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The allelomimesis clustering model is based on only two parameters α and p, which represent the probability
of nearest-neighbor copying and the fraction of unresponsive agents, respectively. The model results into
the formation of clusters of agents, the sizes of which obey a distribution that is determined by the values
of α and p. Several experimental data are fitted by tuning the two parameters. In particular, the significance
of the value of α that corresponds to an experimental data is discussed and justified according to ecological
context. Recommendations for possible extensions of the model are also enumerated.

INTRODUCTION

The penultimate hallmark of complex systems is the
principle of emergence—macroscopic regularity of the
system arising from apparently irregular (disordered)
microscopic interactions between the system’s
constituents. Among the most commonly observed of
these emergent properties is clustering.

Clusters in nature exist in different sizes. An interesting
and somewhat unexpected observation is the regularity
of the statistical distribution of cluster sizes, which
generally obeys what is known as a power law. If we
denote by s the size of a cluster and by f(s) the frequency
of occurrence of s (i.e., the number of times that a
particular value of s is tallied), then one would witness
that the plot of f(s) versus s in double logarithmic scale
is a decreasing straight line. The slope of this line
corresponds to the exponent of the power law. Let us
refer to the value of this slope as τ.

Power-law behavior is a well-known result in the area
of complex systems. This article presents a simple, yet

general, mechanism that leads to this power-law
behavior.

In Sec. 2, a phenomenological model based on
allelomimetic behavior is discussed. Allelomimesis is
the tendency of individuals to imitate its neighbors;
hence, allelomimetic behavior is the best candidate as
local interaction that could lead to the formation of
clusters. The results of the model are discussed in Sec.
3. A comparison of these results with several cluster
systems found in nature is also presented. A few
recommendations for further extension of this study
are pointed out in Sec. 4.

THE CLUSTERING MODEL

Behavior of a single agent

The probability that an agent “performs” a certain
“action” is described as follows:

     , (1)

wherein σ is the total stimulus received by an agent
(both from its environment and its neighboring agents)
and sc is an arbitrary threshold stimulus level. Equation
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(1) means that an agent actuates if its stimulus level
exceeds the threshold. Such characteristic is akin to
neuronal stimulation (Churchland & Sejnowski, 1992).

In reality, however, an agent may override the
consequence of σ>σc by a complementary “choice” of
not performing an action. Let us assume that the
probability the agent will not actuate if σ>σc is 1–β.
Hence, Eq. (1) may be rewritten in the following form:

       . (2)

Equation (2) incorporates the ability of an agent to
decide.

Generally, β and σc may vary among agents. But to
make the model as simple as possible, it is assumed
that β is a mean value over a population of agents;
hence, β is a constant with respect to a particular agent
population. However, β is allowed to vary between
different populations. On the other hand, two cases are
considered in assigning the value of σc—it is either
fixed (σc = 4) for all agents or it varies within a range
(2 < σc < 16) among agents.

Lattice of agents

Agents are distributed in a d-dimensional lattice of
length L consisting of Ld discrete cells. A cell may only
accommodate a single agent. Thus, Ld also corresponds
to the size of the agent population.

A fraction p of the agent population is designated to
be unresponsive. Unresponsive agents are characterized
by β = 0 such that P(σ,β) = 0 even if σ>σc. These
agents may be thought of as impurities in the lattice.
The value of p is varied between 0 and 1.

Dynamics of action propagation

The lattice is constantly bombarded by external stimuli
(e.g., environmental conditions or public information
in the form of advertisements, and the like). The
consequence of this is that at each time step of the
numerical experiment, σ→σ+1 for all agents (i.e.,
stimulus levels are raised by a unit).

An agent is then randomly chosen, say an agent at cell
i,j in a d = 2 lattice, to behave according to Eq. (1).
Hence, if σ(i,j) exceeds σc(i,j), then this agent outputs
a particular action A. Otherwise, nothing happens and
another agent is randomly chosen. Allow us to
distinguish this chosen agent as a harbinger. The
harbinger is the initiator of an action. Once a harbinger
is selected, the bombardment of external stimuli is
momentarily paused to allow us to focus on the
consequence of the harbinger’s action to the entire
lattice. Furthermore, we assume that there can only be
one harbinger at a time, but any agent is a potential
harbinger at any given time.

By the performance of A the harbinger’s stimulus level
decreases: σ(i,j)→σ(i,j)–2d, as though releasing
tension. Meanwhile, the stimulus level of each of the
harbinger’s 2d nearest neighbors is increased by a unit
due to their observance of A. These neighbors behave
according to Eq. (2) to decide whether or not to mimic
the harbinger and actuate A. For a responsive neighbor,
sufficient stimulation (>σc) resulting from the
observance of A makes it actuate A with a probability
β. Let us assume that β is of a particular value α. In
contrast, any amount of stimulation brought about by
the observance of A will have no effect on an
unresponsive neighbor.

The harbinger’s neighbors in turn pass around the
information to their corresponding neighbors by
actuating A. This propagation continues up to the last
agent that performs A without influencing its
corresponding nearest neighbors.

The parameter α is defined as the allelomimesis index.
Its value is tuned between 0 and 1. On one hand, α = 0
is equivalent to setting p=1, i.e., all agents in the
population are unresponsive to their neighbors; hence,
noncopying or nonallelomimetic. On the other hand,
α = 1 implies a highly allelomimetic population of
agents, wherein imitation of neighbors is a big factor
that promotes clustering.

The dynamics of action propagation can be summarized
as two fundamental processes: (i) the selection of a
harbinger that initiates an action and (ii) propagation
of action through nearest-neighbor connections.

( )
,  if 

,
0,  if 
β σ σ

σ β
σ σ

>⎧
= ⎨ ≤⎩

c

c

P



Juanico and Saloma

38

Cluster and cluster size

Process (ii) is repeated until the action initiated by the
harbinger ceases to propagate. All agents that actuate
or have actuated A are considered to belong to a cluster
and the total number of these agents corresponds to
the size of the cluster s. Subsequently, the bombardment
of external stimuli is resumed for the proceeding time
step. Process (i) results in the initiation of another action
and process (ii) propagates this action through the
lattice, hence, establishing the formation of another
cluster. By repeating processes (i) and (ii) over several
time steps, one generates different values of s. This
allows one to deduce the statistical distribution f(s).

RESULTS AND DISCUSSION

Numerical simulations

Figure 1 illustrates the morphology of clusters at
different settings of the parameters α and p. These
clusters apparently exhibit fractal structures resembling
those that were produced by models of urban growth
through diffusion-limited aggregation (Makse et al.,
1995).

Let us first deal with the effect of varying α by setting
p = 0. Figure 2 plots the power-law cluster size
distribution (CSD) in double logarithmic scale for
different values of α. Notice how the lines steepen with
increasing value of α, indicating that the scaling
exponent τ is negatively correlated with the parameter

α. It is expected that τ→∞ as α→0, consistent with a
dirac-delta CSD centered at s=1 for α=0 (i.e., no
clusters are formed).

To show the effect of the parameter p on the CSD, we
fix α to a value of 1. Figure 3 exhibits a distortion of
the CSD at large values of s. The degree of such
distortion intensifies with increasing p.

Considering that thresholds σc may vary among agents,
we compare the set of CSDs (with different α and p =
0) for the case wherein 2≤σc ≤16 with the set for which
σc = 4. Figure 4 plots the CSDs as data points in the
former case and as broken lines in the latter case. There
is no observable difference and this implies that the
exact value of σc of an agent does not affect the CSD.
Hence, the CSD is robust to variations of σc within an
agent population.Fig. 1. Clusters that result for α=1and p=0.

x

y

128

96

64

32

0
0 32 64 96 128

Fig. 2. CSD for different values of α at p=0.
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Fig. 3. CSD at α = 0 and different values of p.
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Comparison with data for real systems

We fit our model to different CSDs taken from
experimental observations of actual clusters. The
goodness-of-fit is measured in terms of the mean square
error (MSE) between the data and the curve generated
from the model. Figures 5 and 6 present data on four
animal systems and four distinct human cluster systems,
respectively.

Remarkably, α is high for animal systems (except for
Serengeti lions), implying that allelomimesis is strongly
expressed in animals. According to Wagner and
Danchin (2003), “conspecific copying” (or
allelomimesis) is a ubiquitous mechanism behind the
formation of aggregates such as leks and colonies.
Bonabeau and Dagorn (1995) showed that “biosocial
attraction” (another form of allelomimesis) promotes
schooling in fishes. Parrish and Edelstein-Keshet
(1999) further proposed that allelomimesis is a generic
mechanism that maintains the cluster as a cohesive unit.
Indeed, ecological evidence for a high value of α in
the animal kingdom is compelling. The low α (=0.1)
for Serengeti lions is explained by the fact that the lions
that were observed by Schaller (1972) were nomadic.
This means that they are likely to wander alone or in
small groups, hence, a small value of α.

The value of α for human cluster systems is low as
compared with animal systems, implying that
allelomimesis is only moderately expressed in human
beings. This can be justified by considering that humans

are generally more highly cognitive than animals, which
consequently overrides their instinctive tendency to be
allelomimetic. Furthermore, telecommunication
technology (which only humans are capable of)
diminishes the requirement of information transfer
through nearest-neighbor connections such as

Fig. 4. Comparison between imposing uniform threshold
(σc=4) and random threshold (2<σc<16) for different values
of α at p=0.
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Fig. 5. Fitting the model to four different animal systems. (a)
Spotted dolphin, Stenella attenuata (α = 0.75, p = 0.3, MSE =
0.00381); (b) West Indian manatee, Trichecus manatus (α = 1,
p = 0.45, MSE = 0.00034); (c) Wasp, Ropalidia fasciata (α =
0.75, p = 0.35, MSE = 0.00059); (d) Serengeti lion, Panthera
leo (α = 0.1, p = 0, MSE = 0.08661).
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Fig. 6. Fitting the model to four distinct human cluster
systems. (a) Urban agglomerations of India, 1991 (α = 0.32, p
= 0, MSE = 0.00394); (b) major cities of Japan, 1994 (α = 28, p
= 0, MSE = 0.00021); (c) households/barrios of Metro Cebu,
2001 (α = 0.31, p = 0.25, MSE = 0.00179); (d) firms/clusters of
employees of US, 1997 (α = 0.32, p = 0, MSE = 6.16504).
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allelomimesis. Interestingly, α is not significantly
different among distinct human cluster systems (α~0.3).
This result is quite expected because even though we
consider clusters of cities, of households, or of
employees to be distinct from one another, one fact
remains common between them—these systems are all
made up of human beings. It would be worthwhile to
investigate the origin of such seemingly universal value
of α from a psychological point of view.

RECOMMENDATIONS

The model due to its inherent simplicity has cut down
on details as much as possible so that it can be
considered generic, hence, applicable to a wide variety
of systems. Here, we suggest some minor points of
modification to allow a more realistic description.

The stimulation on an agent due to constant
bombardment of external factors may not necessarily
be equal to unity (i.e., σ→σ+1). It can be expressed as
σ→σ+η, where η represents a positive Poisson number
that appropriately describes the time fluctuation of the
amount of external stimuli. Furthermore, subsequent
stimulation of neighboring agents may not necessarily
decrease the stimulus level of the harbinger by an
amount that is equal to the number of its nearest
neighbors. That is, one can write σ→σ−ε, where ε is a
positive number derived from a Gaussian or a binomial
probability distribution. It follows that the ensuing
stimulation of responsive neighbors that observe the
actuation of the harbinger can be expressed as
σn→σn+δn, where the subscript n represents the nearest
neighbor and ∑nδn = ε. Note here that δn could either
be positive or negative, implying that the stimulation
is excitatory or inhibitory, respectively (Churchland &
Sejnowski, 1992).

CONCLUSION

A simple model of cluster formation is proposed to
explain the cluster size distribution observed for various
cluster systems in nature. The model consists of two
mutually independent parameters, namely, α and p. The
value of α represents the probability that an agent
mimics the action of its nearest neighbors, whereas p

is the fraction of unresponsive agents that characterizes
the particular agent population. Resulting CSDs are
highly dependent on α and p.

The model fits into experimental data corresponding
to various cluster systems in nature. A high value of α
generally characterizes animal systems, whereas α~0.3
distinguishes human cluster systems.
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