one, other (add.)
igaira	/i!gixa/	- doctor, medicine-man, witch-doctor	nyale	/rola/	- to marry, give doury
ingxova	/in/gowa/	- bag, pouch, sack, pocket			
unfundi	/umpr'undi/	- pupil, scholar, reader, disciple,	taea	ft, ea/	- take, receive, get hold, take on; marry
		student	hlogo	/tors/	- head
izonka	/1209k'a/	- Loaves of bread	trava	/t1 ${ }^{\text {ala/ }}$	- nunger
iphepha	$/ \mathrm{ip}^{\text {hcp }} \mathrm{p}^{\text {a/ }}$	- paper; page	khuta	$/ k^{\text {nut }}$ 'a/	- nide
ulu	fuluva)	- feeling, senaation: vieu, opinion;	phiri	$/ p^{\mathrm{h}_{\text {iri }} /}$	- nyena, wolf
		impression	motho	/mothof	- person
${ }_{1}$ ngcambu	147/gambu/	- root	pShaptha	fp ${ }^{\text {hap }} \mathrm{l}^{\text {ha/ }}$	- applaud, clap
ompo	/imp'omı'د	- pump	tönipi	/tJipi/	- iron; bell
1 qhosha	/ithoja/	- button, buckle; coin; seashel1	thaba	/t1 ${ }^{\text {haba/ }}$	- slaughter, to stab a person
ubhaqo	/ubalas	- diacovery	psinya	/ps ina/	- defaecate!
ibuzi	/18uzi/	- rat	holle	/hole/	- to cry
fcebe	/1/EEa/	- councilior; splinter	dinku	/didk'u/	- sheep
ijokue	/143ak'm/	- jar	ngrana	/ขwana/	- child
uscedo	fu/gad ${ }^{\text {/ }}$	at	motse	/mots'e/	- village, town
unuyo	/uva J/	- joy, gladnesa, rejoicing	ппоs̆1	/hoji/	- alone
ivatahi	/ivat [']/	- watch, clock	tähuene	/ts'vene/	- baboon
inlobo	+3Ba/	nner	mmele	/there/	- body
itthrntehi	/its'int/'i/	- change (n)	mpa	/mp'a/	- stomach; skipping rope; sky between
utolo	/ut'sip'	srow			two clouds
ana	/idama/	- dem, regervoir	sego	/sera/	- calabash
inyosi	/inusi/	- bee	kori	/k'ori/	- coffee
isingel	/isijogi/	- mane	nwile	muile/	- has passed avay: dead
ushenxo	/ufen/\%/	- Leevay	fasc	/fase/	- under, below, down
udiadia	/u̧aga/	- granary	gohle	/rote/	- everywhere
ingwial	/10wili/	- a gulp, swallow	legong	/leroht	- wood, timber
igetya	/igac'e/	- clause : branch	Tahwane	/ts ${ }_{\text {buare/ }}$	- Pretorim
unhambi	/umfambi/	traveller	leho	hefo/	- spone. ladle
1 qands	/3!anda/	- egg : large bead	suirí	/45iri/	- 1emon
chibi	/is $/^{h_{1} \mathrm{f}_{\text {i }} /}$	- pool, pond, lake	masvi	/masai/	- milk
1gxalaba	/i//galata/	- shoulder, shoulder-blade	pholo	1pholol	- ox
Inxele	/in//E18/	- left hand; left-handed person	ngwaga	1 mapa/	- year
umnquaz1	/unn!vazi/	- cap, hat	robja	/rop3a/	- break, break off (paaiive of "roba")
inguanqua	/n! ${ }^{\text {anta/ }}$	step	monna	/mona/	-ma
icange	/i/a $\mathrm{l}_{\text {gi/ }}$	- plece of corrugated iron; metal	haka	freka/	- to hook on
		sheet	Jase	/azaea/	- overcoat
inkeazo	/1nk/azy	- memorandum; explanation	pats 1	pat['1/	- cost
uncipho	/un/iphy	- decline, decrease	vetsve	/vet ['ve/	- fall toward: to fall in cequsative
Inkrwaleko	/ink//walck's/	- minery			of "wela")
umgrautho	/umaluas/	- san	kgomo	/kx ${ }^{\text {'mmo/ }}$	- heard of cattle
1 ngquabo	/intigumba/	- anger	119		- cry: mourn; ring: strike (a bell).
1 nj in 1	/indjini/	- engine			play a nusical instrumant; bellow;
$1 \mathrm{jaH1}$	/idzady ${ }^{\text {/ }}$	- Judge			yelp; mew; whistle
urge in 1	/un/gini/	- one vho keeps	pahatle	/pJ 'at l ${ }^{\text {a/ }}$	- to break (1nto precea); break in (to
ungods	/ungrsi ${ }^{\text {/ }}$	- deep excavation, mine; a hole			Durgle); smash
${ }^{\text {ingozi }}$	/ipgrzi/	- danger; misfortune, accident, injury	nny ane	trane	- small, little, miniature
inkqu	/19pklu/	- reality	mpheng	friphent	- a handle
unogho	funci ${ }^{\text {ba/ }}$	- clothes-peg	gomine	/xome/	- and; furthermore
iaixa	/isi//a/	- bunch; handful (or grasa, corn	thuny	/tura/	- cauae duat; blossom; aché: explode
		flowers)	kus	/kua/	-- over there
ungrebi	/umbuebi/	- those who judge	sebopss	/gebop ['a/	- creature
			nne	/me/	- my / our mother
APPENIX 3 : HORTHERN SOTHO WORU LIS			mas	/na/	-1, me
taebe	/ts' ebe/	- car	ngwe	five	- another
pudi	/p'udi/	- roat	2efăega	nerjera/	- fascea of disrrhoes; a coward
a130	/di $30 /$	food	1pôhıns	/ip ${ }^{\text {hina/ }}$	- enjoy, be happy

I he South African Journal of Communication Disorders, Vol. 33, 1986

ORTHOGRAPBY	PHONEMIC transchiption	Gloss	Onthograph	$\begin{aligned} & \text { PHONBMIC } \\ & \text { TRANSCRIPTION } \end{aligned}$	closs
	$\frac{\text { /mokx'va/ }}{}$	- marner, cuntor, habit	nku	19k'u/	- sheep
nokgva	/dimp ['a/	- dogs	kgafa	/kx'afa/	tax, hut-tax-duties
diapha	-		ппа	'na/	- I, myself; to be; continually
APPESM1X 4	IERAN SOTHO WORD LIS			,	
ORTHOGRMPHY	PYOKEXIIC	GLoss	mne	/me/	- mother of; and, alma, indeed
	tensichiption		tehwara	/ts'vara/	to seize, to get hold of, to captur
pitsa	/pita'a/	- pot, veasel	kgomo	/kx'omo/	- a herd of cattle
buks	/buk'a/	- book	yaka	/ak'a/	- it oeemed that
hipa	$\mathrm{t}^{\mathrm{n}_{1 \mathrm{p}} \mathrm{m}_{\mathrm{a}} /}$	- knife	repho	$/ \mathrm{rep} \mathrm{p}^{\text {ha/ }}$	- to become loose, old
nana	fnera,	- meat			
leino	/leina/	- tooth	APPENDIX 5 : TSMANA YORD LIST		
kolot	/k'olor/	- vagon, cer			
	at'ar		mantave	/menta've/	
kgauta	7kx sut a/		mollo		- fire
nempe	/henp e/	- anirt	kgopa	/kx'op'as	- anall; to trip up, stumble, offend, vex, displease
qeto	/ct'ol	- the end, conclusion; decision			
tahela	/tatela/	- to crase (a road); to cut meat; to live; to pour		/t1'sse/	- dom
			tlase	/P'odi/	-s goat
ntsha	$\text { Int } \int \text { 'a/ }$	- to take out, to eend, to eontribute	taie	fta'	- locust
n ntja		- dag; despised peraon; dysentry of children; very heavy atone		堲	- arden
			tahimo	/ts' $\mathrm{imo}^{\text {/ }}$	- a garden
p.jhatı	/p $\mathrm{Shatr}^{\text {a/a/ }}$		thuto	/thut'os	- lesson, education
		- to spesk much, to tell; to break into pieces	ruri		- true
nnete	'net' $\mathrm{E} /$	- truth	koko	/k'ok'o/ /moaxif	- grandmother
	/muna		mos		
mmoho				Ioak'a/	- a doctor
leqhua	va/	-	ngake	/rala/	- to marta
kgaba	/kx'aba/	- to be beautiful; to dress vell: a spoan; to have a nice action	nyals	'ruele)	- hae morn
phiri	$/ p^{\text {firij }}$ /	- hyena	jala	/dzela/ /ta"upa/	- plant;
mathe ngwana	/mat ${ }^{\text {e/ }}$	- saliva - child, infent: tooth of absy charm ued for frightening birde away	1vana	/1vana/	- fight, quarrel, strive with each other
	/Txana/				
	/di3or		tahueu	$/ t^{\text {a }} \times \mathrm{mu} /$	- virite
dijo		- food; crops	tahuara	tos ${ }^{\text {bxara/ }}$	- hold
sheshe	/ Jejef				
	/duti 's/	- violence; type of tree	gagve	/gagre/	- nis, her
$\begin{aligned} & \text { dut1a } \\ & \text { dima } \end{aligned}$		- to leak, trickle out, arip - to cause to fall; to thror, to cast down, to put into trouble	nkgrana	/pkx'vons/	- a vater pot, calabash - sheep
			dinku	/di pau/	
fohla	Ifota/	- to peel; to enlarge a hole	yaelo	/2mala/	- 2 ike that
nanka	/hajk' a/	- to walk proudly - to shine: a wooden dish (for meat)	mova	/mown /jona/	- 31
	/ti'ati'a/		yona		- it
tia		- to shine: a wooden dish (for meat) - hardened ear-wax; to khout		/heavc/	- dirty, nasty
tlinaka	/t $\mathrm{l}^{\text {nok'a/ }}$		puo		
way	flvaja/	to prick, to sting, cause a rash		/puz/	- apeec
			tau	/t'au/	- 110
tshohrepha	/ta'atel	- to twist, entwine	kobo	/xabo/	- a karosa; blanket- food
			sejo		
motsho		- black		/aedza/	
qaga	/lata/		nama	/re/	- meat
		- to be plsin, evident	rre		- father, my father - entirely, all
mannatjotja	/тола/ ft] ot ${ }^{\prime}$ 'a/ $\left.(t]^{n}{ }_{i}^{1}, s,\right\}$	- to continue rainirg	gotihe	/xotite/	
		- to continue raining	pitsi	/p'its'i/	- a horse: a zebra
t jhella		-- damage sustained through fire			
		- not, anywhere - to runt to become atrong, firm; to shrivel up	tshtp 1	/tship $\mathrm{p}^{\prime} 1 /$	- iron, metal
motjhi	(mot) ${ }^{1 / 1}$		khuau	/khudu/	- tortolse - ny mother
kgwanla	fkx wata/			/ma/	
			phutha	/phutha/	- to gather, collect
jaka	/ $\mathrm{ark}^{\prime} \mathrm{a}$ /	- to go and live in a foreign place			
sitsa	falts'a/	- to give, to grant, to favour with	kgopho	/kx'opho/	- s small bush with edible fruit
nadi					
madi	/madi/	- blood; beer - to speak, to say	phepha	$/ p^{\mathrm{h}} \mathrm{p}^{\mathrm{p}} \mathrm{a} /$	- clean
pjhanya	/p] 'ana/			/fora/	- fly:
pjatia	/pJ'ati'a/	- to boil vell	rest	/weai/	- oum; slone
tosa	t'Jaa/	- to stretch out, to raise	Ues	/t eray	- payment
bjaratsa	/bsarate'a/	- to crunch, to smaeh	tefo		
nyorva		- to become thirsty	яenya	/sena/	- spoill
nyorwa			rrague	/raxve/	- his father
11a	1 ta /	- veep, cry, emit a bound, betior	mnid 1	fimdi/	- mealie
p.jheha	/p] ${ }^{\text {chas }}$	- to have diarrhoea, to be purged;	nnye	'ne/	- little
		to act in a covardly manner		1neti'anel	
abjwa	/ab 5 wa/	- to divide, hand out, distribute	nnet1a		- aonethr
mookgo		- tears (n)	nkga	/nkx's/	- to emit a smell
hlatera	/tata'va/	- to wash	thivaya	/t2hnvaja/	- to 11sten carefully
lefjua	/ef]va/	- to be paid	${ }^{119}$	1a/	cry

Die Suid-Afrikaanse Tydskrif vir Kommunikasieafwykings, Vol. 33. 1986

ORTHGGAAPHY	$\begin{gathered} \text { PHONEMIC } \\ \text { TRANSCRIPTION } \end{gathered}$	GLOSS
1 mantehe	/1wantsha/	- cause to quarrel or strive with each other
lotăza	110t5'wis/	- be required, demanded, asked for
mpho	/mpros	- $\mathrm{gift}^{\text {fift }}$
sekhi	/Bek ${ }^{\text {h/ }}$ /	- a specics of thorily bush
gupa	/supa/	- to show, point; seven
вebs	/8eba/	- to whisper, to backbite
aga	/axa/	- to build; live, dwell
fitins	/fiti ${ }^{\text {ba/ }}$	- to arrive; to bury, hide
kgakge	/kx'akx'c/	- vonder, astonishment
masvi	/majwi/	- milk, sweet milk
taoma	/te'ama/	- to hunt
dikgee	/dikx'wa/	- clumps of bush
mmini	/mini/	- dancer
bonnye	/bape/	- empllicr
setorhaba	/6e: \int haba/	- netion
tibetse	/tihata' ${ }^{\text {h/ }}$	- vonit
sothe	/xotr ${ }^{\text {ha }}$ /	- rub a aurface
menya	/morol	- dev; mlat

REFERENCES

Baragwanath Hospital, Department of Speech Therapy and Audiology. Speech discrimination testing materials: Zulu and Sotho. Soweto, 1977.
Beukelman, D.R. and Yorkston, K.M. The relationship between information transfer and speech intelligibility of dysarthric patients. Journal of Communication Disorders, 12, 189-196, 1979.

Black, J.W. Accompaniments of word intelligibility. Journal of Speech and Hearing Disorders, 17, 409-418, 1952.
Black, J.W. Multiple-choice intelligibility tests. Journal of Speech and Hearing Disorders, 22, 213-235, 1957.
Brown, J.T. Setswana-English Dictionary. Third Edition. Botswana Book Centre (U.C.S.S.A.), 1971.
Cole, D.T. An Introduction to Tswana Grammar. London: Longmans, Green and Co., 1955.
Darley, F.L., Aronson, A.E. and Brown, J.R. Motor Speech Disorders. London: Saunders, 1975.
Doke, C.M. Text-Book of Zulu Grammar. Second Edition. London: Longmans, Green and Co., 1931.
Doke, C.M. and Mofokeng, S.M. Textbook of Southern Sotho Grammar. Cape Town: Longmans, Green and Co., 1957
Egan, J.P. Articulation testing methods. Laryngoscope, 58, 955991, 1948.
Fairbanks, G. Test of phonemic differentiation: The Rhyme Test. Journal of the Acoustical Society of America, 30(7), 596-600, 1958
Fairbanks, G. Voice and Articulation Drillbook. Second Edition, New York: Harper and Row, 1960.
Gowlett, D.F. and Rassman, E.F.A. Word-frequency count for Southern Sotho prose literature. African Studies, 38(2), 107133, 1979.
Griesel, G.J. Die invloed van ' n Kwantitatiewe Taaltonleding op Leerstofseleksie by die Onderrig van Zoeloe as Tweede Taal. Master's dissertation, University of Natal, Pietermaritzburg, 1979.

Griggs, T. From articulation tests towards formulas for intelligjbility. Language and Speech, 1, 194-221, 1958.
Hillbrow Hospital, Department of Speech Therapy and Audiology. Phonetic inventories: Zulu and Southern Sotho., Johannesburg, 1981.
Hirsh, 1.J., David, H. Silverman, S.R., Reynolds, E.G., Eldert, E. and Benson, R.W. Development of materials for speech audiometry. Journal of Speech and Hearing Disorders, 17, 321-337, 1952.

Hodson, B.W. and Paden, E.P. Targeting Intelligible Speech: A Phonologic Approach to Remediation. San Diego: CollegeHill Press, 1982.
Hollenbeck, A.R. Problems of reliability in observational research. In Sackett, G.P. (Ed.) Observing Behaviour Vol. II: Data Collection and Analysis Methods. NICHD Mental Retardation Series, Baltimore: University Park Press, 1978.
Jacobson, M.C. Speech Intelligibility and Articulatory Dynamics of Reconstructed Oral Cancer Patients. Ph.D. Thesis. University of the Witwatersrand, Johannesburg, 1986.
Jordan, A.C. A Practical Course in Xhosa. Cape Town: Longmans, 1966.
Khumalo, S.J.M. Zulu Tonology. Master's dissertation. University of the Witwatersrand, Johannesburg, 1981.
Kipfmueller, L.T. and Prins, T.D. Consonant Intelligibility: Reliability and validity of a speech assessment procedure. Journal of Speech and Hearing Research, 14, 559-564, 1971.
Kunene, D.P. The Ideophone in Southern Sotho. Marburger Studien Zur Afrika und Asienkunde. Berlin: Verlag Von Dietrich Reimer, 1978.
Kyle, J.G., Conrad, R., McKenzie, M.G., Morris, A.J.M. and Weiskrantz, B.C. Language abilities in deaf school leavers. Teacher of the Deaf, 2, 38-42, 1978.
Lanham, L.W. An outline history of the languages of Southern Africa. In L.W. Lanham and K.P. Prinsloo (Eds.), Language and Communication Studies in South Africa. Cape Town: Oxford University Press, 1978.
Lehiste, I. and Peterson, G.E. Linguistic considerations in the study of speech intelligibility. Journal of the Acoustical Society of America, 31(3), 280-286, 1959.
Mabille, A. and Dieterlen, H. Southern Sotho-English Dictionary. Revised by Paroz, R.A. Revised and enlarged eighth edition. Basutoland: Morija, 1961.
Markides, A., Assessing the speech intelligibility of hearing impaired children: Oral reading versus picture description. Teacher of the Deaf, 2, 185-189, 1978.
Meyerson, M.D., Johnson, B.H. and Weitzman, R.S. Rehabilitation of a patient with complete mandibulectomy and partial glossectomy. American Journal of Otolaryngology, 1, 256-261, 1980.
Miller, G.A., Heise, G.A. and Lichten, W. The intelligibility of speech as a function of the context of the test materials. Journal of Experimental Psychology, 41, 329-335, 1951.
Nichols, A.C. Confusions in recognising phonemes spoken by esophageal speakers: I. Initial consonants and clusters. Journal of Communication Disorders, 9, 27-41, 1976.
Platt, L.J., Andrews, G., Young, M. and Neilson, P.D. The measurement of speech impairment of adults with cerebral palsy. Folia Phoniatrica, 30, 50-58, 1978.
Prather, E.M. Scaling defectiveness of articulation by direct magnitude estimation. Journal of Speech and Hearing Research, 3(4), 380-392, 1960.
Rosenbek, J.C. and LaPointe, L.L. The dysarthrias: Description, diagnosis and treatment. In D.F. Johns (Ed.), Clinical Management of Neurogenic Communicative Disorders. Boston: Little, Brown, 1978.
Sackett, G.P. Measurement in observational research. In G.P. Sackett (Ed.), Observing Behaviour. Vol. II: Data Collection and Analysis Methods. NICHD Mental Retardation Series. Baltimore: University Park Press, 1978.
Schiavetti, N., Metz, D.E. and Sitler, R.W. Construct validity of direct magnitude estimation and interval scaling of speech intelligibility: Evidence from a study of the hearing-impaired. Journal of Speech and Hearing Research, 24, 441-445, 1981.
Schiavetti, N., Sitler, R.W., Metz, D.E. and Houde, R.A. Prediction of contextual speech intelligibility from isolated
(Continued on Page 28)

NEW AUTOMATIC HEARING AID

A truly advanced and innovative sound amplifier
The AUTOMATIC SOUND PROCESSOR (ASP) was developed especially for those people who have difficulty in hearing speech in noisy environments. For years, hearing aid wearers have avoided restaurants, theatres, church and parties because of the inability of an ordinary hearing aid to control background noises.
The A.S.P. is simply and uniquely designed to normalize background noise so that speech is more easily understood.

To be able to restore sound to even one human being makes your life especially important.

P.O. Box 52
 7603

7603
Phone: (02234) 442
or (02231) 93442

NATAL
P.O. Box 47443

Greyville
4023
Phone: (031) 236164

RICHARDS hearing systems
Tomorrow's Technology for Today's Hearing Problem

(Continued from Page 26)

word intelligibility measures. Journal f Speech and Hearing Research, 27, 623-626, 1984.
Schmidt, S. Intelligibility and the child with multiple articulation deviations. In H.A. Winitz (Ed.), Treating Articulation Disorders: For Clinicians by Clinicians. Baltimore: University Park Press, 1984.
Schultz, M.C. World familiarity influences in speech discrimination. Journal of Speech and Hearing Research, 7, 395-400.
Shriberg, L.D. and Kwiatkowski, J. Phonological disorders III: A procedure for assessing severity of involvement. Journal of Speech and Hearing Disorders. 47, 242-256, 1982.
Skelly, M. (ed.) Glossectomee Speech Rehabilitation. Springfield, Illinois, Charles C. Thomas, 1973.
South Africa 1985: Official Yearbook of the Republic of South Africa. Eleventh Edition. Johannesburg: Chris van Rensburg, 1985.

Tikofsky, R.S. A revised list for the estimation of dysarthric single word intelligibiliy. Journal of Speech and Hearing Research, 13, 59-64, 1970.
Tobias, J.V. On Phonemic analysis of speech discrimination tests. Journal of Speech and Hearing Research, 7, 98-100, 1964.
Van Wyk, E.B. Language Contact and Bilingualism. In L.W. Lanham and K.P. Prinsloo (Eds.), Language and Communication Studies in South Africa. Cape Town: Oxford Univer-

Wilkes, A. Bantu Language Studies. In L.W. Lanham and K.P. Prinsloo (Eds.), Language and Communication in South Africa, Cape Town: Oxford University Press, 1978.

Yorkston, K.M. and Beukelman, D.R. A comparison of techniques for measuring intelligibility of dysarthric speech. Journal of Communication Disorders, 499-512, 1978.

Yorkston, K.M. and Beukelman, D.R.A. A clinician-judged technique for quantifying dysarthric speech based on single word intelligibility. Journal of Communication Disorders, 13, 15-31 1980.

Yorkston, K.M. and Beukelman, D.R. Communication efficiency of dysarthric speakers as measured by sentence intelligibility and speaking rate. Journal of Speech and Hearing Disorders, 46, 296-301, 1981.

Young, M.A. and Downs. T.D. Testing the significance of the agreement among observers. Journal of Speech and Hearing Research, 11, 5-17, 1968.
Ziervogel, D., Louw, J.A., Ferreira, J.A., Baumbach, E.J.M. and Lombard, D.P. Handbook of the Speech Sounds and Sound Changes of the Bantu Languages of South Africa, Unisa Handbook Series No. 3E. University of South Africa, Pretoria, 1967.
Ziervogel, D., Louw, J.A. and Taljaard, P.C. A Handbook of the

