Onset of Turbulence in Planar and Circular Pipe
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ABSTRACT

A third-order hydrodynamic equation with amolecular structure parameter, obtained through a projection and perturbation
formalism from the Liouville equation is applied to circular and planar Poisseuille-Hagen flow. It is shown that thereisno
principal differenceinthe resulting parabolic velocity profilesaslong asthe flowsremain laminar. However, adifferenceis
noted in the onset of turbulence in consistency with observations, showing larger stability of the parabolic velocity profile

incircular pipe.

INTRODUCTION

Theorigin of turbulence and laminar-turbulent transition
are among the most important unresolved problems of
fluid dynamics (Fasel & Saric, 1999). The traditional
method in standard hydrodynamicsisto solve Navier-
Stokes equation for stationary velocity profiles, which
are parabolic for Poisseuille-Hagen flow in laminar
regimein good agreement with experiments. However,
any agreement breaks down at the onset of turbulence
as velocity profiles flatten and become non-stationary
(Landau & Lifshic, 1988; Fox & Germano, 1961). An
explanation for the flattened vel acity profileswasgiven
by Prandtl and von Karman (Fox & Germano, 1961)
using the transverse component of the fluctuation of
the velocity. The faster molecules of the central region
of the pipe show up in the boundary layer mix with
slower molecules, and the velocity profile becomes
roughly uniform except boundary layers.

For the description of turbulent flows, many
renormalized perturbation theoriesall based on Reynolds
equation (McComb, 1992) were devel oped in the past.
The Reynolds equation, which aside from the mean
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velocity considers its arbitrary time fluctuations, like
Navier-Stokes equation, ignores the structure of the
molecul es. Limitations of the Reynoldsequationinthe
laminar-turbulent transition and itsdifficulty inexplaining
theorigin of turbulence suggest study of the phenomenon
directly fromthe Liouville equation.

From the Liouville equation we derive third order
hydrodynamic equation containing two control
parametersrelated to theinterna structure and geometry
of the molecule (Muriel & Dresden, 1995). For the
incompressibleflows, wethen obtain corresponding flow
equationsfor planar and circular pipe. Theflow equations
with just one control parameter related to the internal
structure of the molecul e are solved numerically for the
velocity profiles for each system separately to see the
differences in the onset of turbulence and the change
fromthe parabolic velocity profileinto theflattened one.
The control parameter is interpreted as the strength of
inel astic interactions among the mol ecul es of thefluid.
The inelasticity of the collisionsis easily explained if
one adoptsahypothesis of quantum origin of turbulence
(Muriel & Dresden, 1995). There are dissipative effects
due to the excitations of internal degrees of freeedom
of the molecules, inducing the occurence of inelastic
interactionsand irregular motion. The quantum kinetic
model of turbulence (Muriel & Dresden, 1995) isbased
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on the well-known Landau idea (Landau & Lifshic,
1988), which associates turbulence with deterministic
chaos.

Hydrodynamic equations

Following the projection formalism of Zwanzig, Dresden,
and Muriel (Zwansig, 1961; Muriel & Dresden, 1969)
and the perturbation procedure outlined in Jirkovsky &
Muriel (1994), the kinetic equations correct to the
appropriateorder k =0,1,2 arederived fromtheLiouville
equation for N-particledistribution function:
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define a projector P = J.J'dyzdxv , Where Q
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is the volume of the system. The complementary
projector is1—P. Applying both projectorsto theLiouville
equation, wereduceit to an exact equivalent of thefirst
equation in the BBGKY hierarchy for the one particle
distribution function
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We then take avery simple approach: formally expand

the distribution functionf =»" 2* £ in orders of &
n=0

and the propagator G = ¢'>""in Taylor series, and
then substitute into Eq. (2). We pick the terms to the

appropriate order «.
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Zero order (k=0)

Zero order kinetic equation for the one-particle
distribution function /% isthe Boltzmann equation, with
BBGKY -like€elastic collisionterm
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in the absence of an external field, reducible to the
standard hydrodynamic equations.

First order (k=1)

We obtain ahydrodynamic equation with one correction
term dj <UiUj > t, known as the Reynolds equation.
Corresponding Fourier transformed form is used in
amost al theories of turbulence. The turbulence is
considered merely as a flow phenomenon and a
mathematical problem, molecular structure being
unimportant or unnecessary. Although some theories,
such as the Kolmogorov theory (McComb, 1992),
correctly predict the power spectrum, and fully
devel oped turbulenceis considered aswell ungerstood,
the question of laminar-turbulent transition an@/origin of
turbulence, on the other hand, is still open.

Second order (k=2)
The second order kinetic equation is reduced to the

equation for the mean velocity of the fluid using a
renormalization attributed to McComb (McComb, 1992)
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where p isthe mean pressure, p isthedensity, and v is
the kinematic viscosity.

\'
The control parameter is b = j (VV)?dQ ,withQas
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the volume and V, the interaction potential. We have
b=0for elastic collisions. Thissuggeststheinterpretation
of b > 0 as a measure of the strength of inelastic
interactions. The parameter b manifestsits presencein
theturbulent regime and an application such asthe planar
Poisseuille-Hagen flow (Jirkovsky & Bo-ot, 1999) is
used to illustrate the effect of 5. Numerical simulation
has shown time development of parabolic velocity
profilesinto nearly uniform velocity profilesindicative
of the onset of instability. An adhoc assumption was
utilized, specifically, the control parameter wasincreased
linearly with the mean vel ocity. Also, there was a short
time limitation in the validity of the second order
equations. For largetimes, the vel ocities changed signs.

Third order (k=3)

To obtain thethird order kinetic equation, we pick terms
containing A%in Eq. (2) using the appropriate expansions
for the one-particledistribution function and propagator
G. Thethird order kinetic equation can be written as:
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Using explicit forms of the Liouville operators,
multiplying Eq. (5) by one component of momentum
and integrating over velocity space, it may be reduced
to momentum transport equation of thethird order:
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\V; V 3
where the vector parameter ¢ = I(VV) dQ
(@)

is related to the geometry of the molecule and is
interpreted as a measure of the assymetry of the
molecule. We used the renormalization of the density,
pressure, and velocity to their true values attributed to
McComb (McComb, 1992). Eq. (6) isthe hydrodynamic
equation with correction termsin integral form correct
to thethird order. It contains the second order equation
and new terms with vector parameter ¢ and scalar
parameter b. It isinteresting to note that the geometry
of the molecule plays no role in the flow of an
incompressiblefluid, although thereisanother term with
control parameter b.

Planar and cir cular Poisseuille-Hagen flow

If oneusestheincompressibility condition, Eg. (6) may
be reduced to non-linear equation for the Poisseuille-
Hagen flow, with configuration where
U =(U(z,1),0,0) for the fluid enclosed between two
infinite parallel planar boundariesat fixed distanceL:
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Utilizing a similar procedure for the flow in infinite
giyeular pipe of radius R, with configuration where
U =(0,0,U(r,t))in cylindrical polar cordinates we
have:
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Fig.1. Bottom to top, planar flow: (a) b = 0.00000005, t = 1.10; (b) b = 0.0000001, t = 1.10.
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Fig. 2. Bottom to top, circular pipe flow: (a) b = 0.00000005, t = 1.10; (b) b = 0.0000001, t = 1.10.

We use non-dlip boundary conditionsand static fluid as
initial conditions to get numeric solutions of standard
Navier-Stokes equations, which are subsequently used
asinitial guessin simulation of third order hydrodynamic
equationsfor theflow in planar and circular pipe (Figs.
3 & 4). Fixed parameters for the numeric simulation
aeasL=1,R=05p=1v=01andm=1

Since constant pressure gradients drive the motion of
the flows, they are adjusted in standard Navier-Stokes
equationsto give equal maximum velocity and Reynolds
number of the flow in planar and circular pipe. The

Ul
Reynolds number is R, = —"- with characteristic
length /= 0.5L = R. v
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Fig.3. Bottom to top, circular pipe flow: b=0, t=1.10.
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Fig. 4. Bottom to top, planar flow: b=0, t = 1.10.

The numeric results (Figs. 1a & 1b) for planar
Poisseuille-Hagen flow show the onset of instability and
a flattened velocity profile for control parameter
b = 0.00000005. On the other hand, velocity profilesin
circular pipe with the same control parameter (Figs. 2a
& 2b) arestill parabolic and theflow islaminar, though
guasi-stationary. Higher control parameter is needed to
induce laminar-turbulent transition. This is consistent
with the observation (Landau & Lifshic, 1988) of critical
Reynolds numbersfor the circular pipe, Rc = 1800, and
for the planar flow, Rc = 1000. Results for the third
order theory represent improvement over second order
in the time validity and shape of the profiles. Also,
velocities do not change signsfor large times.
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