Emulating Vehicular Ad hoc Networks for Evaluation and
Testing of Automotive Embedded Systems

Manuel Schiller, Alois Knoll
Robotics and Embedded Systems
Department of Informatics
Technische Universitat Minchen
{manuel.schiller,knoll}@in.tum.de

ABSTRACT

The evaluation and testing of cooperative applications based
on Vehicular Ad hoc Networks (VANETS) in real testbeds is
difficult due to the need for repeatable scenarios and large-
scale experiments. Therefore a novel virtualization-based
framework is presented to evaluate automotive software in
the context of emulated VANETSs. The approach enables the
precise and large-scale evaluation of real-world implementa-
tions through the synchronized execution of network and
vehicle simulators as well as the applications encapsulated
in virtual Electronic Control Units. This paper provides
a detailed description of the framework’s structure and its
components as well as an validation of the proposed syn-
chronization algorithm. The performance comparison with
pure network simulation indicates that despite additional
overhead large-scale experiments can be conducted without
loss of accuracy.

Keywords
VANET, embedded system simulation, testing, evaluation,
network emulation

Categories and Subject Descriptors

1.6.5 [Simulation and Modeling]: Model Development;
1.6.7 [Simulation and Modeling]: Simulation Support
Systems; C.2.1 [Computer-Communication Networks|:
Network Architecture and Design— Wireless communication

1. INTRODUCTION

Vehicular Ad hoc Networks (VANETS) have attracted a lot
of research attention over recent years due to the potential
improvements in traffic safety and efficiency as well as driver
comfort. A high variety of applications, commonly referred
to as Advanced Driver Assistance Systems (ADAS), such
as cooperative driving and subsequently automated driving,
are enabled through wireless ad hoc communication between
the vehicles on the road.

Simulation is currently the key methodology to gain an un-
derstanding of the various effects that influence the per-
formance and behavior of the entire system composing a
VANET. The majority of publications focuses on exploring
the lower-level effects such as wireless signal propagation at
the physical layer, medium access control and ad hoc rout-
ing protocols. The actual applications which are intended
to run on top of these layers are usually either left out com-
pletely or are only modeled on a very abstract level. How-
ever, these applications, which often exhibit safety-critical
features, need to be evaluated and tested extensively before
deployment in series production.

While it is theoretically possible to develop simulation mod-
els of the actual implementations and execute them in the
established simulators, this approach quickly gets infeasible
for complex real world applications. At the other end of the
spectrum of available methods real world test drives using
physical testbeds of prototype vehicles offer the highest de-
gree of realism. Due to the large amount of resources needed
for real world test drives, this method is not feasible to per-
form large-scale and extensive testing of vehicular networks.
Additionally, achieving repeatable test conditions is next to
impossible. In the automotive industry the use of simulation
is well established in the development process of traditional
driver assistance and active safety systems. However, the
current emphasis is primarily on the simulation of individual
vehicles at a very high level of detail [6]. When investigating
and evaluating the performance of ADAS based on vehicu-
lar communication, this isolated view of a single vehicle in
the simulation is not sufficient anymore. Potentially every
vehicle equipped with wireless communication technology is
coupled in a feedback loop with the other road users par-
ticipating in the vehicular network. Therefore the number
of relevant intelligent entities which need to be taken into
account is drastically increased.

To help bridging this gap we present in this paper a new
virtualization-based approach for emulating vehicular ad hoc
networks as the enabling methodology for evaluating and
testing network-centric automotive embedded systems based
on this wireless communication technology. Our approach
ensures that the actual implementations rather than models
are employed in the test procedure taking into account the
overall system context. By eliminating the need to create
such simplified abstractions, testing can be performed earlier
and without potential mismatches between the application
and its model.

SIMUTOOLS 2015, August 24-26, Athens, Greece
Copyright © 2015 ICST
DOI 10.4108/eai.24-8-2015.2261004

ion Layer

Envir (RTE)

Services Layer

AUTOSAR Complex
Operating ECU Abstraction Layer Drivers
(0s)

Microcontroller Abstraction Layer

ECU Hardware

Figure 1: Overview of the AUTOSAR layered archi-
tecture

The remainder of this paper is organized as follows: The
testing and evaluation of real-world implementations of ADAS
imposes a certain set of additional requirements, which are
discussed in section 2 before giving an overview of the re-
lated work. The general concept and architecture of our
emulation approach are described in section 3. In section 4
we evaluate the performance and scalability of our approach
by means of an exemplary scenario and discuss its benefits
and limitations. Section 5 concludes the paper and gives an
outlook of future work.

2. BACKGROUND AND RELATED WORK

Before we proceed to the discussion of related work, it is es-
sential to illustrate our scope and area of application as well
as the resulting requirements. In order to evaluate and val-
idate real implementations of ADAS in a simulated, virtual
environment, a holistic view of the vehicular ad hoc network
comprising the three domains vehicle, network and applica-
tion is necessary. In contrast to existing approaches we aim
to not only cover the network characteristics but also the be-
havior of the vehicles and the network-aware applications in
high fidelity. A high fidelity representation of an application
means that the actual code as well as the context in which it
is executing must be integrated into the overall simulation.

Unlike traditional PC-based software, driving assistance sys-
tems are typically executed on embedded hardware plat-
forms and must comply with hard real time requirements.
A specific software architecture called AUTOSAR was de-
veloped by the automotive industry for this specific purpose,
which defines a generalized architecture for Electronic Con-
trol Units (ECUs). Asshown in figure 1 this model features a
separation into multiple layers. AUTOSAR also contains the
definition of an embedded real time operating system as well
as the possibility to define custom interfaces and runtime be-
havior in a formal description. The different components of
an ECU, e.g. Application Software Components (SWC), can
be developed separately from each other and are combined
to the desired overall functionality later on. A key benefit
of AUTOSAR is the standardization of hardware abstrac-
tion layers, which enables hardware-independent develop-
ment and portability of the majority of an ECU’s software.
We will exploit this hardware abstraction in our emulation
framework to provide a realistic execution environment for
the evaluation of network-based applications.

In order to state the fundamentals of this investigation we
give a brief overview of existing approaches for VANET sim-
ulation and network emulation in the following sections.

2.1 VANET simulation

The usual strategy to simulate VANETS found in literature
is to bidirectionally couple a network simulator and a mi-
croscopic traffic simulation. Following this approach the in-
teractions between road traffic and network protocols are
represented and the mutual impact can be explored [15, 12].

A number of VANET research simulation frameworks which
employ this coupling strategy have been developed. They
allow researchers to focus on their specific area of inter-
est, i.e. low-level networking such as medium access or
high-level concepts of applications such as lowering CO2-
emissions or reducing traffic jams. In Veins [15] the ap-
plication behavior is directly incorporated into the network
simulator as a high-level and simplistic model. While VSim-
RTI [13] and iTETRIS [11] provide specific interfaces for in-
tegrating VANET applications into the simulation context,
adapting real-world implementations of automotive embed-
ded software to these interfaces requires code modifications.

Since large-scale simulations are usually conducted to per-
form a statistical analysis of the simulation results, efficient
but rather simplistic microscopic traffic simulators are used
to generate realistic mobility models. When testing and
evaluating real ADAS implementations a more detailed rep-
resentation of a vehicle’s state including its sensors and ac-
tuators in the simulation is absolutely vital.

2.2 Network Emulation

Network simulation and real world testbeds are the usual
methodologies for evaluating network protocols and appli-
cations. Due to the simplifications performed in simulators
regarding application models as well as the costs and insuf-
ficient repeatability in testbeds, it is desirable to combine
the strengths of both methodologies in a network emulator.

The original definition of network emulation by Fall [5] cov-
ers the real time coupling of a discrete event network simula-
tor and hardware executing real implementations of software
prototypes. In a wider sense, network emulation can be de-
fined as a hybrid experiment technique that combines both
real and simulated network components with real referring
to either hardware or software components [1, p. 14].

When the network simulation can not be executed fast enough
due to complex models and high node counts, simulation
overload causes the network simulator to lag behind the real
time execution of the software prototypes and thus invali-
dates the results of the network emulation [19]. Since com-
putational resources can usually not be increased infinitely
to speed up the network simulation, several attempts have
been made to slow down the execution of the real world im-
plementations to match the execution speed of the network
simulation. A common approach is to exploit virtualization
to decouple the time perception of the software prototype
from the wall clock time [19, 16]. The run-time behav-
ior of such a virtualized system is under full control, so it
can be synchronized with the network simulation in virtual
time. Network emulation based on virtualized PC operating

systems such as Linux is widely established for evaluating
PC-based software, however this methodology is yet novel
in the research area of automotive embedded systems and
inter-vehicular networks.

3. EMULATING VEHICULAR AD HOC NET-

WORKS

We now present the design and implementation of our em-
ulation framework. After describing the overall concept we
explain in detail the four components of which the frame-
work is composed.

3.1 Conceptual overview

Our framework is designed to provide a generic emulation
platform for evaluating real implementations of ADAS which
are based on vehicular network communication. The main
goal is the support of executing unmodified applications in
a high-fidelity and accurate representation of the VANET.
The underlying concept is based on the feedback coupling of
detailed subsystems for each of the relevant domains consti-
tuting a VANET, i.e. the physical domain of each vehicle,
the logical domain embodied by the applications running on
the ECUs as well as the communication network connecting
the vehicles through the wireless channel. Figure 2 shows
the three relevant domains as well as the data flows between
those subsystem representations in a conceptual overview of
the emulation framework. For reasons of clarity, the data
flow from vehicle simulator to network simulator is not de-
picted but the node positions in the network simulator are
kept consistent with the vehicle simulator.

O proxy node
D simulated node

[simulated

wireless channel

vehicle data network packet

exchange

network simulator

ECU virtualization

Figure 2:
framework

Conceptual overview of the emulation

In order to allow evaluation and testing of unmodified ap-
plications, the emulation framework needs to provide an ex-
ecution environment which is as close as possible to the real
system on which the applications will be deployed in se-
ries production. This could be achieved by representing the
logic domain by real hardware ECUs executing the software
prototypes. However, this approach is infeasible for the fol-
lowing reasons:

The development process in the automotive industry is char-
acterized by concurrent engineering in order to shorten the

time to market. In the given context this especially covers
the parallel design and development of both ECU hard- and
software, which results in only relatively late availability of
the hardware and would thus delay testing of the software
prototypes. Additionally, conducting large-scale scenarios
would require a large number of ECUs as well as a high
logistic effort for setting up and performing the actual ex-
periments. Last but not least, the aforementioned simula-
tor overload resulting from complex models and high node
counts in the network simulator can invalidate the evalua-
tion results.

For these reasons we choose to integrate wirtualized ECUs
(VECUs) as the representation of the logical domain into
the overall emulation framework. This approach solves the
dependency on hardware availability and the scalability is-
sues and allows us to decouple the emulation from the real
time constraint by synchronizing the time progression of the
software prototypes with the execution speed of the other
simulators.

3.2 Network Simulation

The network simulation is used to model the wireless com-
munication network connecting the vehicles and the applica-
tions running on their ECUs. As shown in figure 2 each vir-
tual ECU is represented by a proxy node in the network sim-
ulation domain. The proxy node acts as a communication
endpoint to initiate the simulated transmission of network
packets as well as to receive network packets transmitted
by other network nodes. Additionally, fully simulated nodes
can be included, which may for example represent intelligent
infrastructure such as traffic lights.

We apply the vertical emulation concept which is defined
in [7] and also referred to as a split stack in [14]. The net-
work stack is separated into two parts where the upper layers
(including the application layer) belong to the VECUs, while
the lower layers are realized by the network simulator. To
offer the highest degree of generality and flexibility, the em-
ulation boundary, i.e. the layer at which the network stack
is split up, is drawn at the Medium Access Control (MAC)
layer. This allows to evaluate arbitrary routing and trans-
port layers as well as the application functionality, which
are typically implemented in software and executed in the
VECU. Network packets generated by these layers are cap-
tured at the virtual Network Interface Controller (vNIC),
which is described in the next section. The packets are
then injected into the corresponding proxy node, traverse
the simulated MAC and physical (PHY) layer and are then
potentially received in reverse order at other nodes after the
simulated transmission has been performed by the network
simulator. The proxy nodes therefore handle all lower layer
functionality that is usually performed by hardware. This
hybrid emulation approach is shown in figure 3.

In order to enable communication between fully simulated
nodes and VECUs above the MAC layer, the fully simu-
lated nodes need to have compliant implementations of the
relevant VANET protocols (e.g. routing protocols such as
GeoNetworking) and, if necessary and applicable, also ap-
plication models which can act as traffic sources, e.g. trans-
mitting periodic beacons.

Discrete Event - ECU
Network Simulator o Virtualization

Proxy Node
[simulated 802.11 MAC |

;

[simulated 802.11 PHY |
A

simulated WiFi channel

Figure 3: Hybrid Vehicular Ad hoc Network Emu-
lation

The event-driven network simulator ns-3 is chosen to per-
form the actual network simulation of the wireless commu-
nication domain. ns-3 features an open-source modular ar-
chitecture that can be extended quite easily. A rich number
of simulation models is already available in ns-3, of which
we employ the WiFi models and specifically the 802.11p
MAC layer model [2]. Network packets in ns-3 are repre-
sented as binary packets in network byte order that match
their real-world counterparts, so it is possible to directly ex-
change packets between simulation nodes and external sys-
tems without the need for any packet translation through
the proxy nodes and a custom data-exchange interface.

To allow synchronization of the network simulator with the
other domain representations we implemented a custom event
scheduler which can be controlled from the outside. In con-
trast to the default implementation this scheduler executes
only those events whose associated simulation time is below
a given boundary in virtual time. When this boundary time
is reached or a network packet is received by a proxy node,
event execution is suspended and the time of the next event
in the network simulator’s queue is reported to the outside.
The synchronization algorithm is described in detail in sec-
tion 3.5.

3.3 ECU Virtualization

As described in section 3.1 our emulation platform is based
on the virtualization of ECUs. While there are various ap-
proaches available for virtualizing such embedded systems,
the method of choice is justified by two main reasons. The fi-
nal hardware design of an ECU is usually determined rather
late in the development cycle. Therefore important details
such as processor architecture, core count etc., which are vi-
tal for a detailed modeling of the underlying hardware, are
missing until the hardware is specified. Additionally, de-
tailed instruction set or even cycle-accurate simulations re-
quire a high computational effort, which conflicts with our
goal to conduct large-scale evaluations.

We have thus chosen the rather hardware abstract approach
ETAS Virtual ECU? which allows us to put the emphasis
not on one single, highly-detailed modeled ECU but on the
overall system of connected vehicles. This tool enables us
to create virtual ECUs based on a formal AUTOSAR archi-
tectural model and the hardware independent C code. This
approach can be described as host-compiled paravirtualiza-

"http://www.etas.com/en/products/isolar_eve.php

tion [3] where the hardware-abstraction layers of AUTOSAR
are exploited by porting those abstraction layers as well as
an AUTOSAR compliant operating system to a standard
PC operating system such as Linux. This allows the exe-
cution of a VECU on a traditional desktop PC on top of
the host operating system rather than interacting directly
with the actual hardware. A VECU is compiled into a self-
contained executable that can be instantiated as often as
necessary, which enables performing large-scale evaluations.
Each VECU is run as a separate process which has its own
virtual hardware (e.g. interrupt controller) modeled on an
abstract functional level.

In the following we describe the execution concept of a VECU.
The execution is stimulated by an internal clock or through
virtual interrupts. The internal clock can either progress
with respect to the wall clock when running in real-time
mode or clock ticks can be injected from the outside, which
allows full control over the execution of the VECU. Due to
the fact that the virtual ECU is executed only on a rather
abstract hardware model and since the compiler for the host
PC is different from that of the target platform, the exe-
cution durations of individual tasks are not representative.
We thus interpret the execution of VECU tasks as discrete
events which means that a task is executed by an infinitely
fast processor in terms of simulated time, as time does not
progress during the execution of a task. This assumption
leads to the fact that preemption of tasks by higher prior-
ity tasks or interrupts does not occur, however considering
these scheduling effects only makes sense if a more detailed
model of the target platform is available.

execution . . discrete event
.time !‘ preemption \/xlnterrupt Tactivation

ISR
>| | Task5ms
kS
s
Task10ms
0 5 10 15 20

time (ms)

Figure 4: Timing behavior comparison of virtualized
ECU

Figure 4 shows the timing behavior during normal execu-
tion and when assuming task activations as discrete events
by means of an exemplary ECU, which has two cyclic tasks
and one Interrupt Service Routine (ISR). During normal
execution, tasks can be preempted by tasks of higher pri-
ority, which is not accounted for when activating the task
execution as discrete events. Task activations and interrupt
handling are modeled by the discrete-event execution in the
correct order but conclusions about the timing behavior of
the target hardware platform cannot be drawn. The du-
ration in terms of virtual time between two clock ticks is
arbitrary, so the time resolution is configurable for the de-
sired accuracy. By default this time span is set to 1 ms. The
discrete event interpretation allows to achieve deterministic
and repeatable evaluation of the software implementation

under test because influences stemming from the host oper-
ating system do not have an impact on the timing behavior
of the virtual system.

A VECU can communicate with the outside world through
virtual hardware devices. Since there is yet no standardized
integration of VANET hardware in the AUTOSAR architec-
ture we have integrated the virtual wireless network interface
(VNIC) using a complex device driver as shown in figure 5.
The vNIC redirects the network packets originating from
the VECU to the corresponding proxy node in the network
simulator. It also offers the interface to inject network pack-
ets into the VECU which have arrived at the proxy node.
When a packet is injected into the virtual network device,
an interrupt in the VECU is raised and in the corresponding
ISR the packet can be handled by a custom network stack
implementation and the AUTOSAR software components.

Software | Application
Component Layer

[Runtime Environment |

VANET

Complex
AUTOSAR Device
oS Driver

VNIC Driver

Figure 5: Integration of the virtual network device
into the VECU architecture

3.4 Traffic And Vehicle Simulator

As stated in section 2.1 the microscopic vehicle models which
are usually employed for conducting VANET simulations are
not detailed enough for our purpose. The vehicle dynamics
as well as actors and sensors need to be modeled in sufficient
detail and accuracy in order to supply all necessary state
variables to the real implementation of the ADAS under
evaluation.

We therefore employ the nanoscopic traffic and vehicle sim-
ulator VIRES Virtual Test Drive (VTD) for the high-fidelity
simulation of the physical domain of the vehicles. VTD has
been developed for the automotive industry as a virtual test
environment used for the development of ADAS [18]. Its
focus lies on interactive high-realism simulation of driver
behavior, vehicle dynamics and sensors. VTD is highly
modular, so any standard component may be exchanged
by a custom and potentially more detailed implementation.
Its standard driver model is based on the intelligent driver
model [17], however an external driver model may be applied
if necessary. The same concept applies for the vehicle dy-
namics simulation, where the standard single-track model
can be substituted by a complex vehicle dynamic model
adapted for specific vehicles. Each simulated vehicle can
be equipped with arbitrary simulated sensors, for example
RADAR sensors or synthetic video cameras. VTD offers
proprietary interfaces to control the simulation execution in
a time driven manner as well as to extract the simulation
state after the computation of a simulation step.

3.5 Simulation Synchronizer & Scheduler
The three described domain representations are either time-
driven (vehicle simulator), event-driven (network simulator)
or both (VECUs). In order to achieve a deterministic co-
simulation comprised of all three domains, the subsystems
must be synchronized. The Simulation Synchronizer & Sched-
uler (SSS) ensures that the execution of the subsystems is
synchronous so that no time drifts can occur as well as
causality errors, i.e. executing events from the past, are
avoided. Since none of the system representations allows to
perform rollbacks, an optimistic synchronization algorithm
cannot be used; we therefore choose a conservative synchro-
nization algorithm.

SSS maintains a global event list to determine which system
representation is to be scheduled next. After the execu-
tion of a system representation is completed, this system is
rescheduled when it is due the next time. The determination
of this next time depends on the respective system. The ve-
hicle simulator is scheduled once every time step Tyen which
is configurable for the vehicle simulator. The execution of
the VECUs can be scheduled every tick T};cx which corre-
sponds to the time resolution of the VECUs as described in
section 3.3. In order to reduce synchronization overhead, the
task activation behavior of the VECUs, which is contained
in the AUTOSAR architectural model, can be exploited. If
a VECU’s minimum task activation period is Tyecu,min, this
value can serve as the rescheduling period without sacrific-
ing accuracy. The custom scheduler implementation of the
network simulator reports its next event time as described
in section 3.2 which serves as the next event time in the
global event list of SSS for the network simulator. In order
to avoid causality errors, the network simulator is only al-
lowed to progress in virtual time until the next VECU will
be executed again. This boundary is also derived from the
global event list.

We illustrate the synchronization algorithm by the sequence
diagram in figure 6, which shows the exemplary scenario
of two VECUs which send ping requests and replies over
a simulated wireless channel. For reasons of simplicity the
vehicle simulator is left out. The transmission durations in
this example are purely fictional and listed for demonstrative
purposes only. The VECUs in this example exhibit a task
activation period of Tyecu,min = Ttick = 1.0 ms.

Initially the two VECUs execute one tick of virtual time in
parallel. VECU:2 sends a ping request at time ¢ = 1.0ms
contained in network packet p to VECU;. Packet p is cap-
tured at the vNIC of VECU> and is then sent to SSS which
forwards it to the network simulator. This causes the en-
queuing of an ns-3 event which injects the packet into the
network simulation at ¢ = 1.0ms through the proxy node
associated with VECU;. ns-3 is now allowed to execute
events until ¢ = 2.0ms, which leads to the transmission of
p on the simulated wireless channel. At time ¢ = 1.2ms
packet p is received at the proxy node, which corresponds
to VECU;. This suspends the execution of events inside
the network simulator and packet p is delivered through the
SSS to vNIC of VECU;, which triggers an interrupt. The
corresponding ISR handles the packet in the network stack
and sends a ping reply in a response packet r which travels
the exact opposite way back to VECUs.

SSS VECU; I VECU, | ns-3 |
T T
T T T
®i=0 > >
> > I
(] |
T send packet p to VECU, at t = 1 |
' finished l
< T 1
Of=t ' schedule transmission of p atlt = 1, boundary =2y ' schedule
T |l reception
O e | deverptovecy, [[2[enien
Ort=12 deliver packetp o | . j
» interrupt raised . i
send response I I
Packet r to VECU, ' !
| I
finished | i
-------------------------------- — schedule transmission of ratlt = 1.2, boundary =2 o | schedule
MR
| - reception
:) deliver r to VECU, | s 1
QOi=1a : ' |
deliver packet r !
| > [interrupt raised |
P yfinished H
\ | I
execute 1tick o 1 n ! !
D finished 7T T i !
T send packet p to VECU, at t = 2| '
B | B |
| : 7 I
L | | I
| I

Figure 6: Synchronization of virtual ECUs and net-
work simulation

In our implementation, the system representations do not
communicate directly with each other but through the SSS.
The underlying federation concept is derived from the High
Level Architecture (HLA), a generic framework for distributed
simulations [9]. Each system representation is connected to
the SSS by means of a specific ambassador software compo-
nent which is responsible for message exchange in both direc-
tions as shown in figure 7. These messages involve both the
synchronization and the exchange of simulation state data
as depicted in figure 2. The ambassadors translate the mes-
sages from SSS to the respective subsystem and vice versa.
This allows to replace any given subsystem by either another
software implementation or even by real hardware by mod-
ifying just the corresponding ambassador. The flexibility
of the architecture also makes it possible to add additional
simulators to the overall simulation and to distribute the
system representations on multiple machines.

VECU ns-3 VTD
O ©)
ECU NS Vehicle
ambassador ambassador ambassdor

S |

Simulation Synchronizer & Scheduler

Figure 7: Implementational overview of the emula-
tion framework

4. EVALUATION AND DISCUSSION

In the following we evaluate the proposed framework by
means of a synthetic scenario to examine the timing accu-
racy and performance with regard to scalability. We then
discuss the universal applicability of our approach as well as
its limitations.

4.1 Evaluation Scenario and Setup

The evaluation is performed by comparing the framework’s
results and performance with pure network simulation. In
order to achieve a good comparability we chose to use the
previously described ping scenario with static node posi-
tions. In this scenario there are n = 2k nodes where each
node i € [1,k] pings another node j € [k + 1,n] over a
simulated 802.11p Wifi channel with an interval v between
requests. We integrated the open source IP stack lwip [4]
(version 1.4.1) in the AUTOSAR VECU, which is straight-
forward due to it being implemented in C. All experiments
were carried out on a single machine equipped with an 3.6
GHz Intel Xeon CPU, 16 GB RAM on a 64 bit Linux 3.16
kernel using ns-3 version 3.22 and ETAS Isolar-EVE version
2.2.

4.2 Accuracy and Scalability

To validate the correct synchronization behavior of our global
event scheduler we performed the above described scenario
once in ns-3 alone without the SSS and any VECUs being
attached, so all nodes were fully simulated. The same sce-
nario was then run in our emulation framework with each
node now configured as a proxy attached to a VECU in-
stance. The transmissions were simulated on a 802.11p wire-
less channel at 5.9 GHz. The node count was set to n = 20
and the ping interval to v = 10ms. Figure 8 shows an ex-
cerpt of the captured round trip times resulting from both
the simulation and the emulation experiment between a cor-
responding pair of nodes. The round trip times vary due
to the interference of competing transmissions between the
other node pairs on the shared wireless medium. The re-
sulting round trip times are identical for both experiments,
which demonstrates that the scheduling of VECUs and net-
work simulation in our emulation framework is performed
correctly and deterministically.

[pure simulation
——= _emulation with VECUs

0] [r

o
T

round trip time [ms]
T

o
2

0 ' ' " " ' ' 1
3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000
simulation time [ms]

Figure 8: Round trip times in simulation and emu-
lation

Before comparing performance of simulation and emulation
we ran the scenario with network simulation disabled. This
setup allows to examine the influence of the synchronization
tightness by either scheduling the VECUs every Tiic,, = 1 ms
or every Tyecu,min = 10ms. Figure 9 shows the impact of
the different synchronization periods. While 40 VECUs can
be run synchronously in real time in our framework when
using the 10 ms period, the synchronization overhead of the
1ms period is clearly visible and the real-time boundary is
crossed when executing more than 24 VECUs.

In order to quantify the computational overhead in compar-

real-time boundary
—¥—sync1ms
15 | sync 10 ms
@
§10
E
3
°
5 -
3
0 L L L s
5 10 15 20 25 30 35 40

number of VECUs

Figure 9: Performance comparison of VECU syn-
chronization periods

ison with the network simulation, which is introduced by
our framework, we conducted a series of experiments with
increasing node counts for both the simulation alone and
the emulation and measured the real-time duration for each
configuration. Each configuration was run 10 times for a
duration of 10s of simulated time and the number of node
pairs k was increased from 1 to 24. Figure 10 shows the
durations for the simulation in ns-3 alone as well as for the
emulation with the two different synchronization periods of
the VECUs when running the ping scenario with an inter-
val of v = 100 ms between ping requests. This results in a
message frequency of 10 Hz, which is typical for cooperative
awareness in VANET applications [8, p. 275].

The pure simulation obviously performs fastest since no ad-
ditional synchronization is necessary. The synchronization
overhead, which the emulation results exhibit, stems from
the fact that the VECUs and the network simulation are exe-
cuted sequentially when sending and receiving network pack-
ets to guarantee a correct and deterministic co-simulation.

50

—©— pure simulation
40 + —k— emulation sync 1 ms
emulation sync 10 ms

W
S
T

duration [s]
S

S SSooNNNNe e el

5 10 15 20
number of node pairs k

Figure 10: Performance comparison between simu-
lation and emulation

The computational effort which is necessary to perform the
network emulation depends on multiple factors. The syn-
chronization period of the VECUs only shows a rather slight
impact on the overall duration, whereas the number of nodes
represented by VECUs as well as the amount of messages
transmitted and received by VECUs affect the performance
the most. Another factor, which is not examined here, is the
actual workload of each VECU. If the ADAS under eval-

uation performs complex calculations, this will lead to an
additional increase of computational requirements.

4.3 Discussion

The above shown evaluations state that our framework al-
lows to accurately evaluate and test real-world implementa-
tions of VANET applications. The overhead introduced by
executing VECUs for each node as well as synchronizing the
three subsystem representations leads to longer simulation
durations. However since the simulation is decoupled from
the real-time constraint, the accuracy of the results is not
affected even when conducting large-scale experiments.

In the following we will discuss the universal applicability of
the approach as well as its limitations.

The chosen virtualization method generally allows to inte-
grate unmodified source code of the ADAS implementations.
However, due to the paravirtualization it is necessary to
compile the code to run on the x86 host architecture. Typ-
ically, software components developed for the AUTOSAR
architecture are written in ANSI C. Due to the AUTOSAR
hardware abstraction layers, they are independent from the
underlying hardware which allows to re-compile the code for
the x86 architecture without code modification. However, if
the standardized interfaces of the AUTOSAR architecture
are bypassed somehow, the source code may need to be mod-
ified. Additionally, if source code is not available, e.g. due to
IP protection, closed source components can be integrated
as precompiled x86 libraries.

While we focus on ad hoc communication based on IEEE
802.11p, our concept is agnostic to the underlying network
topology and transmission medium. This allows to evaluate
the network-based ADAS on other radio technologies such
as ad hoc LTE only by changing the configuration of the
network simulator to apply other simulation models for the
PHY and MAC layer. In our examples we only consider one
ECU per vehicle, however the approach is flexible enough to
allow the integration of multiple ECUs per vehicle and, given
that suitable models exist, even the simulation of intra-car
networks such as CAN.

Since the chosen virtualization approach assumes no detailed
knowledge of the target hardware, hardware characteristics
which might influence the timing behavior are not taken
into consideration. Delays which are caused by the target
hardware are neglected, which is a limitation of our cur-
rent implementation. We regard the modeling of hardware-
introduced delays as future work which can be approached
by instrumenting and tracing execution on real hardware
platforms once they are available in the development pro-
cess [10].

S. CONCLUSION

In this paper we proposed a novel approach for emulat-
ing vehicular ad hoc networks for evaluation and testing
of network-aware automotive embedded systems. The pre-
sented methodology employs virtualization to allow the in-
tegration of real-world automotive software into the overall
simulation consisting of the three coupled subsystem rep-
resentations of the physical, application logic and wireless
networking domain. This enables the detailed analysis of

network protocol and application implementations in the
context of a realistic runtime execution provided by an AU-
TOSAR compliant embedded operating system. A global
simulation scheduler synchronizes the execution of all do-
main representations to achieve a deterministic and correct
experiment execution. The evaluation shows that the em-
ulation generates accurate results by synchronously execut-
ing the software components encapsulated in virtual ECU
instances and the other simulators. The approach allows
to perform detailed and large-scale evaluations early in the
product development cycle without being dependent on the
availability of real hardware.

As our next steps we plan to integrate an industry imple-
mentation of a Car2Car communication stack into our pro-
posed virtual prototype solution as well as tackle the area
of hardware-in-the-loop simulation by combining both real
and virtual ECUs.

6. REFERENCES

[1] R. Beuran. Introduction to Network Emulation. Pan
Stanford Publishing, 1st edition, 2012.

[2] J. Bu, G. Tan, N. Ding, M. Liu, and C. Son.
Implementation and Evaluation of WAVE
1609.4/802.11P in Ns-3. In Proceedings of the 2014
Workshop on Ns-3, WNS3 ’14, pages 1:1-1:8, New
York, USA, 2014. ACM.

[3] J.-L. Béchennec, M. Briday, S. Faucou, F. Pavin, and
F. Juif. ViPER: A Lightweight Approach to the
Simulation of Distributed and Embedded Software. In
Proceedings of the 3rd International ICST Conference
on Simulation Tools and Techniques, 2010.

[4] A. Dunkels. Design and implementation of the lwip
tep/ip stack. Technical report, Swedish Institute of
Computer Science, 2001.

[5] K. Fall. Network emulation in the vint/ns simulator.
In Proceedings of the fourth IEEE Symposium on
Computers and Communications, pages 244-250, 1999.

[6] O. Gietelink, J. Ploeg, B. De Schutter, and
M. Verhaegen. Development of advanced driver
assistance systems with vehicle hardware-in-the-loop
simulations. Vehicle System Dynamics, 44(7):569-590,
2006.

[7] E. Goktiirk. Emulating ad hoc networks: differences
from simulations and emulation specific problems. In
New Trends in Computer Networks, volume 1 of
Advances in Computer Science and Engineering:
Reports. Imperial College Press, October 2005.

[8] H. Hartenstein and K. Laberteaux. VANET Vehicular
Applications and Inter-Networking Technologies.
Intelligent Transport Systems. Wiley, 1. edition, 2010.

[9] IEEE. IEEE Standard for Modeling and Simulation
(M&S) High Level Architecture (HLA)- Framework
and Rules, August 2010.

[10] S. Kristiansen, T. Plagemann, and V. Goebel.
Modeling communication software execution for
accurate simulation of distributed systems. In
Proceedings of the 2013 ACM SIGSIM Conference on
Principles of Advanced Discrete Simulation,
SIGSIM-PADS ’13, pages 6778, New York, USA,
2013. ACM.

[11] M. Rondinone, J. Maneros, D. Krajzewicz, R. Bauza,

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

P. Cataldi, F. Hrizi, J. Gozalvez, V. Kumar, M. Rockl,
L. Lin, et al. iTETRIS: a modular simulation platform
for the large scale evaluation of cooperative ITS
applications. Simulation Modelling Practice and
Theory, 34:99-125, 2013.

F. J. Ros, J. A. Martinez, and P. M. Ruiz. A survey
on modeling and simulation of vehicular networks:
Communications, mobility, and tools. Computer
Communications, 43:1-15, 2014.

B. Schiinemann. V2X simulation runtime
infrastructure VSimRTI: An assessment tool to design
smart traffic management systems. Computer
Networks, 55(14):3189 — 3198, 2011.

C. Serban, A. Poylisher, and J. Chiang. Virtual ad hoc
network testbeds for network-aware applications. In
Network Operations and Management Symposium
(NOMS), 2010 IEEE, pages 432-439, Osaka, Japan,
2010. IEEE.

C. Sommer, R. German, and F. Dressler.
Bidirectionally Coupled Network and Road Traffic
Simulation for Improved IVC Analysis. IEEFE
Transactions on Mobile Computing, 10(1):3-15, 2011.
F. Sultan, A. Poylisher, J. Lee, C. Serban, C. J.
Chiang, R. Chadha, K. Whittaker, C. Scilla, and

S. Ali. Timesync: Enabling scalable, high-fidelity
hybrid network emulation. In Proceedings of the 15th
ACM International Conference on Modeling, Analysis
and Simulation of Wireless and Mobile Systems,
MSWiM ’12; pages 185-194, New York, USA, 2012.
ACM.

M. Treiber, A. Hennecke, and D. Helbing. Congested
traffic states in empirical observations and microscopic
simulations. Physical Review E, 62(2):1805, 2000.

K. von Neumann-Cosel, M. Dupuis, and C. Weiss.
Virtual test drive - provision of a consistent tool-set
for [D,H,S,V]-in-the-loop. In Proceedings of the
Driving Simulation Conference, Monaco, 2009.

E. Weingértner, F. Schmidt, H. Vom Lehn, T. Heer,
and K. Wehrle. Slicetime: A platform for scalable and
accurate network emulation. In Proceedings of the 8th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI ’11), Boston, USA, March
2011.

