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With my term as Editor-in-Chief of the SAOJ coming to an end soon, 
I cannot help but reflect on some of my past experiences in this 
role. Perhaps the most challenging (and satisfying) was the need 
to get to grips with some of the more intricate aspects of research 
methodology and statistics. At first glance, these concepts seem 
fairly straightforward, but almost ubiquitously become exceedingly 
complex the harder you look. The odds ratio (OR) is an excellent 
case in point. 

There are a number of ways in which the measure of association 
between an exposure and an outcome can be expressed. ORs 
are probably the most commonly used. The current emphasis on 
reporting 95% confidence intervals (CI), rather than only p-values, 
has resulted in us seeing and doing a lot more logistic regression. 
Along with the 95% CI, the statistical program also provides the OR, 
which is then reported in our results. Now, ORs are tricky things. 
To justify this statement, I am going to have to go way back to the 
start, where all good research should start, with the definitions. 

A ratio is simply a number obtained by dividing one number 
by another number, and there is not necessarily a relationship 
between the numerator and denominator. A proportion is a ratio 
that relates a part to a whole, thus there is a relationship between 
the numerator and denominator. Rate is a proportion where the 
denominator also takes into account another dimension, typically 
time. Defining probability (P) is a minefield, but for our purposes, 
we will limit it to the measure of the likelihood that an event will 
occur. With the basics out of the way, let us delve a little deeper.

Relative risk (RR), also known as the risk ratio, is a descriptive 
statistic commonly used in analytical studies. Risk can be defined as 
the probability of the outcome of interest occurring. RR is therefore 
essentially a ratio of proportions. In statistical terms, RR is equal to 
the event rate in the exposed group divided by the event rate in the 
non-exposed (control) group (Figure 1). For example, imagine we 
are performing a study comparing the risk of developing infection 
following grade III open fractures when antibiotics are given within 
an hour of the injury (treatment group) or not (control group). If 
5 out of 100 patients in the treatment group and 20 out of 100 
patients in the control group get an infection, we have a relative risk 
of 0.25. RR = 0.25 means exposed patients (i.e., in the treatment 
group) are 0.25 times as likely to develop the outcome of interest. 
We could also state that patients receiving antibiotics within an 
hour were 75% (0.75 = 1 − 0.25) less likely to develop infection. As 
clinicians we generally prefer to think in terms of probabilities and 
relative risk.

The other commonly used descriptive statistic to report measure 
of association is the odds ratio (OR). Odds can be defined as 
the relative probability of the outcome of interest occurring. So, 
what is this probability relative to? – the probability of outcome not 
occurring. In other words, odds represent the ratio of the probability 
of the event occurring over the probability of the event not occurring. 
Odds can mathematically be defined as equal to (P/1−P). The 

OR then is a ratio of ratios and equal to odds of outcome in the 
exposed group divided by odds of outcome in the non-exposed 
control group. An OR < 1 means a reduced odds of the outcome of 
interest occurring while an OR > 1 implies increased odds. Thus, in 
our open fracture example study, the OR would be 0.21. This would 
mean that the odds (not risk) of infection is 79% lower in the group 
that received antibiotics. If an OR is 3.8, that would mean that odds 
of the outcome of interest occurring was increased by 3.8 times. 

For the sake of completeness, I will also mention number needed 
to treat (NNT), which is essentially the number of patients that 
need to receive the exposure to prevent one unwanted outcome. It 
is defined as the inverse of the absolute risk reduction (ARR). ARR 
is equal to event rate in the control group (CER) minus the event 
rate in the exposed group (EER).

At this point, it might be useful to reflect on the origin of ORs. 
The first rationale has to do with study design. In cross-sectional 
studies, the RR can be calculated from the prevalence. In cohort 
studies RR can be calculated from the incidence. If the incidence 
or prevalence is not available in case-control studies, then OR 
may be the only option to provide an indication of the measure of 
association.1 It is important to remember that case-control studies 
are typically used to study rare diseases or events. Why this is 
relevant, will hopefully make more sense shortly. The second 
reason for ORs’ existence is statistical in nature and somewhat 
more complex. Basically, logistic regression provides an OR rather 
than RR, even in a cohort study, because of the frequency of 
convergence problems during the mathematical modelling.2 What 
is a convergence problem? The explanation is beyond the scope 
of this piece, and my understanding. It has something to do with 
the fact that regression aims to maximise the likelihood (by finding 
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Figure 1. Commonly used terms in the reporting of risk
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the maximum log likelihood) through iteration and the problem 
occurs when the process cannot converge on a best-fit model. But 
I digress …

Now before we examine ORs any further, we need to have a 
look at how ORs are computed by our statistical software. Please 
bear with me as things are about to get messy. In our open fracture 
example above, the baseline odds for infection was 0.25; thus  
20 infections/80 no infections. Now imagine we increase our 
sample size by 1 000 and we have improved our treatment to the 
extent that we still only have 20 infections. This will equate to an 
odds of 0.02 for infection. But if we turn it around and ask what 
are the odds of not getting an infection, it will be 54 (1080/20). It’s 
a problem of scale; 0.02 looks much closer to 1 than 54. While 
representing exactly the same event, the odds of infection not 
occurring appear to be a lot bigger than infection occurring. How 
did statisticians solve the problem? By using the logarithm (log) 
function. (Note: in logistic regression, log means the natural log 
[loge or ln]). Log odds is the log of the odds, i.e., loge(odds). Why 
use log odds? Basically, to create a fair comparison scale. Log 
odds for infection occurring = loge(20/1080) = −3.99. Log odds 
for infection not occurring = loge(1080/20) = 3.99. Using log odds 
creates symmetry in the scale by creating outputs that are normally 
distributed around zero.3

When logistic regression is performed by a statistical program 
it uses the logit function, where logit (p) = ln 

  p  .
                         1-p  The regression 

coefficient (b) reported in the output table is the amount of change 
expected in the log odds when there is a one unit change in the 
exposure variable with all of the other variables in the model being 
held constant. The OR is then computed as the exponential function 
of the regression coefficient associated with a one-unit increase in 
the exposure. In mathematical terms OR = eb1 (where e= 2.718).

So what, I hear you ask. Well, there are a number of implications. 
First, it’s important to recognise that ORs should not be interpreted 
as an equivalent to RR. It is incorrect to say that with an OR of 4 
there is a ‘four-fold increase in the risk’. OR always overestimates 
the RR and represents a poor approximation of relative risk when 
the baseline risk (in the control group) for the outcome of interest 
is high (roughly more than 5–10%).4 As with all statistical tests, 
certain assumptions are made and this one is called the ‘rare 
disease assumption’. In rare diseases, the odds are close to the 
risk as the number of non-events is close to the total number of 
subjects.5 Thus, with a baseline risk of around 5%, an OR of 4 
would equate to a relative risk of roughly 3.5. With a baseline risk of 
25%, an OR of 4 would equate to the relative risk of about 2.5, and 
at 50%, an OR of 4 a relative risk of only about 1.5. You will notice 
the exponential nature of the relationship. Methods have been 
described by which the OR estimated by logistic regression can be 
converted to a ‘corrected’ risk ratio which is closer to the ‘true’ risk 
ratio.6 This may be necessary in cohort studies where the event 
rate is more than 10% and the OR more than 2.5 or less than 0.5.

Secondly, when the OR is calculated by performing logistic 
regression, the sample size is important. Logistic regression cal-
culates the OR from the regression coefficient where OR = eb. To 
determine the coefficient, it uses a maximum likelihood estimation 
(MLE). MLE is a method of estimating the value of the parameters 
of a model from observed data in a way that these values will 
maximise the probability that the process described by the model 
produces the actually observed data. You might be wondering, as 
I did, how the regression coefficient is calculated. You will have to 
trust me when I say: Let’s not go there. What is important though is 
to recognise that the behaviour of maximum likelihood estimation 
is unpredictable when dealing with small sample sizes. Some say 
that 100 should be the minimum sample size.7

Thirdly, we have the problem of ‘non-collapsibility’. Since most 
of the predictors we use in a multivariate model are correlated to 

some degree, it is common for regression coefficients to change 
from one model to the next. In fact, as you include more variables 
in a model that are predictive of an outcome, the magnitude of the 
coefficient of a variable unrelated to others will keep increasing.8 
Ultimately this also creates problems for us in meta-analysis. The 
ORs used in meta-analysis will come from different studies using 
different models with varying degrees of omitted variables and may 
not be directly comparable.

I will admit that I may have embellished here somewhat and it 
is difficult to say exactly how large the effect size of the mentioned 
problems are in the studies we typically read. Furthermore, I am not 
trying to imply it is wrong to report ORs, it should just be interpreted 
correctly. And it remains vital that we do not only report relative 
measures of association (like ORs and RRs), but ensure that we 
also clearly communicate absolute measures, like event rates in 
the respective groups. Others have recommended that we should 
try and report at least one other measure of effect size alongside 
the OR.8 The result is that we clinicians may have to familiarise 
ourselves with a host of new statistical methods and concepts 
like Poisson regression and negative binominal regression.9 But 
will these more complex statistical methods improve our decision 
making?

One can foresee us working in this, let us call it, ‘analytical’ way 
for some time and therefore an understanding of these concepts 
remains valuable. However, the issues with ORs also highlight the 
fragility of our analytical approach, which may have more profound 
implications. As clinicians, we aim to base our treatment on the 
highest levels of evidence, mainly meta-analysis. Thus, we will, for 
example, decide to, or not to, internally fixate a patient’s fractured 
clavicle based on this evidence. Yet we are often left with the 
nagging feeling that the analytics we are using and the inferences 
we have drawn may have not accounted for all the complexity 
involved in the decision-making process. Do the observations from 
a population as a whole provide meaningful evidence for decision 
making at a patient level?10

We recognise the shortcoming of the OR measure itself, and 
know there are others. There is power, reliability, validity, fragility, 
heterogeneity and a host of other confounders that could have crept 
in at the individual study level or during the synthesis. Then there 
is the fact that we are using the output of our analytical approach 
as a constant function, i.e., whatever the input into the equation, 
the output remains constant. If we choose operative management 
of clavicle fractures based on the OR for non-union, for example, 
the 16-year-old motocross enthusiast will get treated with internal 
fixation, as will the 36-year-old accountant who occasionally cycles. 
An oversimplification, I agree, but there may be some truth to the 
argument. The impact of a host of input variables may remain 
unaccounted for when the decision is based on a few outcome 
variables from the study sample as a whole only. There may well 
be circumstances where a certain combination of input variables 
like patient factors, fracture pattern and displacement, etc., might 
result in an OR that would favour nonoperative management. 

Will adding more inferential statistics to our results or computing 
them in much more elaborate ways really improve our ability to 
choose the correct treatment for the patient sitting in front of us? 
Or will a larger sample size or the ‘big data’ approach solve our 
problem? It may well help, but there may be alternative ways in 
which data can be used to provide us with an output that assists 
us with choosing the optimal management strategy at individual 
patient level. Ironically, the answer again lies in the form of logistic 
regression and the logit function. This mathematical function has 
found major application in artificial intelligence (AI), and machine 
learning in particular. Machine learning involves the building of a 
model by looking at data and identifying patterns, and then using 
those insights to better complete its assigned task. Any task that 
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requires a set of data inputs or rules can be automated using 
machine learning, even the more complex tasks. And the machine 
learns from new data, continuously refining the model.

The decision to fixate or not fixate a clavicle might therefore 
become ‘AI-based’. While it would still be founded on the available 
data, i.e., evidence-based, the algorithms and models will be so 
complex it would likely be beyond our comprehension. And we are 
not talking about the distant future here. If you look at any edition 
of a prominent orthopaedic journal these days, you are bound to 
find at least one machine-learning article. Currently these models 
are mostly focused on detection of pathology (pattern recognition) 
or the prediction of an outcome, prognosis or complications. 
A systematic review published in 2021 identified 34 papers that 
evaluated machine learning as a patient–provider decision-making 
tool.10 The majority of these studies focused on risk prediction and 
patient stratification, which can then be used to inform decision 
making. For example, the International Spine Study Group worked 
on a model to predict major complications after spinal deformity 
correction surgery.11 Some took it a step further, venturing into the 
field of making the actual decision. Azimi et al., for example, use an 
artificial neural network to select surgery for patients with lumbar 
spinal stenosis.12 I agree, that hits close to home. 

While it is not inconceivable that these novel decision-making 
tools may become part of our practice in the future, some things 
won’t change. We will still want, and need, to have an understanding 
of how it works and how to use it correctly. The rabbit hole will most 
likely just get a bit deeper.

References
1.	 Sacket DL, Deeks JF, Altman DG. Down with odds ratios! Evidence-Based Med. 

1996;1(6):164-66.
2.	 Williamson T, Eliasziw M, Hick GH. Log-binomial models: exploring failed convergence. 

Emerg Them Epidem. 2013:10(1):14. https://doi.org/10.1186/1742-7622-10-14.
3.	 Agarwal P. What and why of log odds. Towards Data Science. 9 July 2019. Available from: 

https://towardsdatascience.com/https-towardsdatascience-com-what-and-why-of-log-odds-
64ba988bf704. Accessed 14 February 2022.

4.	 Schmidt CO, Kohlmann T. When to use the odds ratio or the relative risk? Int J Public 
Health. 2008;53(3):165-67. https://doi.org/10.1007/s00038-008-7068-3.

5.	 Schulz KF, Grimes DA. An overview of clinical research: the lay of the land. Lancet. 
2002;359(9300):57-61. https://doi.org/10.1016/s0140-6736(02)07283-5.

6.	 Zhang J, Yu KF. What is relative risk? A method of correcting the odds ratio in cohort 
studies of common outcomes. JAMA. 1998;280(19):1690-91. https://doi.org/10.1001/
jama.280.19.1690.

7.	 UCLA Advanced Research Computing. Logistic regression with Stata chapter 1: introduction 
to logistic regression with Stata. Available from: https://stats.oarc.ucla.edu/stata/webbooks/
logistic/chapter1/logistic-regression-with-statachapter-1-introduction-to-logistic-regression-
with-stata/. Accessed 14 February 2022.

8.	 Uanhoro JO, Wang Y, O’Connel AA. Problems with using odds ratios as effect sizes in binary 
logistic regression and alternative approaches. J Exp Educ. 2021;89(4):670-89.

9.	 Schober P, Vetter TR. Count data in medical research: Poisson regression and negative 
binomial regression. Anesth Analg. 2021;132(5):1378-79. https://doi.org/10.1213/ane.00 
00000000005398.

10.	 Brnabic A, Hess LM. Systematic literature review of machine learning methods used in the 
analysis of real-world data for patient-provider decision making. BMC Med Inform Decis 
Mak. 2021;21(1):54. https://doi.org/10.1186/s12911-021-01403-2.

11.	 Scheer JK, Smith JS, Schwab F, et al. Development of a preoperative predictive model 
for major complications following adult spinal deformity surgery. J Neurosurg Spine. 
2017;26(6):736-43. https://doi.org/10.3171/2016.10.spine16197.

12.	 Azimi P, Mohammadi HR, Benzel EC, et al. Use of artificial neural networks to decision 
making in patients with lumbar spinal canal stenosis. J Neurosurg Sci. 2017;61(6):603-601. 
https://doi.org/10.23736/s0390-5616.16.03078-2.


