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ABSTRACT

Chitosan,  κ-carrageenan scaffolds were fabr icated by forming their

polyelectrolyte, followed by crosslinking κ-carrageenan with calcium

chloride. The scaffolds were reinforced with hydroxyapatite of nano

and micron sizes. Most stable scaffolds were formed when chitosan and

κ - ca r rageenan  were  in  1 :1  mola r  ra t io , and  when  1  wt% nano-

hydroxyapatite was used as the reinforcing agent. The scaffolds in dry

form were sponge-like, flexible, and strong enough to be handled in dry

condit ions without  undergoing any deformation.  Scanning electron

microscopy (SEM) revealed that the scaffolds were porous at 79-95%

porosity, depending on the type of hydroxyapatite used. The scaffolds

swelled moderately and showed slow rate of degradation in the presence

of lysozyme under human physiological condition. The extent of swelling

and  degradat ion  was  in f luenced  by  the  type  o f  hydroxyapat i te

incorporated. The scaffolds also suppor ted the growth of BT-20 cells,

proving that they are not cytotoxic.
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INTRODUCTION

Fabrication of scaffolds from engineered biomaterials has been gaining much

attention in the f ield of biotechnology as it offers a physiologically and

biochemically suitable method of enhancing and restoring natural tissue. With the

increasing number of calamities involving bone fracture and skin injury, numerous

investments and research are being conducted on the engineering of biodegradable

scaffolds for various applications, specif ically those that are designed for tissue

engineering or regenerative medicine.

A scaffold is a three-dimensional framework that primarily functions as a support

system for cells to attach, proliferate, and grow, thereby allowing them to develop

and perform their differentiated functions. Once the cells begin to undergo

proliferation, the scaffold naturally degrades and its components are absorbed by

the body, eventually providing space for the cells to further regenerate and for the

new tissue cells to organize and take form. In order to facilitate tissue regeneration,

certain biological and structural requirements must be taken into consideration. An

ideal scaffold should be biocompatible with interconnected pore network to allow

the migration of cells, oxygen, and nutrients. It should facilitate cell adhesion,

proliferation, differentiation, and biodegradability at a controlled rate and should

have suff icient mechanical strength to support the cells.

Although synthetic polymers, such as polylactic acid, polyglycolic acid, and

polyprolactone (Wayne et al. 2005; Yeong et al. 2010; Giuliani et al. 2014; Santoro

et al. 2016), are used in tissue engineering, there has been a growing interest in the

use of natural polymers over synthetic polymers as material for scaffolds. Their

relatively low cost and wide availability, as well as their biological and chemical

similarities to bodily tissues which reduce the risk of rejection by the body, give

them an advantage over synthetic polymers. Some of the natural polymers, such as

pullulan, dextran, hyaluronic acid, and collagen, have been studied as scaffolding

material (Chen et al. 2012; Sun and Mao 2012; Cutiongco et al. 2014; Amrita et al.

2015).

Apart from the abovementioned natural polymers, chitosan (CS) has been widely

explored as a scaffolding material component (Nettles et al. 2004; Rodríguez-

Vázquez 2015). It has been established that this polymer aids in osteochondral

tissue regeneration (Lahiji et al. 2000; Abarrategi et al. 2010), and has considerable

antibacterial activity against a broad range of bacteria (Benhabiles et al. 2012).
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So far, most of the CS scaffold have been fabricated by using either genipin (Zhang

et al. 2013) or glutaraldehyde (Monteiro and Airoldi 1999) as the crosslinking

components in the scaffold formation. However, the disadvantage of using genipin

is that the crosslinking reaction is pH-sensitive, whereas glutaraldehyde is

considered as cytotoxic. This project explored a novel route to synthesize CS

scaffolds without the use of genipin and glutaraldehyde.

Carrageenan is a biopolymer extracted from marine red seaweeds. It is a linear

heteropolysaccharide consisting of alternating 1,4-α and 1,3-β-D-galactopyranose,

and 3,6-anhydro-D-galactopyranose units. Among several types of carrageenans

which differ based on the number and position of ester sulfate groups, κ-carrageenan

(CRG) is known to produce strong and rigid gels in the presence of sodium, potassium,

and calcium ions. Carrageenan alone or in combination with other polymers has

been widely studied for various applications. Polyelectrolyte complexes of CS and

carrageenan as vehicles for controlled release applications (Piyakulawat et al. 2007;

Briones and Sato 2010; Pinheiro et al. 2012) are well-documented. Carrageenan

has also been explored as a component of biocomposite scaffold for bone tissue

engineering (Luísa et al. 2007; Lim et al. 2010; Araujo et al. 2014).

Hydroxyapatite (HA) is one of the most stable forms of calcium phosphate and is a

major component (60-65%) of natural bones and hard tissues found in the body. In

tissue engineering, HA-based scaffolds exhibit excellent mechanical strength and

osteoconductive properties. Thus, many studies extensively use HA as a reinforcing

agent in biodegradable polymeric scaffolds (Oliveira et al. 2006; Han et al. 2010;

Peter et al. 2010; Pathi et al. 2011; Mondal et al. 2016; Lei et al. 2017).

The group has made an innovative approach of fabricating scaffold from semi-

interpenetrating network (semi-IPN) polyelectrolyte complex (PEC) of CS and CRG.

Since CS is a polycation and CRG is a polyanion, they form PEC when in contact

with each other. CS and carrageenan chains were allowed to penetrate each other,

followed by crosslinking the carrageenan with calcium ions (Ca2+). This approach

was adopted to avoid the use of harmful crosslinkers, such as glutaraldehyde. CS is

expected to contribute towards the strength of the scaffold, whereas carrageenan

is expected to provide the crosslinkable sites. Further reinforcement to the scaffolds

was provided through the incorporation of HA.
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MATERIALS AND METHODS

Materials

CS, sodium azide (99%), HA were purchased from Sigma-Aldrich. CRG was purchased

from Rico. Calcium chloride was obtained from J.T. Baker. All the chemicals and

reagents were used without further purif ication. For the cell culture experiment,

4’,6-diamidino-2-phenylindole dihydrochloride (DAPI) and phosphate buffered

saline (PBS) were purchased from Sigma-Aldrich. Minimum Essential Medium (MEM)

Eagle, Roswell Park Memorial Institute (RPMI) medium, fetal bovine serum (FBS),

sodium bicarbonate (7.5 wt%), L-glutamine (200 mM in saline), and Pen-Strep Sol.

(penicillin 10000 units/mL and streptomycin 10 mg/mL) were provided by

Biological Industries.

METHODS

PEC with Various Ratios of CS and CRG

To synthesize a PEC of CS-CRG scaffold with CS:CRG in 1:1 molar ratio, 0.2 g of CS

(mass of each repeat unit: 160.15 g/mol) was dissolved in 50 mL 1% acetic acid,

and 0.5 g of CRG (mass of each repeat unit: 440.2 g/mol) was dissolved in 50 mL

deionized water. Both the solutions were mixed and stirred together in a beaker at

room temperature using a magnetic stirrer for one hour to obtain a homogenous

solution. This solution was transferred to a vial and was placed in a refrigerator to

freeze for 24 hours at -15°C, and then freeze-dried for 48 hours at -40°C and

200x10-3 mBar using the Freezone 4.5 Labconco instrument. This procedure was

repeated to obtain a set of freeze-dried samples prepared with CS:CRG in molar

ratios of 1:1, 2:1, 5:1, 10:1, and 1:2.

Synthesis of Scaffolds in the Presence of HA

In order to fabricate HA-reinforced scaffold with CS and CRG in the stoichiometric

ratio of 1:1, 0.2 g of chitosan was dissolved in 50 mL of 1% acetic acid, and mixed

with 0.005 g (1 wt% w.r.t . the scaffold) of micro-HA (µHA). The dispersion was

stirred for 6 hours, followed by slow addition of CRG solution (0.5 g of CRG in f ive

mL of water) with continuous stirring. The mixture was stirred for another 30

minutes before the addition of 0.025 g of CaCl
2
. The mixture was stirred for

another 30 minutes and transferred to a vial. The vial was placed in a refrigerator
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Fourier Transform Infrared (FTIR) Spectroscopy

The different components of the scaffold were characterized using Shimadzu IR

Aff inity-1 FTIR Spectrophotometer. A dried sample was ground along with

potassium bromide (KBr) powder and pressed mechanically to a thin disc. For each

sample spectrum, a 40-scan interferogram was collected in terms of percent

transmittance (%T) with a 2 cm-1 resolution from the 4000-400 cm-1 region in the

IR Solution software.

Scanning Electron Microscopy

The microstructures of the scaffolds were viewed using a scanning electron

microscope (SEM). A small portion of the bulk scaffold was carefully removed

using tweezers without compressing the material. The sample was then gently

placed onto a carbon f ilm and sputtered with gold using a JEOL JFC 1200 gold f ine

coater before analyzing with JSM-5310 scanning microscope (SEM) at 10 kV under

different magnif ications.

RESULTS AND DISCUSSION

Stabil ity Test for the CS-CRG PECs in Aqueous System

It is critical that CS and CRG form a stable PEC through the electrostatic interaction

of cationic CS and anionic CRG to render strength to the semi-IPN scaffold. A

scaffold is expected to have enough strength to maintain its structural integrity to

support cell growth. Hence the CS:CRG molar ratio at which the PEC retains its

structural integrity in aqueous medium for a prolonged period was determined.

As shown in Figure 1, after two weeks of immersing of the PECs in deionized water,

the PEC with 1:1 molar ratio of CS to CRG maintained its structural integrity,

whereas the other combinations fell apart. Stability of 1:1 molar ratio formulation

can be attributed to the complete neutralization of polycationic CS and polyanionic

CRG. Other formulations, wherein either CS or CRG was in excess, attracted extra

amount of water and disintegrated.

As seen in Figure 1, the scaffold with CS and CRG in the stoichiometric ratio of 1:1

was able to maintain its structural integrity for two weeks, and hence, this ratio was

maintained for the synthesis of all the scaffolds.
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