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ABSTRACT

A third-order hydrodynamic equation with a molecular structure parameter, obtained through a projection and perturbation
formalism from the Liouville equation is applied to circular and planar Poisseuille-Hagen flow. It is shown that there is no
principal difference in the resulting parabolic velocity profiles as long as the flows remain laminar. However, a difference is
noted in the onset of turbulence in consistency with observations, showing larger stability of the parabolic velocity profile
in circular pipe.

INTRODUCTION

The origin of turbulence and laminar-turbulent transition
are among the most important unresolved problems of
fluid dynamics (Fasel & Saric, 1999). The traditional
method in standard hydrodynamics is to solve Navier-
Stokes equation for stationary velocity profiles, which
are parabolic for Poisseuille-Hagen flow in laminar
regime in good agreement with experiments. However,
any agreement breaks down at the onset of turbulence
as velocity profiles flatten and become non-stationary
(Landau & Lifshic, 1988; Fox & Germano, 1961). An
explanation for the flattened velocity profiles was given
by Prandtl and von Karman (Fox & Germano, 1961)
using the transverse component of the fluctuation of
the velocity. The faster molecules of the central region
of the pipe show up in the boundary layer mix with
slower molecules, and the velocity profile becomes
roughly uniform except boundary layers.

For the description of turbulent flows, many
renormalized perturbation theories all based on Reynolds
equation (McComb, 1992) were developed in the past.
The Reynolds equation, which aside from the mean

velocity considers its arbitrary time fluctuations, like
Navier-Stokes equation, ignores the structure of the
molecules. Limitations of the Reynolds equation in the
laminar-turbulent transition and its difficulty in explaining
the origin of turbulence suggest study of the phenomenon
directly from the Liouville equation.

From the Liouville equation we derive third order
hydrodynamic equation containing two control
parameters related to the internal structure and geometry
of the molecule (Muriel & Dresden, 1995). For the
incompressible flows, we then obtain corresponding flow
equations for planar and circular pipe. The flow equations
with just one control parameter related to the internal
structure of the molecule are solved numerically for the
velocity profiles for each system separately to see the
differences in the onset of turbulence and the change
from the parabolic velocity profile into the flattened one.
The control parameter is interpreted as the strength of
inelastic interactions among the molecules of the fluid.
The inelasticity of the collisions is easily explained if
one adopts a hypothesis of quantum origin of turbulence
(Muriel & Dresden, 1995). There are dissipative effects
due to the excitations of internal degrees of freeedom
of the molecules, inducing the occurence of inelastic
interactions and irregular motion. The quantum kinetic
model of turbulence (Muriel & Dresden, 1995) is based* Corresponding author
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on the well-known Landau idea (Landau & Lifshic,
1988), which associates turbulence with deterministic
chaos.

Hydrodynamic equations

Following the projection formalism of Zwanzig, Dresden,
and Muriel (Zwansig, 1961; Muriel & Dresden, 1969)
and the perturbation procedure outlined in Jirkovsky &
Muriel (1994), the kinetic equations correct to the
appropriate order k = 0,1,2 are derived from the Liouville
equation for N-particle distribution function:

                                                                               (1)

with Liouville operator                     , where

                               and

define a  projector                                         , where Ω

is the volume of the system. The complementary
projector is 1–P. Applying both projectors to the Liouville
equation, we reduce it to an exact equivalent of the first
equation in the BBGKY hierarchy for the one particle
distribution function

                                                                               (2)

We then take a very simple approach: formally expand

the distribution function                  in orders of λ

and the propagator              in Taylor series, and
then substitute into Eq. (2). We pick the terms to the
appropriate order k.
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Zero order (k=0)

Zero order kinetic equation for the one-particle
distribution function f(0) is the Boltzmann equation, with
BBGKY-like elastic collision term

                                                                               (3)

in the absence of an external field, reducible to the
standard hydrodynamic equations.

First order (k=1)

We obtain a hydrodynamic equation with one correction
term                       , known as the Reynolds equation.
Corresponding Fourier transformed form is used in
almost all theories of turbulence. The turbulence is
considered merely as a flow phenomenon and a
mathematical problem, molecular structure being
unimportant or unnecessary. Although some theories,
such as the Kolmogorov theory (McComb, 1992),
correctly predict the power spectrum, and fully
developed turbulence is considered as well understood,
the question of laminar-turbulent transition and origin of
turbulence, on the other hand, is still open.

Second order (k=2)

The second order kinetic equation is reduced to the
equation for the mean velocity of the fluid    using a
renormalization attributed to McComb (McComb, 1992)

                                                                               (4)

where p is the mean pressure, ρ is the density, and ν  is
the kinematic viscosity.
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the volume and V, the interaction potential. We have
b=0 for elastic collisions. This suggests the interpretation
of b > 0 as a measure of the strength of inelastic
interactions. The parameter b manifests its presence in
the turbulent regime and an application such as the planar
Poisseuille-Hagen flow (Jirkovsky & Bo-ot, 1999) is
used to illustrate the effect of b. Numerical simulation
has shown time development of parabolic velocity
profiles into nearly uniform velocity profiles indicative
of the onset of instability. An adhoc assumption was
utilized, specifically, the control parameter was increased
linearly with the mean velocity. Also, there was a short
time limitation in the validity of the second order
equations. For large times, the velocities changed signs.

Third order (k=3)

To obtain the third order kinetic equation, we pick terms
containing λ3 in Eq. (2) using the appropriate expansions
for the one-particle distribution function and propagator
G. The third order kinetic equation can be written as:

(5)

Using explicit forms of the Liouville operators,
multiplying Eq. (5) by one component of momentum
and integrating over velocity space, it may be reduced
to momentum transport equation of the third order:

                                                 (6)
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is related to the geometry of the molecule and is
interpreted as a measure of the assymetry of the
molecule. We used the renormalization of the density,
pressure, and velocity to their true values attributed to
McComb (McComb, 1992). Eq. (6) is the hydrodynamic
equation with correction terms in integral form correct
to the third order. It contains the second order equation
and new terms with vector parameter 

v
c and scalar

parameter b. It is interesting to note that the geometry
of the molecule plays no role in the flow of an
incompressible fluid, although there is another term with
control parameter b.

Planar and circular Poisseuille-Hagen flow

If one uses the incompressibility condition, Eq. (6) may
be reduced to non-linear equation for the Poisseuille-
Hagen flow, with configuration where

( ( , ),0,0)=
uv
U U z t for the fluid enclosed between two
infinite parallel planar boundaries at fixed distance L:

                                                                               (7)

Utilizing a similar procedure for the flow in infinite
circular pipe of radius R, with configuration where

(0,0, ( , ))=
uv
U U r t in cylindrical polar cordinates we
have:

                                                                               (8)
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We use non-slip boundary conditions and static fluid as
initial conditions to get numeric solutions of standard
Navier-Stokes equations, which are subsequently used
as initial guess in simulation of third order hydrodynamic
equations for the flow in planar and circular pipe (Figs.
3 & 4). Fixed parameters for the numeric simulation
are as L = 1, R = 0.5, ρ = 1, ν = 0.1, and m = 1.

Since constant pressure gradients drive the motion of
the flows, they are adjusted in standard Navier-Stokes
equations to give equal maximum velocity and Reynolds
number of the flow in planar and circular pipe. The

Reynolds number is max

υ
=n

U l
R with characteristic

length l = 0.5L = R.

Fig. 2. Bottom to top, circular pipe flow: (a) b = 0.00000005,  t = 1.10; (b) b = 0.0000001, t = 1.10.
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Fig.3. Bottom to top, circular pipe flow: b = 0, t = 1.10.

Fig.1. Bottom to top, planar flow: (a) b = 0.00000005, t = 1.10; (b) b = 0.0000001, t = 1.10.
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The numeric results (Figs. 1a & 1b) for planar
Poisseuille-Hagen flow show the onset of instability and
a flattened velocity profile for control parameter
b = 0.00000005. On the other hand, velocity profiles in
circular pipe with the same control parameter (Figs. 2a
& 2b) are still parabolic and the flow is laminar, though
quasi-stationary. Higher control parameter is needed to
induce laminar-turbulent transition. This is consistent
with the observation (Landau & Lifshic, 1988) of critical
Reynolds numbers for the circular pipe, Rc = 1800, and
for the planar flow, Rc = 1000. Results for the third
order theory represent improvement over second order
in the time validity and shape of the profiles. Also,
velocities do not change signs for large times.
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Fig. 4. Bottom to top, planar flow: b = 0, t = 1.10.
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