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Multi-criteria decision analysis (MCDA) is an alternative approach, which provides a way to systematically 

structure and analyse complex decision problems. This study presents a novel method of applying the 

weighted linear combination ranking technique (WLCRT) to MCDA. The proposed WLCRT method is based 

on the linear combinations of matrix algebra calculations. It has distinct advantages in preference modeling, 

weight elicitation, and aggregation performance. In this method, the decision matrix of preferences is 

constructed using a 7-point Likert scale. The weights of criteria are elicited from the proximity matrix of 

preference relations using the eigenvector method. Then, the weighted generalised means are used to 

aggregate preference information as well as to rank the order of decision alternatives. The WLCRT method 

can flexibly reflect different decision attitudes for the decision maker. It is both technically valid and 

practically useful, and can be used in dealing with multiple criteria analysis problems involving ranking of 

alternatives. 

Key words: multiple criteria analysis; weighted linear combination, ranking of alternatives, eigenvector 

method, weighted generalized means, decision, aggregated values, simple additive weighting, technique, 

optimisation 

JEL: C020  

 

1 

Introduction 

Human performance in decision terms has 

been the subject of active research. Decision 

analysis is the study of identifying and 

choosing alternatives based on the values and 

preferences of the decision-maker. It can be 

regarded as the mental/cognitive process of 

sufficiently reducing uncertainty and doubt 

about alternatives to allow a reasonable choice 

to be made from among them. Many real-

world decision situations involve multiple 

attributes in qualitative domains. Such situations 

can be modeled as a multi-criteria decision 

analysis (MCDA) problem that involves making 

numerous and sometimes conflicting evaluations 

to come to a compromise in a transparent 

process. MCDA is both an approach and a set 

of techniques with the goal of providing an 

overall ordering of options. In MCDA, values 

reflect human preferences and in particular the 

preferences of the decision maker involved in 

the specific decision context. MCDA have 

undergone an impressive development over the 

last 40 years. There are many different MCDA 

methods based on different theoretical founda-

tions, such as optimisation, goal aspiration, 

outranking, or a combination of these. Various 

sophisticated methods have been developed 

and used, which include the simple multi-

attribute rating technique (SMART) (Edwards, 

1971), the analytic hierarchy process (AHP) 

(Saaty, 1980), the technique for order preferences 

by similarity to ideal solutions (TOPSIS) 

(Hwang & Yoon, 1981), the ELECTRE methods 

(Roy, 1968), and the PROMETHEE methods 

(Brans, Vincke & Mareschal, 1986). A detailed 

analysis of the theoretical foundations of 

different MCDA methods and their comparative 

strengths and weaknesses has been presented 

in the literature (Mollaghasemi & Pet-Edwards, 

1997; Belton & Stewart, 2002). 

There are many ways to classify MCDA 

methods. According to the assumptions of 

preference elicitation and aggregation, MCDA 

methods can be divided into two broad 

categories. One refers to multi-attribute utility 

theory (MAUT) methods (e.g. SMART); the 

other refers to outranking methods (e.g. the 

ELECTRE methods and the PROMETHEE 

methods). Outranking methods are based on 
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the principle that one alternative may have a 

degree of dominance over another (Kangas, 

Kangas, Leskinen & Pykalainen, 2001), rather 

than the supposition that a single best 

alternative can be identified. Outranking is 

considered a partially compensatory technique 

that does not rely upon optimisation. The 

ordering of alternatives provided by outranking 

methods may be incomplete since the methods 

allow for intransitivities in criteria weightings 

and for alternatives that are not considered 

comparable. MAUT methods aim to associate 

a unique number (value) representing the 

overall strength of each alternative, taking all 

criteria into account. The basis of MAUT is the 

use of utility functions, whose purpose is to 

create a mathematical model to aid the 

decision process. The utility theory is used in 

decision analysis to transform the raw 

performance values of the alternatives against 

diverse criteria to a common dimensionless 

scale (Keeney & Raiffa, 1976). It gives decision 

makers the ability to quantify the desirability 

of certain alternatives and brings together 

different considerations in a structured way. 

Compared with outranking methods, MAUT 

methods present the advantage of simplicity 

and transparency, leading to a complete 

ranking of all the alternatives based on the 

decision-maker’s preferences. 

MCDA is concerned with structuring and 

solving decision problems involving multiple 

criteria and numerical analysis of a set of 

discrete alternatives. It generally consists of 

three main operations, namely preference 

modeling, weight elicitation, and aggregation. 

Preference modeling focuses on capturing the 

decision maker’s preferences for the specific 

decision context. There are two types of 

preferences, namely intra-criterion preferences 

and inter-criterion preferences. The former is 

judgements that refer to relative values 

attached to different levels of performances, 

while the latter is judgements that refer to the 

relative importance attached to the information 

carried by each single criterion. The values of 

judgements can be in ordinal, interval, or ratio 

scales. Ordinal scales on the overall preference 

values are sufficient if only the best alternative 

needs to be selected (Choo, Schoner & Wedley, 

1999). Decision problems involve criteria of 

varying importance to decision makers. The 

criteria weights usually provide the informa-

tion about the relative importance of the 

considered criterion. Criteria weighting is a 

complex preference elicitation process, which 

can be classified in different ways (e.g. 

algebraic or statistical, decomposed or holistic, 

direct or indirect, and compensatory or non-

compensatory). A variety of different methods 

for determining criteria weights in MCDA 

have been developed, such as swing method 

(Von Winterfeldt & Edwards, 1986), trade-off 

method (Keeney et al., 1976), AHP (Saaty, 

1977), SMART (Edwards, 1971), and MACBETH 

(Bana E Costa & Vansnick, 1994). Many 

researchers have conducted comparisons among 

different weighting methods (Hobbs, 1980; 

Schoemaker & Waid, 1982; Barron & Barrett, 

1996; Yeh, Willis, Deng & Pan, 1999),  

and most research has found that different 

methods yield different weights (Belton, 1986; 

Borcherding, Eppel & Winterfeldt, 1991; Olson, 

Moshkovich, Schellenberg & Mechitov, 1996; 

Pöyhönen & Hämäläinen, 2001). The criteria 

weights are generally treated as deterministic, 

and are usually determined on a subjective 

basis. The uncertainty in the elicited weights 

can influence the resultant ranking of alter-

natives. Therefore, the procedures for deriving 

criteria weights should not be independent of 

the manner they are used, and should be taken 

into consideration as part of the decision 

analysis process (Rios Insua, 1990; Wolters & 

Mareschal, 1995). 

Aggregation refers to the process of combining 

several numerical values into a single one, so 

that the final result of aggregation takes into 

account in a given manner all the individual 

values. In MCDA, aggregation operators are 

used to aggregate the different values of the 

utility functions. MAUT methods include different 

aggregation models, but the most used one is 

the additive model. Additive aggregation is 

based on the mathematical concept of weighted 

means. However, different weighted versions 

(e.g. weighted arithmetic mean, weighted 

geometric mean, and weighted harmonic 

mean) may produce different aggregation 

results. Some performance values in MCDA 

problems are often subjective and changeable. 

Aggregation could yield inconsistent results, 

since the weights of criteria and the scoring 

values of alternatives against the judgemental 
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criteria always contain some uncertainties. It is 

an important issue how the final ranking or the 

ranking values of the alternatives are sensitive 

to the changes of some input parameters of the 

decision problem (Triantaphyllou & Sánchez, 

1997; Memariani, Amini & Alinezhad, 2009). 

Sensitivity analysis is a fundamental concept 

in the effective use and implementation of 

quantitative decision models. The purpose of 

sensitivity analysis is to assess the stability of 

an optimal solution under changes in the 

parameters. By knowing which criteria are 

more critical and how sensitive the actual 

ranking of alternatives is to changes on the 

current criteria weights, the decision-makers 

can more effectively pay attention to the most 

critical ones. They can also make better 

decisions to the given MCDA problem (Evans, 

1984; Rios Insua & French, 1991; Ríos Insua, 

1999). 

The aim of this study is to develop a novel 

weighted linear combination technique for 

ranking decision alternatives. It is used as a 

quantitative decision method to assist decision-

makers in dealing with MCDA problems. The 

proposed weighted linear combination ranking 

technique (WLCRT) is based on the linear 

combinations of matrix algebra calculations. It 

is formulated from a decision matrix of 

preferences, and the criteria weights are elicited 

from the proximity matrix of preference relations, 

using the eigenvector method. The weighted 

generalised means are then used to aggregate 

preference information, as well as to rank the 

order of decision alternatives. The remainder 

of this paper is organised as follows. Section 2 

introduces the theoretical foundations. Section 

3 describes the WLCRT method, and Section 4 

presents an example to illustrate the practicability 

of the proposed method. The discussion and 

conclusions are drawn in Section 5 and Section 

6, respectively. 

2 

Theoretical foundations 

In this section, some important fundamentals 

that are used in the proposed method (see 

Section 3) are addressed. These fundamentals 

include the distance correlation and proximity 

matrix, eigenvectors and criteria weights, and 

aggregation and weighted generalized means. 

2.1 Distance correlation and proximity 
matrix 

MCDA problems usually involve the ranking 

of a finite set of alternatives in terms of a finite 

number of decision criteria. Consider a decision 

problem with m criteria and n alternatives. Let 

c1,c2,…,cm and a1,a2,…,an denote the criteria and 

alternatives, respectively. The MCDA problem 

under consideration is depicted by a decision 

matrix of preferences shown in Eq. (1). The 

score dpq describes the performance of 

alternative ap against criterion cq, where a 

higher score value means a better performance 

according to the goal of maximization. 

  (1) 

In MAUT, a multi-attribute utility function 

describes the preferences of the decision 

maker. It is dependent on the axioms of 

preferential, utility, and additive independence 

for normative decision-making. The additive 

model is the most used MAUT method, which 

can be formulized as follows: 

  (2) 

where 

U(a) is the global utility value of alternative 

a; 

dq(a) is the performance value of alternative 

a against criterion q; 

uq (dq(a)) is the local utility value reflecting 

the performance of alternative a for criterion q; 

kq is a scaling constant that reflects the 

importance of criterion q within the decision 

context. 

The multi-attribute utility function U is a linear 

combination of uq. In statistics, canonical 

correlation analysis is a way of making sense 

of cross-covariance matrices and a procedure 

for assessing the relationship between two sets 

of variables (Hotelling, 1936). It identifies 

linear relationships that describe a maximum 

correlation between the two data sets, namely 

predictor and response sets. The predictor set 

includes variables that describe the cause of 

changes in the analyzed systems, whereas the 

response set consists of variables that show the 
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effect of these changes upon that system. The 

determination of linear combinations that 

possess a maximum correlation is important 

for the analysis of common features in both 

data sets (Tishler and Lipovetsky, 1996, 

Hardoon et al., 2004). Suppose that there are 

two sets of variables organized in matrices as  

x = [x1x2
…xp] and y = [y1y2

…yq]. The object of 

canonical correlation analysis is to find the 

largest possible correlation of linear 

combinations  and , where 

a1 = [a11a12
...a1p] and b1 = [b11b12

…b1q]. Such 

linear combinations can give insight into the 

relationships between the two sets of variables. 

Let Cxx be the covariance matrix of the x set 

of variables, Cvv be the covariance matrix of 

the y set of variables, and Cxv be the covariance 

matrix of x and y, where Cxx and Cvv are the 

within-sets covariance matrices and Cxv is the 

between-sets covariance matrix. The correlation 

between variables and  is then given by 

(Kursun et al., 2011): 
 

 (3) 
 

where 

 

 is the covariance of and  

,  is the 

variance of   

  is the 

variance of  

Letting S be a vector space, with x and y being 

n-dimensional vectors within S, Eq. (3) can 

then be rewritten as: 

(4) 

where 

 

Eq. (4) is the well-known Pearson correlation 

coefficient defined as the covariance of the two 

variables divided by the product of their 

standard deviations. The Pearson correlation 

coefficient can be used as a distance metric 

between two vectors (x and y). The distance 

correlation analysis is a procedure for 

calculating any of a wide variety of statistics 

measuring either similarity or dissimilarity 

between pairs of variables. It can be used to 

show the interaction between decision criteria. 

When the Pearson correlation coefficient is 

used to measure the similarity of pairwise 

distances, it is regarded as a similarity function 

for measuring the global relations among criteria. 

The correlation coefficients between m 

criteria can form to an mm proximity matrix, 

Rmm, which satisfies the following properties: 

(1) Non-negativity: rij ≥ 0, rij ∈ R; (2) Re-

flexitivity: rij = 1, if ; (3) Symmetry: 

if ; and (4) Transitivity:  if r12 > 
r23 and r23 > r34 then r12 > r34,  r12, r23, r34 ∈ 
R. The coefficient rij represents the similarity 

correlation of preferences between two criteria 

(i and j). It can be used to determine the local 

priority of criteria by selecting the most similar 

preferences. For example, if r12 > r13 > r14, then 

criterion 2 is more important than criterion 3 

and criterion 4 in terms of the performance of 

alternative 1. 

2.2 Eigenvectors and criteria weights 

Eigenvalues are a special set of scalars 

associated with a linear system of equations 

(i.e., a matrix equation) that are sometimes 

also referred to as characteristic roots, 

characteristic values (Hoffman & Kunze, 1971), 

proper values, or latent roots (Marcus & Minc, 

1988). They can be used for a covariance 

matrix to convert a set of observations of 

possibly correlated variables into a set of 

principal components. Technically, a principal 

component can be defined as a linear 

combination of optimally-weighted observed 

variables. 

Given a linear transformation R, a non-zero 

vector w is defined to be an eigenvector of the 

transformation if it satisfies the eigenvalue 

equation Rw=λw for some scalar λ. In this 

situation, the scalar λ is called an eigenvalue  

of R corresponding to the eigenvector w 

(Kublanovskaya, 1961). Letting R be an m×m 

proximity matrix with eigenvalue λ, the 

corresponding eigenvectors satisfy: 
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             (5) 

which is equivalent to the homogeneous system: 
 

        (6) 
 

Eq. (6) can be written compactly as  (R - λI) ∙ 

W = 0, where I is the identity matrix. 

According to the eigen decomposition, the 

diagonal matrix constructed from the corre-

sponding eigenvalues can be expressed as:  

W
-1

 ∙ R ∙ W = diag {λ1,λ2,… ,λm }  (7) 

where 

W is a matrix composed of the eigenvectors 

of the proximity matrix R;  

W
-1

 is the matrix inverse of W.  

The eigenvector method provides m sets of 

possible solutions to the linear combination 

problem of preference relations (m eigenvalues 

and each eigenvalue corresponding to m 

eigenvectors). It can be used to derive the 

global priority of criteria through determining 

the most significant relationship between 

preference dimensions. The weights of criteria 

represent the priority (or importance) of the 

principal diagonal components within the 

covariance matrix. They can be elicited by 

calculating the absolute values of the eigen-

vectors wi corresponding to the maximum 

eigenvalue λmax. This weighting method was 

proposed by the author, which has proven to be 

useful in related research areas (Chou, 2011; 

2012). The larger the weight, the greater is the 

respective criterion’s unique positive contribution 

to the whole preference relations. 

2.3 Aggregation and weighted 
generalized means 

Aggregation refers to the process of synthe-

sizing a collection of numerical values into a 

unique representative or meaningful value in 

order to come to a conclusion or a decision. An 

aggregation operator is generally defined by a 

function h ∶ [0,1]n → [0,1], which is usually a 

continuous and symmetric function (Klir & 

Folger, 1988; Smolíková & Wachowiak, 2002). 

The monotonicity of the aggregation operator 

is a crucial issue which involves constraints on 

the derivative of the weighted aggregation 

operator with respect to the various attribute 

preference values. The weighted aggregation 

based on MAUT is well-known in the 

literature (Calvo et al., 2002; Ribeiro & 

Marques Pereira, 2003; Xu & Da, 2003; Yan et 

al., 2011). When it is desirable to accommodate 

variations in the importance of individual 

aggregated sets, the function h can be 

generalized into weighted generalized means 

(WGMs), also known as the weighted root-

mean-power (Ghiselli Ricci & Mesiar, 2011), 

as defined by the formula:  

  (8) 
where 

ai is the preference value of attribute i,  
0 ≤ ai ≤ 1; 

wi is the weight of attribute i that represents 

the relative importance of  the  aggregated  set, 

  
;
 
∝ is a non-zero real number,  

-∞ < α < ∞. 

The WGMs are continuous but not sym-

metric. They are monotonic increasing with ∝. 

For ∝=1, the function h∝ (a,w)  is the weighted 

arithmetic mean operator h1(a,w). When ∝ 

approaches 0 (∝→0), the limit of the function 

h∝(a,w) becomes the weighted geo-metric 

mean operator h0(a,w); at ∝= -1 h-1 (a,w) is the 

weighted harmonic mean operator. The parameter 

∝ plays an important role in the aggregation 
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operation. By varying the ∝ para-meter within 

the interval of (−∞, ∞), a homologous h∝ value 

can be derived; the ∝, h∝  curves can then be 

plotted. As shown in Figure 1, there are three 

sets of decision alternatives. If ∝> 0, the 

maximum of h∝ is Alternative 2; if ∝< 0, the 

maximum of h∝ is Alternative 3. For a more 

precise comparison, the average h∝ of each 

alternative must be solved. 

 

Figure 1 

Example of α, hα relation diagram for WGM results 

 
 

It can be observed in Figure 1 that the curve 

levels out as it approaches either positive 

infinity or negative infinity. Hence, the 

trapezoidal rule associated with the mean value 

theorem for integrals is used to calculate the 

average of h∝.  The trapezoidal rule is used for 

numerical integration. It works by approxi-

mating the region under the graph of the 

function h(α) by a trapezoid, whose area is 

then calculated. As shown in Figure 2, suppose 

that the interval [a,b] is split up into u 

subintervals. The composite trapezoidal rule is 

then given by 

 
 (9) 

where 

αi = a + (i∙∆α), for I =1,2,…, u – 1 

α0 = a, αu = b;a + b = 0;∆α = (b - a) ⁄ u 

Eq. (9) can be rewritten as: 
 

 

  (10) 
 

Using the mean value theorem for integrals, 

the average of h∝ can be obtained as: 
 

 

  (11) 
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Eq. (11) can be used to rank the decision 

alternatives as well as to accurately find the 

most desirable alternative(s) from the given 

alternative set. The higher the  value, the 

better is the decision alternative. 

 

 

Figure 2 

Using the trapezoidal rule to approximately calculate the area of the region 

 
 

3 

Outline of the weighted linear 

combination ranking 

technique(WLCRT) 

Based on the theoretical foundations given in 

Section 2, the implementation steps of the 

WLCRT are described as follows: 

Step 1: Identify the decision context 

In the first step, decision-makers have to 

establish the objectives of the MCDA, choose 

the alternatives to be evaluated, and determine 

criteria for evaluating the consequences of 

each alternative. 

Step 2: Construct a decision matrix 

Judgements involve attitudinal assessments of 

human cognitive behavior. In case the evaluation 

is derived from real statistics, numerical data 

can be converted into a comparable scoring 

scale through standardising the original data. 

The most commonly adopted methods are 

based on distance measurement using the 

maximum and minimum values as scaling 

scores. The standardisation is formularised as: 

  (12) 

where 

spq is the raw datum of alternative p against 

criterion q; 

sq(max) is the maximum datum and sq(min) is 

the minimum datum of all the alternatives 

against criterion q; 

SR is the standardized range used to convert 

the score from within the interval [0,1] to 

within the interval [0.1,0.9].  

According to the linear interpolation method, 

the score dpq can be derived as: 

                         (13) 

Step 3: Elicit the criteria weights 

By substituting the scoring data of the decision 

matrix into Eq. (4) to perform the Pearson 

distance correlation analysis in pairs, a proximity 

matrix of the similarity measures can be 

obtained. Using eigenvalue algorithms (see 

Section 2.2), a set of eigenvalues and their 

corresponding eigenvectors can be derived. By 

calculating the absolute values of the eigen-

vectors corresponding to the maximum eigen-

value, a set of the priorities of the principal 

diagonal components can be obtained. Further 

normalising these values, a set of weights 

corresponding to the criteria is elicited as: 

 (14) 
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Step 4: Aggregate the preference information 

and rank the decision alternatives 

Based on Eqs. (8) and (11), the weighted 

aggregation operator is expressed as follows: 
 

 
 

 (15) 
 

where 

 represents the aggregated value of 

the pth alternative; 

The aggregation operator is used to 

synthesise the weight sand scores for each 

alternative in order to derive an overall utility 

value. Numerical integration operations (see 

Section 2.3) are used to obtain a set of 

aggregated values, which are then used to rank 

the order of decision alternatives. The higher 

the value, the better is the decision alternative. 

Step 5: Sensitivity analysis 

Sensitivity analysis is an important task in 

MCDA. It applies post-hoc analyses to a 

quantitative decision model, and deals with 

uncertainties related to how sensitive the 

alternative ranking is to the changes in criteria 

weights. In an MCDA problem, if the weight 

of criterion i changes by ∆i, then the weights of 

other criteria change as (Memariani et al., 

2009) 

 (16) 

where 

wi  is one of the original weights, and w'i is 

its new weight; 

 

By cumulatively increasing or decreasing the 

value of ∆i, a number of new sets of criteria 

weights can be obtained. Using the new set of 

weights to perform the above aggregation 

operation iteratively, we can identify the criterion 

for which the smallest change of current weight 

may alter the existing ranking of alternatives. 

4 

Illustrative example 

A decision analysis example is used in this 

section to illustrate the proposed method. The 

aim of this example is to assess the 

competitiveness of the cultural and creative 

sector in Europe. 

4.1  Identification of the decision 
context 

The cultural and creative sectors foster 

creativity and contribute to innovation in other 

sectors of the economy. The main objective of 

this decision problem is to assess which 

countries are most competitive in terms of the 

cultural and creative sector. The decision 

criteria include six items: (1) value added to 

national GDP, (2) average turnover growth, (3) 

cultural and cultural tourism employment, (4) 

average evolution of productivity, (5) average 

evolution of profitability, and (6) average 

evolution of intangibles to turnover ratio. Nine 

countries were selected from the EU 25 as 

alternatives, which include Belgium, Denmark, 

Finland, France, Germany, Italy, Portugal, 

Spain, and the UK. 

4.2  Construction of the decision matrix 

According to the published statistics collected 

by KEA European Affairs (2006), the raw data 

are classified and listed in Table 1. Using Eqs. 

(12) and (13), the corresponding scores of 

alternatives against each criterion were 

derived. The decision matrix was constructed 

as below: 
 

 (17) 
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Table 1 

Original statistics and corresponding scores of alternatives 

 Criterion 1 Criterion 2 Criterion 3 Criterion 4 Criterion 5 Criterion 6 

Belgium 2.6%, 0.58 5.2%, 0.35 2.7%, 0.31 1.57, 0.73 10.3%, 0.61 2.6%, 0.22 

Denmark 3.1%, 0.78 2.7%, 0.1 3.3%, 0.63 1.3, 0.1 9.2%, 0.3 8.0%, 0.77 

Finland 3.1%, 0.78 7.1%, 0.55 3.7%, 0.85 1.45, 0.45 11.3%, 0.9 2.9%, 0.25 

France 3.4%, 0.9 6.7%, 0.5 2.5%, 0.21 1.60, 0.81 11.1%, 0.84 4.3%, 0.39 

Germany 2.5%, 0.54 4.9%, 0.32 3.2%, 0.58 1.5, 0.57 8.8%, 0.19 1.5%, 0.11 

Italy 2.3%, 0.46 5.3%, 0.36 2.8%, 0.37 1.64, 0.9 8.5%, 0.1 3.6%, 0.32 

Portugal 1.4%, 0.1 10.6%, 0.9 2.3%, 0.1 1.59, 0.78 10.4%, 0.64 1.4%, 0.1 

Spain 2.3%, 0.46 10.5%, 0.89 3.1%, 0.53 1.46, 0.48 8.6%, 0.1 3.4%, 0.3 

UK 3.0%, 0.74 6.6%, 0.49 3.8%, 0.9 1.40, 0.33 9.1%, 0.27 9.3%, 0.9 

Range 1.4%~3.4% 2.7%~10.6% 2.3%~3.8% 1.3~1.64 8.5%~11.3% 1.4%~9.3% 

Criterion 1:  Value added to national GDP (in 2003) 
Criterion 2:  Average turnover growth (1999-2003) 
Criterion 3:  Cultural and cultural tourism employment in 2003 (as % of total employment) 
Criterion 4:  Average evolution of productivity (value added/employment costs) (1999-2003) 
Criterion 5:  Average evolution of profitability (operating margin) (1999-2003) 
Criterion 6:  Average evolution of intangibles (knowledge and creativity investments within the cultural and creative sector) to 

turnover ratio (1999-2003) 

Source: Economy of culture in Europe. Prepared by KEA European affairs for the European Commission, Directorate-General 

for Education and Culture, 2006. www.ec.europa.eu/culture 

 

4.3  Elicitation of criteria weights 

MCDA problems are usually modeled by 

choosing a set of criteria that characterise a 

finite number of alternatives, and by eliciting 

their relative importance or weights. The 

process of weighting involves emphasising 

some aspects of a set of data—giving them 

‘more weight’ in the final result. Substituting 

the above scoring data into SPSS software to 

perform the Pearson distance correlation 

analysis yields the following proximity matrix: 

 

 (18) 
 

Using eigenvalue algorithms, the following set 

of eigenvalues is obtained:  

λ = [3.7071.880 0.503 − 0.220 − 0.028 0.159]. 

The eigenvectors corresponding to the maximum 

eigenvalue λmax = 3.707 are 0.49, 0.321, 0.448, 

0.269, 0.429, and 0.447. By normalizing these 

values, the criteria weights were elicited as 

follows: 

W=[wq ]6×1)=[0.204  0.134  0.186  0.112  0.178  0.186]
T 

(19) 
  

The result shows that criterion 1 (value added 

to national GDP) has the highest importance 

whereas criterion 4 (average evolution of 

productivity) has the lowest importance 

regarding the desired objective. 

4.4  Ranking of decision alternatives 

Let a = −100, b = 100, and u = 1 000. The 

data of matrices (17) and (19) were substituted 

into Eq. (15) to calculate the WGMs. The set 

of obtained aggregated values is shown in 

Table 3. The nine alternatives were ranked as 

follows: 

UK≻Finland≻France≻Portugal≻Italy≻Spain

≻Belgium≻Denmark≻Germany, where the 

symbol “≻” means “is superior to”. The UK, 

Finland, and France in order have the most 

competitive cultural and creative sectors in 

Europe. It is worth noting that the UK is 

slightly superior to Finland according to the 

aggregated values. However, Finland is better 

than the UK in terms of the traditional 
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arithmetic mean (MFinland=0.63≻MUK=0.605) or 

weighted mean (WMFinland=0.648≻WMUK=0.636) 

results. This divergence of ordering can be 

explained by Figure 1, which is due to the 

WGM aggregation that flexibly reflects different 

decision attitudes in the evaluation. 
 

Table 2 

Aggregated values and ranks of the decision alternatives 

 Belgium Denmark Finland France Germany Italy Portugal Spain UK 

Aggregated 
value 

0.4571 0.4273 0.5634 0.5417 0.3364 0.4670 0.4678 0.4661 0.5789 

Rank 7 8 2 3 9 5 4 6 1 

Ranking UK≻Finland≻France≻Portugal≻Italy≻Spain≻Belgium≻Denmark≻Germany 

 

4.5  Sensitivity analysis 

As shown in Table 4, the ranking of alter-

natives is altered when we change the weight 

of criterion 1 by +4Δ, where Δ=0.015 and the 

new set of criteria weights is 0.264, 0.124, 

0.172, 0.104, 0.164, and 0.172. In case the 

weight of criterion 1 is changed by +9Δ, the 

alteration of ranking increases from two alterna- 

tives (Italy and Portugal) to three alter-natives 

(Italy, Portugal, and Spain). However, the ranking 

of both the first three and last three alternatives 

is not changed in this decision case. 

 

Table 3 

Sensitivity analysis results 

Weight 
change 

Belgium Denmark Finland France Germany Italy Portugal Spain UK 

-13Δ 
0.4568 0.4175 0.5631 0.5188 0.3354 0.4688 0.4724 0.4681 0.5794 

7 8 2 3 9 5 4 6 1 

⁞ 
UK≻Finland≻France≻Portugal≻Italy≻Spain≻Belgium≻Denmark≻Germany 

-Δ 

Original 
0.4571 0.4273 0.5634 0.5417 0.3364 0.4670 0.4678 0.4661 0.5789 

7 8 2 3 9 5 4 6 1 

+Δ 
UK≻Finland≻France≻Portugal≻Italy≻Spain≻Belgium≻Denmark≻Germany 

+2Δ 

+3Δ 
0.4573 0.4290 0.5635 0.5444 0.3367 0.4666 0.4667 0.4656 0.5787 

7 8 2 3 9 5 4 6 1 

+4Δ 
0.4573 0.4295 0.5634 0.5452 0.3368 0.4665 0.4663 0.4654 0.5788 

7 8 2 3 9 4* 5* 6 1 

⁞ UK≻Finland≻France≻ Italy≻Portugal ≻Spain≻Belgium≻Denmark≻Germany 

+9Δ 
0.4574 0.4322 0.5636 0.5491 0.3372 0.4655 0.4643 0.4645 0.5785 

7 8 2 3 9 4* 6* 5* 1 

⁞ UK≻Finland≻France≻Italy≻Spain≻Portugal≻Belgium≻Denmark≻Germany 

+13Δ 
0.4575 0.4341 0.5637 0.5520 0.3375 0.4648 0.4625 0.4635 0.5783 

7 8 2 3 9 4* 6* 5* 1 

 

5 

Discussion 

Weighted linear combination (WLC), also 

referred to as simple additive weighting 

(SAW), is probably the most used MCDA 

method. Although it has the ability to give 

different relative weights to each of the criteria 

by aggregation, there are some fundamental 

limitations in the use of traditional WLC 

method (Jiang & Eastman, 2000; Drobne & 

Lisec, 2009). This paper presents a novel 

MCDA method for ranking decision alternatives. 

The proposed weighted linear combination 

ranking technique (WLCRT) is based on the 

linear combinations of matrix algebra calcu-

lations. It has distinct advantages in preference 

modeling, weight elicitation, and aggregation 

performance. The theoretical and practical 

implications of the WLCRT method are 
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discussed below. 

In MCDA, prioritisation of the decision 

matrix is a core issue that influences the final 

decision result. Saaty (1980) advocated the use 

of the eigenvector method for deriving the 

weights from a given pairwise comparison 

matrix (a positive reciprocal matrix). In this 

method, decision-makers must ensure all 

judgements are to be consistent. Besides, it 

requires the solution of a set of nonlinear 

eigenvalue equations which is somewhat 

complicated and inconvenient for use (Wang 

& Chin, 2011). Previous research has also 

found that the priority vector in AHP derived 

from the eigenvector method can violate a 

condition of order preservation (Bana E Costa 

& Vansnick, 2008). Distance-based optimisation 

plays an important role in deriving criteria 

weights (Hwang et al., 1981; Hyde, Maier & 

Colby, 2005; Yu & Lai, 2011). The proposed 

WLCRT method uses a proximity matrix 

derived from the distance correlation measures 

of global scoring relations. It can be regarded 

as a covariance matrix of the standardised 

random variables that possesses the properties 

of non-negativity, reflexitivity, symmetry, and 

transitivity. Making use of the eigenvalue 

algorithm, we can derive a set of weights from 

the optimally weighted observed variables. 

The weights corresponding to the criteria are 

sound as they are elicited from the principal 

diagonal components within the covariance 

matrix. They can reasonably reflect the respective 

criterion’s unique positive contribution to the 

whole preference relations, giving a valid 

process of weighting for the MCDA. 

The simple additive weighting (SAW), an 

additive aggregation using the weighted mean 

operator, is commonly used to synthesize 

evaluation results as well as to rank the 

decision alternatives. This method generates a 

so-called Pareto-optimal agreement for one 

issue, independent of the specific weights 

attached to the individual preferences (Chwolka 

& Raith, 2001). Although the SAW is an easy 

and intuitive compensatory technique, it can 

yield invalid ranking of alternatives as 

evidenced in the illustrative examples. In 

practice, an aggregation operator for MCDA 

should not only consider both the relative 

importance of the criteria and its own achieved 

performance, but should also convey the 

influence of the decision maker’s evaluation 

attitudes. For example, if one takes a more 

open attitude in evaluation, the operator should 

give a higher aggregated index toward the 

maximum value that the operator can produce 

(i.e., ∝>1). In contrast, if the evaluation 

attitude of the decision maker is rigorous or 

conservative, the operator should be toward a 

minimum aggregation (i.e., ∝<-1) (Guh et al., 

2008). The proposed WLCRT method uses 

WGMs to aggregate preference information. 

The WGM operator converts a set of discrete 

preference data into a continuous utility 

function. It can flexibly reflect different 

decision attitudes for the decision maker. By 

varying the ∝ parameter within the interval of 

(−∞,∞),  a homologous aggregation value can 

be derived based on a multi-criteria analysis. 

The numerical integration technique is used to 

facilitate the calculations of the continuous 

utility function. The proposed method can be 

used to objectively rank the decision alterna-

tives as well as to accurately identify the most 

desirable alternatives. 

6 

Conclusions 

Most MCDA problems can be depicted as a 

matrix format, and the commonly-used additive 

model of a multi-attribute utility function can 

be considered a linear combination of its utility 

values. This study presents a novel method of 

applying the weighted linear combination 

ranking technique (WLCRT) to MCDA. The 

proposed method is based on the linear 

combinations of matrix algebra calculations. It 

is formulated from a decision matrix of 

preferences using a 7-point Likert scale 

scoring, or a standardising scale of the existing 

statistics. Based on the linear combination of 

optimally-weighted observed variables of the 

covariance matrix, the criteria weights are 

elicited from the proximity matrix of 

preference relations, using the eigenvector 

method. The weighted generalised means 

(WGMs) are then used to aggregate preference 

information as well as to rank the order of 

decision alternatives. 

This study uses the WGMs as the aggrega-

tion operator to perform preference aggregation. 

In practice, the proposed method considers the 
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relative importance of criteria, and conveys the 

influence of the decision-maker’s evaluation 

attitudes. It can flexibly reflect evaluation 

attitudes as open, neutral, or rigorous. The 

sensitivity analysis results have shown that the 

WLCRT is more stable and credible in ranking 

alternatives than the SAW model. In conclusion, 

this study contributes to our knowledge in 

MCDA by providing a valid weighting method 

associated with an effective aggregation 

operation. This method is both technically 

valid and practically useful. As sensitivity 

analysis usually involves an iterative post-hoc 

procedure, further research could focus on 

developing a systematised and formularised 

approach to sensitivity analysis for the 

WLCRT method. 
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