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ABSTRACT

We consider an unmodulated linear spin chain composed of two qubits

at  the ends ,  which undergo nearest-neighbor interact ions ,  with an

arbitrary spin between them. The state of the qubit on one end is to be

transmitted through the arbitrary spin and is received by the qubit on

the other end with some f idelity. We look at the behavior of the average

f idelity of state transfer through time as affected by the spin quantum

number of the arbitrary spin in between the qubits. We f ind that the

higher the spin quantum number becomes, the earlier it takes to achieve

perfect or nearly perfect state transfer. Moreover, when the channel with

arbitrary spin is subjected to environment interaction, results from the

calculation of average f idelity suggest that increasing the spin quantum

number of the channel provides a countermeasure to the effects of

decoherence induced by the environment.
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INTRODUCTION

In quantum information and computation, it is often a very important task to allow

quantum states to be transferred from one place to another. Although there is an

existing protocol for quantum state transfer, wherein a mobile carrier is sent away

to a distant location (Gisin and Thew 2007), it is practical to devise a scheme

suitable for short distances without requiring modulation on the quantum system.
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Bose (2003) proposed the use of a chain of qubits or quantum objects with two

degrees of freedom to carry out such task. The system does not require any

interfacing at all because the interaction between the qubits facilitates the quantum

communication process itself (Bose 2003, 2007). He found out that, for 80 spins,

the f idelity (or probability of successful state transfer) of this protocol surpasses

2/3, which is the maximum of that of local operations and classical communication

(LOCC) (Horodecki et al. 1999). This study paved way to the idea of designing

quantum wires for connecting quantum computers.

Most of the literature in line with the study of spin chains for quantum communication

involves qubits. Different cases were considered: whether the chain resembles a

ferromagnet (Park et al. 2012) or an anti-ferromagnet (Ye et al. 2003); whether the

interaction is long-ranged or nearest-neighbor (Zenchuk 2012); the different

geometries of the spin chain (Bugarth and Bose 2005); and, whether the chain is

free from environment interaction or not (Alvarez et al. 2010). Although there is

existing work on such systems with higher spins (Moukouri 2006), only

homogeneous chains were given much attention.

In this work, we consider a linear open-ended 3-component spin chain, wherein the

ends are qubits and the channel spin object has an arbitrary spin. We evaluate the

f idelity of quantum communication through this chain as we increase the spin of

the channel, thus relating the spin value of a single-object channel to its capacity

to transmit a quantum state eff iciently. Moreover, this study can provide insights

on the ways to build compact quantum computers, and have an impact on spintronics

(electronics concerning higher spins).

PRELIMINARIES

Consider a linear spin chain with N spins subject to an external f ield. Given that the

interactions are of the nearest-neighbor type, the associated Heisenberg XY

Hamiltonian is given by Rico et al. (2004):

where the operators ( , , )
i

S i x y z are the spin operators with the number of matrix

elements depending on the spin quantum number s of the object (i.e. , d =2s + 1).

Moreover, s admits positive integer and half-integer values (e.g. , 0, 1/2, 1, 3/2, 2,

etc.). The subscripts i , i+1 in the f irst summation indicate that the interaction

between the spins is nearest-neighbor,  and the parameter γ describes the anisotropy
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of such interaction. The second summation indicates the individual contributions of

the spins due to their angular frequency described by λ, which is proportional to the

magnetic f ield strength of one component on the chain.

In this paper, we consider three components for our spin chain, wherein the f irst

component is the sender and the last is the receiver, which are both qubits or two-

level systems. Between them is the channel spin with associated quantum number

s. In this manner, we can rewrite the Hamiltonian as

where we introduced the notion of tensor products, which best describes multipartite

quantum systems. In this Hamiltonian, the subscripts in the spin operators indicate

the spin of the state they operate on. The identity operator    denotes that the state

remains the same, with the subscript describing the size of the matrix.

We evaluate the dynamics of the spin chain communication protocol by solving for

the time-evolved state of the entire system with the dynamics governed by the

Hamiltonian. For the time-evolution of the overall state where environment

interaction is not present, we use the time-dependent Schrödinger equation given

by

where the overall state representation  works for pure states. In general, we

admit mixed states represented by density operators, so that the equation of motion

to be used is the von Neumann equation given by

where ρ is the density operator representation of the overall state, and [H,ρ] is the

commutator evaluated as Hρ - ρH. Equations 3 and 4 suggest unitary evolution of

the states.
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From the average f idelity expressions in Equations 20 and 29, we now look at the

effects of using a higher-spin channel in the average f idelity of quantum

communication with respect to time. We employed numerical methods to carry out

such task, as the expressions contain transition amplitude terms which are rather

diff icult to evaluate by hand. We used MATLAB R2013b installed on a computer

with an Intel® Core™ i7-4790 CPU @ 3.60 GHz processor with 64 GB of RAM for

the numerical computations and for displaying results in graphical and tabular

form.

We f irst look at the cases where we have our quantum system to be isolated (i.e. ,

we solve for the average f idelity given in Equation 20). We plot the results by

considering spin s values of up to s=5/2 for the following parameter pairs {γ,λ} of

the Hamiltonian, namely {0,10}, {1,10}, and {0,5} (Figure 2). As seen in Figures 2a

and 2b, the general behavior of the f idelity plots do not differ much, except for a

small time interval. In the case where the Hamiltonian parameter pair is {0,5}, if we

Figure 2. Average f idelity plots for quantum channels with s = 1/2 (blue), s = 1
(green), s = 3/2 (red), s = 2 (cyan), and s = 5/2 (magenta).
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compare with the previous plots, the frequency of attaining maximum values of

the average f idelity was observed to decrease. We attribute this effect to the

magnetic f ield strength of the spin chain probing the transfer of states from Alice

to Bob.

We now look at the direct effect of the spin s of the channel to the average f idelity

of the quantum communication through our spin chain. In Figure 2, the plots

representing the different spins considered are shown in different colors. One of

the recurring trends is that the graph representing the highest spin value of s=5/2

tends to reach the target maximum average f idelity f irst, which is ideally 1 or a

value very close to it. Table 1 displays the points in the time axis where the f irst

maximum average f idelity happens for each chain with channel spin s. This implies

that the spin quantum number of the channel positively affects the communication

protocol (i.e. , it probes the state of the receiver to mimic the state of the sender at

an earlier time), and this works on average for an arbitrary initial state. The other

recurring trend is that, for certain points in the time axis before those corresponding

to the average f idelity of 1, the plots with the higher spin s tend to have the

highest local maxima and the lowest local minima. We attribute this to the

oscillatory behavior of the time evolution of the system reflected in the f inal

receiver state. We also note that the resulting minimum value of the average

f idelity for all plots considered is 1/3. We say that, in this quantum communication

protocol, the channel with higher spin gives more eff iciency to the state transfer,

since the results provide a computable time of achieving maximum f idelity.

Therefore, in this time, the receiver state can be measured before the spin chain

evolves, and thus, the f idelity goes to a minimum.

Finally, we see the effect of environment interaction on the average f idelity of

state transfer for this case. Using the Lindblad operators described in Equations 21,

22, and 23, we only focus on the cases where the interaction constants α+ (Figure 3)

and α- (Figure 4) are set to 1. A noticeable feature of the plots is that those

corresponding to the different spin values tend to overlap after a certain amount of

time. The second trend attributed to different spin s for the isolated system case

can be observed in the open system cases by zooming in on the plots to a certain

     Spin s             ½             1              3/2           2            5/2

γ = 0, λ = 10 18.22 11.94 10.68 9.423 8.167

γ = 1, λ = 10 18.22 11.94 10.68 9.423 8.167

γ = 0, λ = 5 18.85 13.81 11.34 8.813 8.781

Table 1. Time (in units of λλλλλ-1) it takes for each channel spin
to attain first maximum fidelity.
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extent of time. For both cases, we can see that, for a short period of time, the effect

shown in the isolated case still manifests in the open system cases we considered.

These results suggest that placing a high-spin quantum object as a channel between

the two qubits can counteract the effects of decoherence.

Figure 3. Average f idelity plots for quantum channels with s = 1/2 (blue), s = 1
(green), s = 3/2 (red), s = 2 (cyan), and s = 5/2 (magenta). Hamiltonian parameters are
γ = 0, λ = 10, and l = α+S+.

Figure 4. Average f idelity plots for quantum channels with s = 1/2 (blue), s = 1
(green), s = 3/2 (red), s = 2 (cyan) and s = 5/2 (magenta). Hamiltonian parameters are
γ = 0, λ = 10, and l = α-S-.
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CONCLUSIONS AND RECOMMENDATIONS

We have indeed shown that, for a linear and open-ended 3-component quantum spin

chain, the spin of the channel affects the eff iciency of quantum communication (i.e. ,

we achieve nearly perfect to perfect state transfer at an earlier time as the spin

quantum number of the channel goes higher). Furthermore, we have seen that, for

up to spin s = 5/2, this effect still manifests in the presence of environment

interaction.  We have shown that using a higher spin value for the channel keeps the

eff iciency of our quantum communication scheme high for a short period of time

when it is subject to the detrimental decoherence induced by environment

interaction.

Extensions of this work include displaying results for even higher spins, in order to

show that increasing the spin of this channel can indeed counter the environment-

induced loss of information. Addition of another component in the channel with

varying spin can also be considered.
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