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ABSTRACT

In this paper we present concrete computations of representations of the real rotation group SO(3,R)
arising from deformation quantization of its coadjoint orbit Q,= S?. In particular, we construct the
guantization mapping ¢,

ls  ifsdh 1 C(Q) [[M]] — C=() [[M].
where/isa isaLieagebrarepresentation of g = so(3,R)
8 S lse End(C=(M)[[A]]D.

Wewill prove that the left-regular representation T of SO(3,R) isjust T =exp ( i ), where [is unitarily
equivalent to £. So instead of the usual Hilbert space of representation, , we need to have an associative
algebra

A= (C(M)[[M], ;)

which gives adeformation of the commutative algebraand Lie algebra structures of C=(M). A iscalled a
deformati on quantization of the symplectic manifold M. Therequirementthat / bealieagebrarepresentation
isthattheequationifsk ik—ifikifs ={ifs, ifz} = 1 fs; (STe n)shouldbesatisfied. Thismeans
that the coadjoint action of the real rotation group on its orbits should be strictly homogeneous, and
furthermore, that the star-product %, isacovariant star-product, i.e., the Lie subalgebra

h=gpan{ f5: Se u}

of C=(M) isan hi-relative quantization with respect to %,. An appropriate Fourier transform intertwines /g
and adifferential operator Fo 1t isproved that iy equivalent to the action of rotation given by the element
exp Sof the rotation group G = SO(3,R), that is, /s isthe differential of the left regular representation.
Exponentiation of the representation / ¢ gives the corresponding representations of G.

Keywords: deformation quantization, orbit method, coadjoint orbit, symplectic manifold, representation
theory, rotation group
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INTRODUCTION

Quantization is a process by which quantum systems
are assigned to classical mechanical systems. To
illustrate, n free particles are classically described by
2n coordinates (p, R O a4 ..., d") where the pj’s are
momenta and the s are the position coordinates.
H. Weyl (1931) gavethefollowing prescription for the
guantization of thissystem:

g — Q' = multiplication by q|,

- - _d,
PP g

wherethe operators on theright hand side act on Hilbert
space L%(R"). The theory of quantum mechanics
requiresthat the correspondence principle holds:

—

[.G] = ih {pq}=§1,

where{ , } is the Poisson bracket on R?".

In general, quantization meansthe assignment of Hilbert
space operators to functions on phase space. Recall
that the Hamiltonian formulation of classical mechanics
has for its framework a symplectic manifold (M, ).
The classical observables are smooth real functionson
M, denoted by C~(M), and the evolution of observables
satisfiesthedifferential equation

d ¢
& = {H. 1}

Here H € C=(M) isthe Hamiltonian (e.g., energy) of
the system.

Onthe other hand, Heisenberg’sformul ation of quantum
mechanics considers a Hilbert space H, the quantum

observablesbeing self-adjoint operatorson #{. Thetime
evolution of observables satisfy

d i _
T’}:#[H,A[] =HoA- AcH,
wherethe Hamiltonian H isaself-adjoint operator on #.

A natural definitionfor quantizationisthatitisalinear
mapping
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Q: C*(M) - { self-adjoint operatorson #,}
such that
(Q1)
Q2  Q(f, g}) = Lh [Q(f), Qg

Q) =1d,,

The requirement (Q2) means that the Lie algebra
structure of functions on phase space under Poisson
bracket goes over to the Lie algebra structure of
operators under commutators. Moreover (Q2) limits
the class of functionsthat can be“ quantized,” that is,
there is no correspondence Q defined on all of the
smooth functions on M when irreducibility
requirements are imposed. The fact that it is not
possible that al elements of C*(M) may be made to
correspond to self-adjoint operators and still satisfy
Heisenberg’s correspondence principle has been
known for quite a while as Groenewold-Van Hove
theorem (Abraham & Marsden, 1978; Groenewold,
1946; Van Hove, 1951). In the example given above,
the quantizable functions are those which belong to
some symbol class. Mathematical theories addressing
the”irreducibility” problem are the geometric
quantization theory of Kostant & Souriau (Kostant,
1970; Auslander & Kostant, 1971; Kirillov, 1962;
Kirillov, 1976), Berezin's quantization (Berezin, 1975,
Berezin 1974) and deformation quantization. Theidea
of quantization by deformation of structures of the
algebra of classical observables was proposed by
Bayen, Flato, Fronsdal, Lichnerowicz, and Sternheimer
inthemid 1970's(Bayenetal., 1977; 1978). It consists
of replacing operatorson Hilbert space asthe quantum
observables by formal power seriesin some variable
A, and interpreting the correspondence principle asan
equality only up to second order in A. Indeed, Bayen
and others suggested that:

“quantum mechanics be interpreted as a
deformation of the algebra of observables, and
not as a radical change in the nature of
observables.”

As was mentioned above, there is no quantization of
R?",i.e., thereisnolinear mapping f— Q (f) satisfying
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(Q and (Q2). One does not even have a quantization
of the polynomial algebraon R?" assymmetric operators
in Hilbert space for which g and p. are represented
irreducibly (Groenewold-Van Hovetheorem).

Quite recently an analogue of this theorem was found
for the sphere & (Gotay et al., 1996) Thefollowing list
apparently points to some general obstruction
phenomenato quantization, that is, the examples satisfy
a Groenewol d-Van Hove type theorem:

1. nilpotent basic algebras on connected symplectic
manifolds,

2. T'S'(thecylinder R x S'), with basic algebrae(2)
whichisthe Lieagebraof the solvable group E(2)
(Euclidean group);

3. bascLiealgebrason compact symplectic manifolds,
inparticular, S

4. finite-dimensional quantizations of basic Lie
algebras on noncompact symplectic manifolds, in
particular, R"with Liealgebraly (2n) (Heisenberg
Lie algebra).

In Gotay (1995); Gotay & Grundling (1997a, 1997b);
Gotay & Grabowski (1999); Gotay, Grabowski, &
Grundling (1997); Gotay, Grundling, & Hurst (1995) and
Gotay, Grundling, & Tuynman (1998) the full details
and the precise meaning of basic algebraare discussed.

The conjecture of the existence of ageneral obstruction
to quantization is false, however, as Gotay and
co-workers showed. They demonstrated that there is
no obstruction to quantization of the torus T2
Furthermore, as item 3 in the case of the Lie algebra
e(2) indicates, a corresponding obstruction should
appear for basic solvable Lie algebras, in analogy with
item 2. This is not true since there is an infinite-
dimensional quantization of TR, = R x R, with affine
basic algebra aff (R). The paper by Gotay, Grundling,
& Tuynman (1998) discusses at length the
circumstances under which obstructionsto quantization
appear and why no such obstruction occur for the
examplesjust mentioned.

The aim of this paper is to present concrete
computations of the representations of SO(3,R), in
particular theleft-regular one, coming from deformation
quantization of §, which appear as a (semisimple)
coadjoint orbit. In particular, we will show that the
quantization mapping ifsk:C=>(M)[[i]] =>C=(M)[[i]] is
infact thedifferential of theleft-regular representation
of SO(3,R) in &. To perform these computations, one
needs to look for an appropriate coordinate system on
the sphere that reflects certain properties of the Lie
group action onit. The polar coordinate systemon S is
a natural candidate, but it does not reflect these
properties of the group action. The coordinate system
arising from geodesics on & satisfies the requisite
properties, thistime on the universal covering, but the
ensuing integrability of the Lie algebra representation
presents a problem and requires extra care in
computing. Thus, the application of deformation
quantization to the representation theory of concrete
Lie groups is dependent on the proper choice of
coordinate systemson coadjoint orbits. The quantization
we obtainisactually aprequantization (quantization sans
theirreducibility requirement), and thisisconsistent with
the Groenewold-Van Hove result for . Thefinal step
of finding the irreducibl e representations from among
those constructed does not come from deformation
quantization but from geometric quantization or the
theory of induced representations. The computations
performed here, itishoped, should hint to further methods
on how to treat the general case of compact semismple
Liegroups, in, particular SO(n, R), and also the discrete
series of the noncompact semisimple classical groups.
It is difficult to say the same thing for the continuous
series of the noncompact groups since they require a
considerable modification of the orbit method, for
example, the representation space of the principal
continuous seriesof SL(2, R) isnot acoadjoint orbitin
the usual sense. Ideally, each of the more important
considerations in representation theory (namely,
characters, intertwining operators, induction, restriction,
and others), or some suitable modification thereof,
should be defined in terms of deformation quantization.
This has been done for the case of connected, simply
connected nilpotent groups and exponential groups but
is not yet complete for solvable groups (Arnal 1984,
Arnal & Cortet 1990a; 1990b; 1985; Arnal et al., 1983)
and semisimple groups. Theframework with which we
shall work within is the so-called method of orbits
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introduced by A. A. Kirillov in 1962. This is the
framework employed in the articles by Arnal (1978),
Arnal & Cortet, (1985, 19903, 1990b), and Arnal et al.,
(1990). Inthe orbit method the basi ¢ object isacoadjoint
orbit of aLie group G in the dual space g* of itsLie
algebrag = Lig(G) .

The application of deformation theory to the theory of
Lie group representations has been pursued since the
mid-1970s(Fronsdal, 1989; Bayen et al., 1977) although
only afew results have been obtained. It was only in
the early to mid-1980s that a better understanding of
the application came to light. What is needed is an
appropriate notion of group invariance of the star-
product. InBayen et d., (1977) the notion of geometrical
invariancewasintroduced. However, it findsonly limited
application since almost all important examples of
symplectic manifoldswith Lie group action do not have
thisinvariance property. A correct notion of invariance,
called covariance, isinvestigated by Arnal et al ., (1983).
The properties of covariance is compared with those
of other invariance concepts, and its applicability to
representation theory of nilpotent Lie groups
commenced. Arnal (1984) gave the first concrete
application of deformation quantization to representation
theory. The Liegroups considered consisted of the class
of connected, simply connected nilpotent Lie groups
and workswithin the framework of the orbit method of
Kirillov (1962). Further invedtigationsintothissameclass
of Liegroupsfollowed (Arnal & Cortet, 1990a), where
other familiar considerations in representation theory,
such as Fourier transform and group C'-algebras
(Gelfand-Naimark-Segal construction), are defined in
terms of or found connections with deformation
guantization. Arnal & Cortet (1985) and Arnal et al.
(1995) continued this program to exponential and type
| solvable Liegroups, respectively.

In short articles by Do Ngoc Diep & Nguyen Viet Hai
(1999a; 1999b), Nguyen Viet Hai (2000a; 2000b), and
Arnal & Cortet (1990b), the techniques that appear in
the papers mentioned previously are applied to concrete
Liegroups, namely the motion group E(2), thereal and
complex affine groups Aff(R) and Aff(C), and the
diamond groups introduced by Do Ngop Diep (1999).
We note, for example, that Aff(R) is solvable but not
typel. Indeed these papersattempt to apply deformation
guantization to other classes of Lie groups. Moreover
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they allow one to see clearly what is going on. We
remark further that the results in these papers are
consistent with theworks of Gotay and coworkers. For
example, there is a complete description of the list of
infinite-dimensional unitary irreducibl e representations
of Aff(R) (Do Ngoc Diep & Nguyen Viet Hai, 1999a)
in terms of deformation quantization of the coadjoint
orbit RxR,, although the authors seem to have forgotten
about the series of one-dimensional irreducible
representations. The paper by Arnal & Cortet (1990Db)
givesadescription of unitary, not necessarily irreducible,
representations of E(2) in terms of the deformation
quantization of the cylinder T S

DEFORMATION QUANTIZATION

Definition 1 Let (M,w) be a symplectic manifold. By
deformation quantization of (M,w) we mean
an associative algebra structure on the space
C=(M) [[A]] of formal power series, in the variable
A with coefficients in C=(M), with respect to some
product %, . %, is called a star-product and we shall
write %, -product. The %, -product has the form

aky b =(Z‘,aS 7\5) *) (th A ) =ch7nk Q)
where

(DQ,) the coefficients ¢, = ¢, (a,b) depends not only
on aand b but also on the partial derivatives
o“a, /bwherei + j+ |o|+|B| <k

(DQ,) c=aghy:
(DQ,) cy(a,b)-cy(b,a)=A{a,b}, for a,be C=(M).

(DQ,) means that the %;-product is loca. Thisis aso
equivalent to the condition that the ¢ are given by
differential operators. (DQ,) means that the % -product
isadeformation of the commutative pointwise product of
functionsin C=(M) . Lastly, by defining the Lie bracket

1
=—— (axy b- bx
[a,b]*x o (aky b- b¥y a),
(DQ,) means that the % generates a deformation of
the Poisson bracket { , } on C+(M).
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A moregeneral definition of deformation quantization
may be given for Poisson manifolds M, manifoldswith
a contravariant skew-symmetric 2-tensor. The main
differencewith symplectic manifoldsisthat thebilinear
mapping induced on C=(M) may be degenerate. We
shall, however, consider only symplectic manifoldsin
this paper .

Example The basic example here is that of the
symplectic manifold (R, ® = 2dp' /\ dq,), which
has for its deformation quantization the algebra
(C=(R™) [[ih/2]], %*w) where,

Uy V= exp(%w‘1 d ud v)

AL 9V

. r
=Y b L gl — S 5
oxX..oX'™ 9xX. . axX"

2 !

= u.v + terms of higher order inih,
whereu,ve C*(R™), (X\,..., ") =(p",...,.p" 0,,-.-.0,),

and (w")= (I) IE) . The Lie bracket betweenu and vis

-1 ih .
[u, v]*M =5 sinh (5~ o tguadv)
={u,v} +termsof higher order in (ih)?,
showing the deformation of the Poisson bracket.

Thesymbol *,, isread asMoyal star-product (Moyal,
1949). It is intimately connected with the Weyl
quantization of R?". For functions a on R?" belonging
to symbol class (Fedosov, 1993) there correspondsthe
operator a = A acting on the Schwartz class S(R")

(A= eopd) a (¥ p)ua)da dp

This is actually the formula which gives the
correspondence given in the introduction, i.e., g —q
p'— p'. The Moyal *-product entersinto the formula
for the composition of operators

—

dob=1a %, b

where a and b are symbols.

The Moyal *-product will be very important for usin
applicationsto the representation theory of Lie groups.

We introduce next the notion of covariance of a star-
product.

Definition 2 Let (M,w) be a symplectic manifold. A
subalgebra I of C~(M) is called an h-relative
quantization with respect to the star-product %, if

[u,v]*h 2—17b(u*xv—v*xu)={u,v}, u,ve h.

Definition 3 Let the Lie group G act on the
symplectic manifold M in a strictly homogeneous
manner. The star-product %, on C=(M) is said to be
a covariant star-product if

[Afy “T]*fk{ fo. 1}
for all generating functionsf,, f ,S T, e g =Lie(G).

The point of these definitionsisthat the operator of left
*,-multiplication
!

s Mg M) [[A]] — C~(M) [[A]]

(W) = A f ooy u, ue C(M) [[A]]

isaLie agebrarepresentation of g. It remains to find
someequivaent expression (e.g., differential operators),
if possible, for ease of computations and, more
importantly, to find invariant subspaces. Exponentiation
gives unitary representations of the corresponding Lie
group of g.

Deformation quantization (of Poisson, symplectic,
Kahler manifolds, etc.) itself, i.e., without considering
the representation theory of symmetry groups of the
manifolds concerned, is of course of separate interest.
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Renewed interest in deformation quantization came
along because of the works of Drinfeld on quantum
groups (which are deformation of Lie groups), and
because of B. Fedosov’s solution to the problem of
deformation quantization of symplectic manifolds, which
employed only geometric concepts, and did not make
any cohomological constructions. The corresponding
and considerably moredifficult deformation quantization
problem for Poisson manifoldswas solved fairly recently
by M. Kontsevich (1997). Fedosov’sbook (1993) deals
with the formulation of an index theory using
deformation quantization. The works of Karabegov
(1996) and Reshetikhin & Takhtagjan (1999) and others,
employed similar methods as those discovered by
Fedosov to solve the corresponding deformation
guantization of Kahler manifolds and other special
classes of complex manifolds. On the other hand M.
Rieffel (1994) gives stricter criteria for deformation
guantization which takes into account C'-algebra
structures on manifolds, in particular Heisenberg
manifolds.

HAMILTONIAN MECHANICS AND
COADJOINT ORBITS OF SO (3,R)

Throughout the rest of this paper welet G = SO (3, R),
g = so(3,R) and g" = so(3,R)".

For semisimple Lie subgroups of the full linear group
GL(n,R), the coadjoint representation takes the
following form:

Ad(9)S=gSg', g € GSe g

There is a nondegenerate bilinear form on g, namely,
< ST >=trace (S=T). Because of this and the fact that
Gissemisimple, we havethat 3" = g. (Thisisnot true,
say, for nilpotent Lie groups). Therefore the coadjoint
representation K : G — Aut (g*) isgiven by

K(9)§ = gég?, Ee v,

and the determination of coadjoint orbitsis equivalent
to describing conjugacy classes.
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Chooseand fix € g*. We may look at G& asthe group
of rotations of 3-space fixing the axis determined by
the vector € € g = g = R This means G.=S0(2R)
and hence G/Gi = SO(3,R) = SO(2,R) = Q.. Itis
well-known that SO(n+1,R)/ SO(n,R) = S, the unit
n-sphere. Thus Q.= S

Now, coadjoint orbitsare symplectic manifolds (Kirillov,
1962), in which case Hamiltonian mechanics may be
performed on them. If thereisaLie group action on a
symplectic manifold M by symplectomorphisms, that
is, foreachge G

go=wm, ge G (pullback of the action)

we call M a homogeneous symplectic manifold and
there is a structure of a G-module on C~(M) defined

by
(g*u)() = u (g7=8)

where ge G, £ e M, ue C*(M). Derivation gives a
g-module structure on C=(M) and thisis given by the
following: To each Se g = Lie (G) of the Lie algebra
of G there corresponds a Hamiltonian vector field
ns € Vect (M) given by

(N = - u (exp(9) &) 1=

Themodulestructureisnow givenby (S- u)(€) = (nU) ().
If the n.are strictly Hamiltonian and the generating
functionsf_ and f, satisfy

fisn = {15 T}

wecall M astrictly homogeneous symplectic manifold.
The generating function f is defined as the solution of
the differential equation

i(ng)o=-df.
The following short exact sequence of Lie algebras
reflectsthe strictly Hamiltonian character of the action

of G on M.

0O->R->CMR)—> g >0 (2
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Although the mapping S - n is a Lie algebra
representation of g, it does not give us a quantization
since ng sends all constants to zero. Instead we work
on the space of generating functions f, and perform a
deformation quantization of thisspace. A very important
classof strictly homogeneous symplectic manifoldsare
coadjoint orbits of aconnected Lie group G inthe dual
spacey’. Infact, we know the following from K ostant:

Theorem 1 (Kostant) Any symplectic manifold M
with a Hamiltonian G-action, where G is a connected
Lie group, is locally isomorphic to a coadjoint orbit
of G or a real central extension G of G

Thistheorem impliesthat the coadjoint orbitsareall the
classical systems that we need.

QUANTIZATION OF THE SPHERE

A criteriain choosing the appropriate coordinatesin (Q., )
isthat it must reflect the strictly G-homogeneous action
of thegroup GonQ,, i.e,

{fs T = g

for generating functionsf,, f_ e C=(M). Another criteria
istherelation of relative quantization or the covariance
of star-product

Mt 1, 5 fgx A —Afx M) =M{f, T}
With respect to the polar coordinate system
7: R? (p,g)—(sinpsing, sinp cosq, cosp) € S?= Q,,

the Moyal star-product is not a covariant star-product.
Thismeansthat the Lie algebraof generating functions
i does not have arelative quantization with respect to
this star-product. However, this coordinate system is
interesting sinceit provides adeformation quantization
of thealgebraC=(S?) arising from the Moyal *-product
on R2. Since the polar coordinate system is global,
*-products of functions hold globally (up to linear
transformations). A parametrization which suits the
reguirement of covariancewill now be explained. This
time, however, the action of G on Qi is not strictly

G-homogeneous, in which case, we usetheorem 1 which
statesthat it isthereal central extension Gof G which
acts on the simply connected covering Q of Q.ina
strict G-homogeneous manner.

Fix thefunctional £&=X" € 4" =s0(3,R)". The coordinate
system that we need is the one coming from the
exponential mapping exp : Tx (Qx) — Qx-, Where
Tx(Qx:) is the tangent space to Q. at X'. Since
T (Qx) = Ty () = R?, exp will give a local
diffeomorphism ¢ :R?>—Qy. . Thislocal diffeomorphism
isgiven
¢ (p.0) := exp(pY +qZ)
= (cosl)X + (sinl)(pY'+qZ)
We modify this mapping and use the smpler
¢ (pa) :==Z + pY +qZ

replacing cos 1 and sin 1 with 1. The effect isthat the
symplectic form w appearing below will not have the
factor sin?l.

The symplectic form on Q. is now given by

o (nsen,) =<X, [ST] >.

The Hamiltonian function f_ associated to
S=oX+B,Y+vyZe nisgivenby

fo(p,0) = <& S=<X+pY +9Z, o, X+B,Y + y,Z>
=a,+ Bp+vq
The Hamiltonian vector field n isgiven by

=p2-_y2
1= Pag ™ ap

Indeed,

of, of af, af

nyf)= AN
° op 99 9q op

the right-hand side being the Poisson bracket in C~ (R?).
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Write o= ¢* wx- andlet T= 0, X + 3)Y +v,Z beanother
element of g. Thenf = o, + 3, p +v,qand
n,= ﬁZ% —yzaip. We have
<o, n.en>=<o,(By,-Br) Lol +. >
S T 142 211 ap aq
= ﬁ1Y2_ ﬁzYl
=< X*' (ﬁl’YZ_ﬂz’Yl) X+ ..>
=<X,[ST]>=<w, N ®n,>.
Therefore, we conclude that o = ¢*wx = dp da.
Beforeproceeding, let usfirst summarize our discussion.
Theorem 2
1. The exponential mapping exp: Tx- (Qx+) — Qx
gives rise to a local diffeomorphism (in fact, a

symplectomorphism) ¢: R? - Qy. givenby

¢ (pa) =X +pY +qZ.
2. Under the mapping ¢ in 1., the Hamiltonian

function f_ associated to a vector S=aX +8Y + yZe g
has the form

fs (p.0) =+ Bp +vq;
the Hamiltonian vector field n e Vect{ Qx.) has the

form

- g0 _ 0.
Mg ﬁaq Yap,

and the Kirillov symplectic form @ is

0= @Qwe=dp dg.

THE OPERATOR £,
The action of the real rotation group G on Q. isonly
Hamiltonian (or homogeneous) and not strictly

homogeneous on account of the relation

{fsif'r} :f[sﬂ- C(SiT)
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wherec( ., .) issome 2-cocycle. Theform c disappears
when we consider, instead of u, the Lie algebra

§={S=(St):Seun,te R}=zaoR

with Lie bracket [(S t,),(T.t,)] = (IST], ¢ (ST)). The
Lie algebra § may be obtained in another way. It is
simply the Lie algebra under Poisson bracket whichis
generated by generating functions f,, S € g. Indeed
from the exact sequence (2) of Lie algebras

CM=z=geR=§.

What this direct product means is the following. The
solution of the differential equation

df = -i(nYw

is unique only up to a constant addend, that is, f, and
f,+ const solve the differential equation. Thus, for a
vector Se g, f_and f, differ only by a constant.
Although f % f_and f.* f. differ by a constant,

[, f],=f.f.],.

Therefore the covariance property of the Moyal
star-product still reads the same, where, upon
choosing A= i

[ifs, it =i{ f5, 3, = if

571
This means that the operator
ls: C=(M) [[i[]] — C=M) [[Il, M =R*=zQ,,

= ifx

is a representation of the Lie algebra g. To be more
precise, the operator should be ifsx and S — /s= if
isarepresentation of the Liealgebran= su (2) (coming
from the Lie group G= SU(2) which is the universal
covering group of G=SO(3,R)). However, the
appearance of a constant adJend merely goesinto the
constant multiplier appearing inthedifferential operator
expression for /s (to be obtained as follows).
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Theorem 3 Let SSaX+fY+yZ € g and let f e C3
(R?) be a smooth function with compact support.
Then we have

Is(f)  FelsoF2(f)

- gld_9d iv(d—X). f+ic-
—ﬁ(zaq aX)(f)+1y(q 2) f+io- f.
Here,

FD0A) = = [flew t (o) dp

isthe Fourier transform with respect to thefirst variable.
Theinverse Fourier transformis

FHO0D =5 f ot xa) ox

Proof of Theorem 3

A~

Is f = Flogsoy:l'l f = Fl ifs* 04507:1'1 f

iF, R e T L SR AR

r=1

iF, f-F'f +%Pl(fs,ﬁl f

if, o+Bptyq -Ff

1 2of 9 .
F o PR Gg e B

. . g Of .
if, a-F' f +ipF! g—x +yF q-f

Briof iyraiy g

i i

s =B viyg f+ BTy
X 299 2

Therefore, for S aX +BY+ yZ € g,

>

o
I
=

_0 Livag-X 4
aX+I}((§]2+IO(,

N [—
Sl

which takes the form

s = i i

s=p e +ivys+o 3
upon changing to new variables s=q-x/2, t=q+x/2.
The (generating) functionf = o +ﬁp+ yqiscaledthe
symbol of the differential operator /s.

If, instead of £ =X", we chose & =Y (resp. § =Z), then
elements of Q,, (resp. Q,,) have the form

€ pg=pX+Y+qZ,

(resp. & =pX' + qY" + Z'). Of course, Q. , Qv ,Qz
are one and the same orbit since the definition of the
coadjoint representation (K(g)& = g€ g"') and of an orbit
Q, implythattheelements X', Y", Z" of 4" areconjugate to
each other by rotations of the sphere. We noteal so that
if, say, E=pX'+ Y +qZ e Q,and S= aX+ Y +yZe g
then

fs p.g =op+ B+,
Is = aa% +1ys+p .
In this connection we need to make sure that for a
givenelement Se g, /s isaunique operator, independent
of change of charts. For alinear symplectomorphismf,
say, from Qy. to Qy. ,
fooop @ Q —->R—-Q,,

there corresponds aunitary operator U (Fedosov, 1993),
such that

fs-Uo éA(f,s) o Ut
where the operator on the left hand sideiswith respect

to the chart Q.. and the operator in the middle of the
right hand side is /s, with respect to the chart Q..
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Furthermore, the local operator /shas a unique global
extension to all of Q, = $since $*is simply connected
(monodromy theorem (Kirrilov, 1976)). The conclusion
is that there is a unique operator, fs up to a unitary
operator U.

Finally, we make the remark that the operator éAs, aside
fromallowing for thefairly simple computations below,
exhibits the invariant subspace C(L2,,) ® iC*(€2,,) C
C=(,)I[i]]. In effect the Fourier transform takes care
of convergence issues regarding the star-product.

We next show that themapping G~ exp(tS) —sexp(tls)
e Aut (L%(S?) is just the left (or right) regular
representation T of the rotation group G acting on the
Hilbertspacel?(S). Redtricting to the (2/ +H)-dimensional
(¢=0,1, ...) subspace of harmonic functionson the sphere
gives the complete list of unitary irreducible
representations of G. To do this, we first set S=Y to
obtain the operator exp(tfy). Then we shift charts and,

inturns, let S= X and S= Z to get the operators exp(s. )
and exp(r{ ,). Since the group elements exp X, exp Y,

exp Z generate G, the operators give the unitary
irreduci ble representati ons upon restricting to the space
of harmonic functionsinside L%(S).

cost 0 sint
O 1 O
-sint 0 cost

1 0 0
O coss sSins

0 -sins coss

Let now S=Y so that,

exp (tY) = Z (Y)

Similarly, we have exp (sX) = (

cosr sinr O
andexp (r2)= | -sinr cosr O
0 0 1
Then

T(exp(tY)) f(xl, . x3) =

f(x cost + x.sint, x,, - x;sint + x_cost).
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Thisisjust the action of rotation (by an anglet) in
3-space preserving the y-axis. Consider a function
fe C+(Q,,). Welook at therestrictionof f=f(x, x,, X,),
to the great circle
X Hx? =1

in &, in which case we may write it as

f= f(&) (e°=x+ ix).
Consequently,

T(exp(tY)) f(e€%) = f(et9).

~

Now /' = :1-%+i-0-s

Y

d

5 so that if we put

W = €®9, we have
LT(exp(tV) f (W) =

— 0 § (a9
5 [ (E)

i .@s
atf(exptY €o)

_ oW
ot aw
of

St ——
igse oW

0§ (aity
s f (e9)

f(W)

0T (exp (tY)) f(€9).

Because T (exp (tY)) f(w)|,,= f(w), the unique
solution to the Cauchy problem

F U(tw)—é U (t,w)
Ow) = id

is
U(tw) = exp (t,) f(w)

thus A
exp (t¢,) f(w) =T (exp (tY)) f(w)

=f(exp(tY) - w).
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Smilarly
exp(sf ) f(w) = f (exp (X) - w),

exp(ré,) f (wW)=F (exp (r2) - w).

Theorem 4 The operators exp(s/. WE exp(t/. W)
exp(ré ), where X, Y, Z are basis elements for the Lie
algebra so(3,R) provide the irreducible unitary
representations of S0(3,R) by restricting them to the
space of harmonic functions on the sphere. These
representations are exactly the representations
T = Ta,. associated to the orbit Q . = &, in
accordance with the method of orbits.
More precisely, to each positive integer /, Tq,. is
the (2¢ +1)-dimensional irreducible unitary
representation on the space L?(S?) of spherical
functions of order /, that is, the square integrable
functions on the sphere satisfyi ng

1 1

siné 89(9”9 ) sin@ 82

+é(é+1)f 0 @

We call this the space of harmonic functions on the
sphere.
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