

International Journal of Society Development and Engagement

Experimental Test Analysis of Light Steel Composite Concrete Panels

Cristian Daud Wibisono¹, Sri Wiwoho Mudjanarko^{2*}

Civil Engineering, Universitas Narotama Surabaya

Corresponding author: sri.wiwoho@narotama.ac.id

Abstract: The need of innovation in construction technology has driven involved parties within the industry to keep researching for new methods or materials in which could bring efficiency, yet more reliable. In this research, composite concrete panels which has become commonly used, is going to be modified by implementing lightweight steel as its concrete reinforcement. Three model of lightweight steel composite concrete panels were designed and tested for its compressing strength after 14 days. The proposed model was designed for low budget small housing and should be easily implemented. Moreover, all of the model used 1:2:3 concrete mix design without adding addictive solvent or other composite material. The tests result for model A is 5000 KN, for model B is 4600 KN and lastly for model C is 6000 KN. Based on these compressing strength test results, the designed models are able to be implemented for small housing construction.

Key words; compressing strength, light steel

INTRODUCTION

Innovations in the use of additional materials as admixtures in the manufacture of concrete structures are growing and the materials mixed in concrete are also increasingly varied. In this study, concrete panels made from standard materials, namely with a ratio of 1:2:3 with K-225 quality, will be combined with the use of lightweight steel as a substitute for concrete reinforcing iron.

The research method used is to design the composition of the concrete mix for each content and then produce concrete samples in the form of concrete panels to then test the strength of the concrete. Furthermore, an analysis of the test results was carried out and compared the strength of each concrete composition produced.

This study aims to seek optimization between the weight and strength of reinforced concrete structures. It is necessary to understand that cast concrete is formed from various types of material mixtures, such as cement, sand, gravel and water. Each of these aggregates is mixed with different compositions to obtain different concrete qualities. In this case, the government has approved the normal composition contained in the Indonesian Concrete Regulation (PBI) SNI 2847-2019.

However, the use of lightweight steel as a substitute for reinforcement in concrete is still not popular in Indonesia. So that by doing this research it is hoped that it can provide additional alternatives, especially to be able to reduce the production costs of concrete panels and in the end can save on overall construction costs.

This study will analyze the differences in the flexural strength of concrete beams using lightweight steel reinforcement and calculate the differences in the stiffness values. Good quality concrete has several advantages including having high compressive strength, resistance to corrosion or decay by environmental conditions, resistance to weather (hot, cold, sun, rain).

Concrete also has several weaknesses, which are weak to tensile strength, expands and contracts when temperature changes occur, is difficult to be completely waterproof, and is brittle. Furthermore, to be

able having a better understanding for the research, the previous related researches were reviewed and constructed as table 1.

No	Title	Year	Author(s)	Methodology
1	Testing Strong Flexible Hollow precast	Nov,	Ario, Wahyu,	flexural strength
	lightweight concrete slab panels with	2015	Gumilang	precast
	the addition of silica fume			
2	Utilization of rubber seed as coarse	July,	Sumiati, Mahmud	Compressing
	aggregate on the workability and	2018		strength test
	compressive strength of lightweight			
	concrete	_		
3	Compressive strength study, strong	Dec,	Itsna Fauziah Royani,	compressive
	tensile strength, flexural strength and	2014	Achmad Basuki,	strength, tensile
	sound attenuation in lightweight concrete wall panels with plastic pet		Sunarmasto	strength, flexural strength and sound
	waste aggregate and sawdust waste			attenuation
4	Overview of the flexural strength of	2013	Zaim Nur Fahrudin	Compressive
-	lightweight concrete panel walls using	2015		strength, bending
	Styrofoam with wire reinforcement			strength
	welded mesh netting			5
5	Flexural strength test on coarse	Sept,	Muhammad Fauzan,	experimental method
	aggregated concrete panels pet plastic	2015	Ramadhani	
	waste and wire mesh reinforcement		Achmad Basuki,	
			Agus Supriyadi	
6	Study of slump value, compressive	July,	Harnung Tri,	compressive strength
	strength and modulus of elasticity of	2014	Hardagung, Kusno	and modulus of
	concrete with sandstone ash as filler		Adi Sambowo,	elasticity
			Purnawan Gunawan	
7	Value of concrete compressive strength	2015	Fadli M, Van Gobel	Mix design method
	at a certain concrete slump	0045		
8	Characteristics of lightweight concrete	2015	Agung Fadhilah Putra	compressive strength
0	with Styrofoam filling material	lunc	Fima Berlianda	Experiment method
9	Microstructural analysis of lightweight concrete combined with fly ash and	June, 2021	Fima Bemanda	Experiment method
	bottom ash	2021		
10	The effectiveness of using mild steel for	2015	H. Duppa	tensile strength
	roof truss structures	2013		

Table 1. The previous researches within the subject

METHODOLOGY

This research were constructed based on methodology as picture in the following flowchart.

Figure 1. Flowchart of the research

In general, the research were conducted in two main stages, which firstly mixture design and model casting (concrete molding) and secondly laboratory tests. The first stage was held in Universitas Narotama's laboratory and for the second stage were in Politeknik Negeri Malang.

The proposed models design are lightweight steel composite concrete panel with module size of 60 cm in length and 33 cm in height (as figure 2). There were three module casted and tested after 14 days.

The data were taken when the tested modules deflexed and cracked during the compressive test. The data is the maximum force (P) and converted to determine concrete compressive stress (fc).

Figure 2. Light steel module for Composite concrete panel

Figure 3. Composite concrete panel module

Figure 4. The process of concrete panel fabrication

The frame work for the concrete panel is shown in figure 3 and as figure 4 is the process of concrete panel fabrication. These processes were conducted in Universitas Narotama Surabaya.

RESULTS AND DISCUSSION

Mix Design and Aggregate Characteristic Tests

Firstly, the research determined the mix design and aggregate tests. This research is important in order to have a good concrete mix for the designed model. The results are shown as in table 2 for the recapitulation of fine aggregate test and as in table 3 for the recapitulation of coarse aggregate test. The combine aggregate gradation is illustrated as in table 4.

SIEVE		STAY ON THE SIEVE		% CUMULATIVE	
NUMBER	mm	gram	%	Stay	Through
4	4,76	34	8,01%	8,01%	91,99%
8	2,38	40	9,43%	17,45%	82,55%
16	1,19	79	18,63%	36,05%	63,9%
30	0,59	102	24,05%	60,14%	39,85%
50	0,297	82	19,33%	79,48%	20,52%
100	0,149	63	14,85%	94,34%	5,67%
Pan	0	22	5,18%	100%	0
Cumulative			Fm sand = 424		

Table 2 Reca	pitulation of Fin	e Annrenate	Test Results
	pitulation or r in	e Ayyreyale	i col i coullo

Table 3. Recapitulation of Coarse Aggregate Test Results

TESTS	UNIT	RESULT S	SPEC INTERVAL	Results
Dampness of broken stone	%	0,01%	Max. 2%	Fulfill
Absorption of crushed stone against water	%	2,6%		Fulfill
The volume weight of crushed stone				
1. With poke	gr/cm ³	1,49	1,4 – 1,9	Fulfill
2. Without poke	gr/cm ³	1,43	1,4 – 1,9	Fulfill
Cleanliness of crushed stone against mud	%	0,2%	Max. 2%	Fulfill
Specific Gravity of Crushed Stone	gr/cm ²	2,22		Fulfill

Aggregate Combined Gradation

Figure 4. Aggregate combined gradation graph

Slump Test

To find out the level of viscosity of the concrete mix, a slump test was carried out. It was noted average of 12,3 cm.

Concrete Unit Weight

Checking the concrete unit weight is carried out when the concrete is 14 days old and testing the unit weight of concrete is known that each type of concrete is made of three pieces.

No.	Concrete Type	Module Type	Weight (Kg)		
1.	Lightweight Steel Composite Concrete Panel	A	62		
		В	62,4		
		С	61,8		

 Table 4. Concrete Unit Weight

As we can see from the table 4, there are differences in weight value. It might be the case of the weather, temperature and air humidity surrounding the tested modules during those 14 days.

Concrete Compressive Strength

The 1000 KN compressive Strength unit test was used to test the designed modules. The result was as shows in table 5.

No.	Concrete Type	Module Type	Days	Compressive Strength (KN)
1.	Lightweight Steel Composite Concrete Panel	A	14	5000
		В	14	4600
		С	14	6000

Table 5.	The	concrete	compressive	strength result
----------	-----	----------	-------------	-----------------

CONCLUSION

1. Based on the results of the composite concrete panel strength test on the quality of the concrete planned using light steel panels without using a series of reinforcing bars, the compressive strength for model type A, B and C are 5000 KN, 4600 KN and 6000 KN respectively.

In addition, the sand test obtained results for sand humidity of 0.77%, sand absorption in water of 17.9%, the volume weight of sand without a joist was 1.56 gr/cm3, with a vibration of 1.76 gr/cm3, with a vibration of 1.71 gr /cm3, cleanliness of sand against mud 2.6%. Coarse aggregate test results found that the humidity of crushed stone was 0.01%, the absorption of crushed stone to water was 2.6%, the volume weight of crushed stone without being jostled was 1.49 gr/cm3, with joist gr/cm3, the cleanliness of crushed stone against silt 0.2%, crushed stone specific gravity 2.22%.

2. Based on the results of the compressive test of concrete panels made of light steel, we can recommend it for the manufacture of small-scale and low budget houses.

REFERENCES

- Fahrudin, Zaim Nur. "Tinjauan Kuat Lentur Dinding Panel Beton Ringan Menggunakan Campuran StyrofoamDengan Tulangan Kawat Jaring Kasa Welded Mesh." Universitas muhammadiyah Surakarta (2013): 75.
- Sumiati Mahmuda. "Pemanfaatan biji karet sebagai agregat kasar terhadap workability dankuat tekan betonringan," no. July (2018).
- Itsna Fauziah Royani "Kajian KuatTekan, KuatTarik, Kuat Lentur dan Redaman Bunyi pada panel dinding beton ringan dengan agregat limbah Plastik pet Dan limbah Serbuk kayu," no. Desember (2014).
- Muhammad Fauzan Ramadhani, "uji kuat lentur padapanel betonberagregat kasar limbah plastik pet dantulangan wiremesh," no. September (2015).
- Harnung Tri. "kajian nilai slump, kuat tekan dan modulus Elastisitas beton dengan bahan tambahan filler abu batuparas," no. July (2014).

H. Duppa. " Efektifitas penggunaan bajaringan untuk struktur rangka atap Gedung," (2015).

Mudjarnako. "Panel Beton." (2021).

Fadli M. Van Gobel. "nilai kuat tekan beton pada slump Beton tertentu," (2015).

Fahrudin, Zaim Nur. "Tinjauan Kuat Lentur Dinding Panel Beton Ringan Menggunakan Campuran StyrofoamDengan Tulangan Kawat Jaring Kasa Welded Mesh." Universitas muhammadiyah Surakarta (2013): 75.

© 2022 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY SA) license (https://creativecommons.org/licenses/by-sa/3.0/).