
1. Introduction

The formulation of the 20-20-20 targets by the leaders
of the EU in 2007 was later followed by the adoption of
the “Klima 2050” plan by the Danish government,
which set an ambitious roadmap for Denmark towards
a low carbon society.1 It is commonly acknowledged
that a shift from a high-carbon society to a low-carbon
society is unachievable through product innovations
alone, but also necessitates increases in efficiency and
the realisation of saving potentials. These are equally
important pillars in the transition process, a fact
recognised in the targets of both plans.
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This applies especially to the energy sector which
causes about 40% of total CO2 emissions in Denmark. A
characteristic trait of the Danish energy system is that it
has a large number of district heating networks, many of
which are supplied by combined heat and power (CHP)
stations.

Given the technological path dependency which is
inherent to energy systems, a radical technological
change is not only unrealistic, but would also be an
overly expensive solution. Therefore, besides
technical progress, incremental process improvements
that lead to increases in environmental efficiency [1],
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ABSTRACT

The Danish "Klima 2020" plan sets an ambitious target for the complete phasing-out of fossil
fuels by 2050. The Danish energy sector currently accounts for 40% of national CO2 emissions.
Based on an extended Farrell input distance function that accounts for CO2 as an undesirable
output, we estimate the environmental productivity of individual generator units based on a panel
data set for the period 1998 to 2011 that includes virtually all fuel-fired generator units in
Denmark. We further decompose total environmental energy conversion productivity into
conversion efficiency, best conversion practice ratio, and conversion scale efficiency and use a
global Malmquist index to calculate the yearly changes. By applying time series clustering, we
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Our results indicate that the sectoral productivity only slightly increased over the fourteen years.
Furthermore, we find that there is no overall high achiever group, but that the ranking, although
time consistent, varies between the different productivity measures. However, we identify steam
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performers, while combustion engines that only produce electricity are clearly low performers.
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and rescaling generator unit capacities to increase
scale efficiency [1, 22] are equally important elements
in the transition of the energy system towards low-
carbon targets.

Based on a panel data set of production data from
virtually all fuel-fired Danish electricity, heating, and
CHP units, we analyse the performance of the industry
over a period of 14 years by using a distance function as
a benchmarking tool that accounts for CO2 emissions [1,
26, 24, 25]. Similarly to [1] and [24], we use an
extended Farrell input distance function with two
desirable outputs (heat and electricity), one undesirable
output (CO2), and one input (fuel), while we disregard
other inputs such as labour, capital, and materials.
Traditional and environmental total factor productivity
measures that are commonly applied in studies on the
performance of heat and power production take into
account all production inputs so that, e.g., investments in
fuel-saving and/or CO2-reducing technologies can
lower productivity measures, because the increase of the
productivity measure due to reduced fuel-use and/or
CO2 emissions can be smaller than its decrease due to
increased capital costs. In contrast, investments in fuel-
saving and/or CO2-reducing technologies necessarily
result in higher productivity measures in our analysis.

As our productivity measure can be improved both by
a more efficient conversion of fuel into heat and/or
electricity (energy conversion efficiency) and by
changes of the fuel composition towards less CO2
emitting fuels (environmental efficiency), we call our
obtained productivity measure “environmental energy
conversion productivity”. 

We divide the environmental energy conversion
productivity into three subcomponents: conversion
efficiency, best conversion practice ratio, and
conversion scale efficiency, and use the global
Malmquist productivity index proposed by [18] to
quantify yearly changes in the three subcomponents,
e.g., changes in conversion efficiency, changes in the
best practice conversion technology, and changes in
the conversion scale efficiency. This enables us to

derive a comprehensive picture of the productivity
development over time. Table 1 demonstrates how
our measures correspond with the transition pillars
innovation and efficiency.

As our benchmarking measure is based on individual
generator units, we are able to investigate the relationship
between the performance and various characteristics of
the generator units. These characteristics are, for instance,
age, capacity, technology, output, and the role within the
energy system. Based on these criteria, we address the
following questions: (a) is there a high performing group
and if so, who are the high performers given the transition
pillars innovation and efficiency; (b) are high performers
consistent (i) over time and (ii) over both transition
pillars; and (c) what characterises a potential low
performance group. This information allows a
comprehensive analysis of the sectoral performance and
may contribute to understanding the environmental
efficiency of a complex energy system. The ongoing
reform of the emissions reference document for large
combustion plants [13] stresses the relevance of this
topic. Our study helps to underpin the specificities of the
CHP-intensive Danish energy system in this context.

In order to answer the above-mentioned questions,
we perform a feature-based time series cluster analysis
[23] over all three subcomponents of environmental
energy conversion productivity to identify and describe
different performance groups. Finally, a multinomial
logit regression analysis provides more detailed
information on how the above mentioned characteristics
affect the attribution of a generator unit to one of the
identified performance groups. A detailed analysis of
the performance of different generator unit groups
completes the analysis.

The article is organised as follows: section two
provides a brief overview of the Danish energy sector
and its development over the last 40 years; section three
describes the data; section four provides a
comprehensive description of the methodologies used in
the analysis; section five presents and discusses the
results, and section six concludes.

Abbreviations:

EECP = environmental energy conversion
productivity;

CE = conversion efficiency; 
BCPR = best conversion practice ratio;
CSE = conversion scale efficiency; 
MTR = meta technology ratio.

Table 1: Correspondence between productivity measures and

transition pillars

Pillars Productivity measures

Innovation ⇒ changes in the best practice 
conversion technology

Efficiency gains ⇒ changes in conversion efficiency,
changes in conversion scale efficiency



2. The Danish heat and power generation sector

The Danish energy sector has some unique characteristics
that are important for the interpretation of the results of
this study. In contrast to other countries, Denmark decided
already in the late seventies to become more independent
from fossil fuel imports. The decision was not based on
climate concerns, but rather on a desire for political
independence and a secure national energy supply.

Except for the former Soviet Union countries, no
other country pursued district heating as consistently as
Denmark. Nearly 100% of municipal solid waste and a
large share of industrial waste are burned for energy
supply in smaller, local district heating plants and in
medium-sized CHP plants. Furthermore, Denmark uses
a large proportion of  its domestic natural gas resources
to produce heat and power. Many of the district heating
plants have CHP units whose construction and operation
have been promoted by a number of governmental
support actions throughout the years. CHP units have an
inherently higher total efficiency than electricity-only or
heat-only units. This effect is reinforced by
dimensioning and sizing the generation units for the
respective local heat demand, leading to economies of
scope in comparison to generator units with only one
output. Hence, the focus on small local district heating
plants and CHP plants has led to a sector that today
contains only a limited number of larger stations—of
which many are CHP plants in urban areas.

The Danish energy sector is divided into four main
classes of plants:

• Centralised plants are situated in 15 legally
defined areas. The generator units of these plants
are predominantly CHP units, although they also
comprise the largest electricity-only stations.
Usual fuels in this category are natural gas and
coal. Despite a huge increase in wind energy
generation, these units still produce about 50%
of the electricity in Denmark [12].

• Decentralised plants comprise a larger group of
plants with large and medium-sized mainly CHP
units fuelled by natural gas, waste, and biomass.

• Industrial plants are mainly medium-sized CHP
units that together with the decentralised plants

represent about 20% of the electricity supply in
Denmark [12].

• District heating plants are mostly small-scale
generators producing chiefly heat and only to a
very limited extent contribute to the electricity
supply.

• Other plants, which mainly comprise smaller
local units with a specific supply function (e.g.,
supply of hospitals) and emergency backup
generator units.

3. Data

Our empirical analysis is based on a full sample of all
fuel-fired electricity and heat producing generator units
in Denmark from 1998 to 2011.2 Tables 2 and 3 describe
the composition of the data set and present descriptive
statistics of relevant variables, respectively. The
capacity of the generator units with regards to electricity
production, heat production, and fuel input is measured
in megawatts (MW), while the actual electricity
production, heat production, and fuel use are measured
in terajoules (TJ). CO2 emissions are measured in metric
tons (t) and are calculated using an engineer’s approach
based on the fuel input using conversion coefficients
published by the [11].3 As several generator units use a
mix of different types of fuel, e.g., a mix of fossil fuels
and renewable fuels, the ratios between CO2 emissions
and fuel use are not limited to the used conversion
coefficients, but have a nearly continuous distribution
(see Figure 1). This shows that reductions in CO2
emissions can not only be achieved by radical changes
such as new technologies that use different fuels, but
also by stepwise changes of the mix of fuels. 

As all generator units in our sample—no matter
whether they produce no CO2 or strictly positive
amounts of CO2—produce heat and electricity by
burning some kind of fuel and as the share of renewables
can be incrementally increased to 100% so that the CO2
emissions are gradually reduced to zero (see Figure 1),
it is reasonable to assume that generator units that
produce no CO2 and generator units that produce strictly
positive amounts of CO2 use the same or a very similar
technology so that we do not need to separate between
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2 The data set also includes electricity and heat producing generator units that use other sources of energy. In order to focus on generator units with a similar
technology, we decided to only analyse fuel-fired generator units. This covers a very large share of the generator units in the data set and implies that we do
not include generator units in our sample that use solar cells, solar thermal collectors, hydro energy, geothermal energy, heat pumps, or excess heat from
industrial production.

3 The conversion coefficients are presented in appendix table A.1.
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Table 2: Composition of data set

Variable #

Number of observations 24411
Number of years 14
Number of generator units 2488
Number of plants 1415
Frequency of generator technologies

Boiler 1840
Combustion engine 518
Steam turbine 80
Gas turbine 31
Other 19

Frequency of embeddedness types
Decentralised plants 656
District heating plants 647
Industrial plants 73
Centralised plants 39

Frequency of production types
Electricity only 126
Heat only 1387
CHP 1061

Number of generator units producing no CO2 649
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Figure 1: Histogram of ratios between CO2 emissions and fuel input. The truncated columns mostly correspond to generator units that only

use a single fuel type. The fuel type and the frequency are indicated above these columns.

Table 3: Descriptive statistics

Mean Median Stdv Min Max

Start of operation 1990 1994 11.61 1900 2011
Operating time in years 19 17 11.61 0 110
Electricity capacity in MW* 11.67 0.96 55.48 0.0010 640.00
Heat capacity of in MW** 12.29 3.50 40.07 0.0100 585.00
Input capacity in MW 22.46 5.00 98.07 0.0250 1582.00
Yearly electricity production in TJ* 147.92 11.02 850.84 0.0001 14795.92
Yearly heat production in TJ** 83.71 11.13 406.79 0.0001 9798.09
Total fuels in TJ 210.35 16.00 1470.19 0.0010 37545.39
CO2 emissions in t 14.5 0.30 127.02 0 3560.33

Note: * = only generator units that produce electricity, ** = only generator units that produce heat. All figures are rounded to two decimals, except for the
minimum values, which are rounded to four decimals.
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two distinct technologies—technologies with no CO2
emissions and technologies with strictly positive CO2
emissions—in our analysis.

The discrepancies between the arithmetic means and
the median values in Table 3 reflect the focus of the
Danish energy sector on small-scale local generator
units. This is particularly the case for electricity
producers. In 2011, the 1% largest electricity producers
accounted for 51% of total electricity production.
Likewise, the top 1% district heating producers
accounted for 37% of total heat production. So, despite
the political effort to decentralise energy production, the
contribution of small local generator units is still limited
and raises the question of how efficiently the sector
operates on the whole.

4. Methodology

Our analysis of the environmental energy conversion
productivity of the generator units takes into account
one traditional input (fuel), two desirable outputs (heat
and electricity), and one undesirable output (CO2) as
described in the previous section. Conducting efficiency
analysis means that a choice has to be made regarding
the “direction” in which the deviation from the best
available “frontier” technology should be measured.
Different approaches to account for undesirable outputs
in productivity and efficiency analysis exist [e.g., 20]. In
general, inefficiency could be measured as the potential
reduction of the traditional inputs, the potential increase
of the desirable outputs, the potential reduction of the
undesirable outputs, or any combination of these three
“directions” where the directional vector could be either
defined in absolute quantities (as often done with
directional distance functions) or in relative terms (as
done in Farrell distance functions). In our analysis, we
use an extended Farrell input distance function, where
we measure inefficiency in terms of the potential
proportional reduction in both the traditional inputs and
the undesirable outputs, while holding the desirable
outputs unchanged:

(1)

where y is a vector of desirable output quantities, b is a
vector of undesirable output quantities, x is a vector of
input quantities, and T denotes the technology set.

As briefly outlined in the introduction, the generator
units have two (not mutually exclusive) basic pathways
to increase their environmental energy conversion
productivity (for constant output quantities): (i) fuel-

D y b x y b x T
b x,

( , , ) min{ ,( , , ) },= > ∈γ γ γ0

saving measures that proportionally reduce fuel use and
CO2 emissions and (ii) changes of the fuel composition
towards less CO2 emitting fuels, which reduce CO2
emissions, whereas the total fuel use is expected to
remain approximately constant. The direction of the
distance function that we use in our analysis corresponds
to the first pathway but it also takes into account the
second pathway. For instance, if a given generator unit
changes its fuel composition so that its CO2 emissions
decrease by 10%, while the total fuel input and the output
quantities remain unchanged, our distance function
approach indicates that the environmental energy
conversion productivity has improved. However, the
improvement of the environmental energy conversion
productivity is less than it would have been if the same
generator unit had reduced both its CO2 emissions and its
fuel input by 10%, while leaving the fuel composition
and the output quantities unchanged. Hence, our distance
function approach rewards reductions of CO2 emissions
that go along with fuel reductions (first pathway) more
than reductions of CO2 emissions that keep the total fuel
input constant (second pathway).

The directional distance function defined in (1)
corresponds to a traditional Farrell input distance
function, where the undesirable output is treated as an
additional input [specification “INP” in 20]. Hence, an
alternative interpretation of the model is that energy
production uses clean (non-CO2 polluted) air or CO2
quota as an additional input. There are three reasons for
using this “direction”.

First, for many generator units in our data set, the
quantity of one of the desirable outputs, heat, is
exogenously determined by the demand of the
respectively supplied consumers. As the ratio between
the (two) desirable outputs is technically predetermined
for many generator units in our sample (at least when we
only consider efficient points of production), for these
generator units, the other desirable output (electricity) is
also exogenously determined by the demand for heat.
Hence, these generator units cannot increase their
environmental energy conversion productivity by
increasing the desirable output quantities (y), but they
have to reduce the traditional input quantities (x) and/or
the undesirable output quantities (b).

Second, some generator units in our data set can only
use a specific type of fuel. As the ratio between fuel and
CO2 is given for a specific fuel type, the only possibility
for these generator units to increase environmental
energy conversion productivity is to proportionally
reduce the fuel input and the undesirable output (CO2),
if the output quantities are given.



Third, we do not assume that the desirable outputs are
null-joint with the undesirable outputs, because in our
empirical application, some generator units produce
strictly positive quantities of heat and/or electricity by
exclusively using renewable fuels so that they—
according to our way of calculating CO2 emissions—do
not emit CO2, e.g., (y, b, x) can be in the technology set
for b = 0 and y > 0. In contrast to the directional distance
function suggested by [9], our approach, the extended
Farrell input distance function, does not require null-
jointness between the desirable outputs and the
undesirable outputs.

In contrast to [14], we do not explicitly assume weak
disposability. Weak disposability means that desirable
and undesirable outputs can be reduced proportionally,
e.g., if (y, b, x) is in the technology set and 0 ≤ θ ≤ 1,
then (θy, θb, x) is also in the technology set [14]. We
cannot be sure that the (true) production technology of
the analysed generator units fulfils this assumption. For
instance, it could be the case that after changing the fuel
mix so that CO2 emissions are reduced from b to θb with
0 ≤ θ ≤ 1, while keeping total fuel input constant at x,
the maximum possible output quantities are reduced
from y to ψy with 0 ≤ ψ ≤ θ, which means that weak
disposability is not fulfilled.

As we use fuel as the only input and disregard other
inputs such as labour, capital, and materials, our
production model is based on an environmental energy
conversion function rather than on a traditional
production function. The best practice frontier that we
obtain in our analysis does not describe the best practice
technology for energy production, because it ignores non-
fuel inputs. As non-fuel inputs are costly, energy
producing companies should not use this frontier
technology to assess their productive performance.
However, our analysis indicates the best practice frontier
for environmental energy conversion, e.g., the conversion
of fuel to heat and electricity taking into account CO2
emissions. Thus, we can use the obtained frontier to
assess how the environmental energy conversion would
improve if the generator units switch to the best available
technology for environmental energy conversion (not
taking into account the costs of changing the technology).
This is what we want to investigate in our analysis.

In the example illustrated in Figure 2, a producer
invests in a CO2-reducing technology which increases
the firm’s capital stock from k0 to k1 and reduces CO2

emissions from b0 to b1, while (for simplicity) the
producer’s fuel input and output quantities remain
unchanged. In Figure 2, the relative distance from the
point of production to the frontier of the technology set
is not affected by the investment. When considering
both capital and fuel as inputs (as in a traditional
production function framework), this means that the
environmental technical efficiency of this producer
remains unchanged. However, in the case of our
environmental energy conversion function, which
ignores the capital input, the investment in CO2-
reducing technology illustrated in Figure 2 clearly
increases the environmental energy conversion
efficiency, because the point of production moves closer
to the frontier of the set of possible energy conversions
(densely dashed horizontal line).

The argumentation based on the example in Figure 2
also holds for investments in fuel-saving technologies
that as a consequence reduce CO2 emissions. We only
present the simpler example that assumes an unchanged
fuel input, because simultaneously looking at the capital
stock, CO2 emissions, and fuel input requires a 
3-dimensional graph, which would make the illustration
more complex than necessary.

We follow [3] and [20]4 and assume that the
technology set in a specific time period s can be
obtained from the observations in our data set by:

(2)
T y b x Y y B b

X x e

s s s
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4 Our definition of the technology set corresponds to the technology set T[INP] in [20].
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Figure 2: Investments in CO2-reducing technology



where λ is a vector of weights, e is a vector of ones, and
Ys, Bs and Xs are the matrices of desirable output
quantities, undesirable output quantities and input
quantities, respectively, of all observations in our data
set for time period s. A superscript G instead of s
indicates that the observations from all time periods are
taken to obtain the “global” technology, e.g., YG ≡
{Y 1,...,YK}, BG ≡ {B1,...,BK }, XG ≡ {X1,...,XK},
where K indicates the number of time periods in the data
set [18].

Given the definition of the technology set in equation
(2), we can use Data Envelopment Analysis (DEA) [6,
3] to measure the environmental energy conversion
productivity of an energy generator unit i at time t
relative to the best practice conversion technology at
time s as defined in equation (1):

By removing restriction λ�e = 1 from equation (2), we
obtain a technology set that exhibits constant returns to
scale. Thus, by removing restriction λ�e =1 from the
linear programming problem in equation (3), we obtain
distance measures that are benchmarked against the 
so-called cone technology [2]. We indicate these distance
measures by a checkmark (e.g., ĎS

b,x (y
t, bf, xt )). 

Given the specification of the DEA model in (3), the
best practice frontier for generator units that produce no
CO2 is only constructed by the 649 generator units that
produce no CO2. However, due to the convexity
assumption in our DEA model, the best practice frontier
for generator units that produce (small) strictly positive
amounts of CO2 can be constructed by a combination of
generator units that produce no CO2 and generator units
that produce strictly positive amounts of CO2. As the
generator units can gradually change the share of
renewables in the fuel composition until it reaches 100%

(3)
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(see section 3, particularly Figure 1), the convexity
assumption is also reasonable between generator units
that produce no CO2 and generator units that produce
strictly positive amounts of CO2.

Based on the obtained distance measures, we assess
the environmental energy conversion productivity of
Danish energy generator units. We measure the
environmental energy conversion productivity of a
generator unit i at time t by:

(4)

e.g., using the (hypothetical) global cone technology as
a benchmark. This productivity measure can be
decomposed into three components:

(5)

where

(6)

is the conversion efficiency indicating the productivity
of the observation relative to the best contemporaneous
technology,

(7)

is the best conversion practice ratio5 indicating the
productivity of the best contemporaneous conversion
technology relative to the best global conversion
technology at the observation’s scale of production, and

(8)

is the conversion scale efficiency indicating the
optimality of the observation’s scale of production, e.g.,
the productivity of the best actual global technology
relative to the best (hypothetical) global cone
technology at the observation’s scale of production.6

Although the levels of environmental energy
conversion productivity and their components are
certainly relevant for our analysis, their changes over time
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5 In the productivity and efficiency literature, this term is usually called “best practice gap” [e.g. 18]. However, in the case of a Farrell distance function
(rather than a directional distance function), increases in the (best practice) ratio imply decreases in the gap between the contemporaneous frontier and the
global frontier [see also 17, footnote 4]. To avoid confusion, we call this ratio “best conversion practice ratio” rather than “best conversion practice gap,”
which is analogous to [17] who propose renaming the “technology gap ratio” as “metatechnology ratio” in the “metafrontier” literature.



may be even more relevant. Therefore, we additionally
calculate and analyse changes in environmental energy
conversion productivity and their components using a
global Malmquist productivity index [18]:7

(9)

where

(10)

is the ratio between the environmental productivities in
years t and t – 1,

(11)

is the ratio between the environmental technical
efficiencies in years t and t – 1,

(12)

is the ratio between the best conversion practice ratios in
years t and t – 1, and

(13)

is the ratio between the conversion scale efficiencies in
years t and t – 1.

In order to systematically approach the dynamic
aspects of questions (a)–(c) in section 1, we run a time
series cluster analysis to distinguish groups of the
generator units that have similar characteristics of the
three time series CE, BCPR, and CSE. Three main
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approaches to times series clustering exist: (i) raw data
time series clustering, (ii) model-based time series
clustering, and (iii) feature-based time series
clustering [15]. As technology sets obtained by DEA
generally shift non-smoothly between time periods,
the observed time series of productivity measures also
shift non-smoothly over time, which makes the
application of raw data time series clustering
problematic. Furthermore, as our panel is rather
unbalanced, the model-based time series clustering
approach is infeasible. Therefore, we follow [23] and
apply a feature-based time series clustering approach.
As suggested by [23], we reduce the time
dimensionality by describing each individual time
series through a number of distributional parameters:
(i) the arithmetic mean of the time series for all time
series, and for time series with more than two
observations also (ii) the standard deviation of the
time series, (iii) the slope of a linear time trend (fitted
by OLS), and the (iv) standard deviation, (v) skewness
and (vi) kurtosis of the de-trended time series.

As these distributional parameters contain missing
values, we apply a k-medoid clustering algorithm. This
is a modified version of the well-known k-means
clustering algorithm, but unlike k-means clustering, the
k-medoid algorithm forms the clusters around one
“medoid” observation in each cluster, which makes this
algorithm robust to missing values.

5. Results and discussion

All calculations and estimations were conducted within
the statistical software environment “R” [19] using the
add-on packages “Benchmarking” [4, 5] for Data
Envelopment Analysis, “cluster” [16] for cluster
analysis, “NbClust” [7] for obtaining the optimal
number of clusters, and “mlogit” [10] for estimating the
multinomial logit model.

5.1. Overall environmental productivity
The four Subfigures ((a)–(d))8 in Figure 3 display the
development of the median environmental energy
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6 It would be possible to use a metafrontier approach with a separate frontier for each production technology so that the term CE
t
i would be decomposed into

TCE
t
i × MTR

t
i , where TCE

t
i is the conversion efficiency with respect to the frontier of the corresponding conversion technology and MTR

t
i is the

metatechnology ratio. However, we decided not to use the metatechnology approach in our analysis for two reasons. First, we want to use a common
benchmark to assess the environmental energy conversion efficiency of the generator units so that a decomposition of CE

t
i into TCE

t
i and MTR

t
i does not

provide information that we could use to answer our research questions. Second, some technologies (e.g. gas turbines) are only used by a few generator
units in Denmark so that the frontier of these technologies cannot be reliably determined by Data Envelopment Analysis (DEA) due to the curse of
dimensionality.

7 As [18] assume that the actual technology exhibits global constant returns to scale, the term dCSEi
t–1,t is not included in their decomposition.
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Figure 3: Yearly median values of environmental energy conversion productivity



conversion productivity (EECP) over the period of our
analysis (1998-2011), subdivided by (a) age and input
capacity, (b) generator technology, (c) embeddedness
type, and (d) production type. All in all we can observe
a slight increase (2.7%) in the median environmental
energy conversion productivity. As the smaller
generator units (< 20 MW) dominate the sector in terms
of numbers, it is not surprising that the median
environmental energy conversion productivity is mainly
driven by this group.

Over time, the productivity gap between older
generator units (> 20 years) and younger generator units
(< 20 years) decreases by 37%. However, this effect is
unfortunately not primarily driven by strong increases in
the environmental energy conversion productivity of
older generator units, but rather by the stagnating or
even slightly decreasing environmental energy
conversion productivity of younger generator units after
2005. Hence, despite an overall small but positive trend
over time, the younger generator units stand out due to
their less positive development, particularly after 2005.
These generator units are mainly smaller combustion
engines, whose main purpose is to level out fluctuations
in the electricity system which can be induced by wind
power. This is confirmed by Sub-figure (d), where we
find an opposing trend in the environmental energy
conversion productivity of pure electricity producers
whose environmental energy conversion productivity
plummeted by 13% over the period of our analysis.

5.2. Time series cluster analysis
According to [21], cluster validation can be based on
three approaches: (1) using external validation
criteria; (2) using internal validation criteria based on
information obtained during the clustering process to
evaluate how well the result fits the data; and (3) using
relative validation criteria, that compare the outcomes
of different cluster structures. Our initial aim is to
identify three performance groups, high performers,
middle performers, and low performers. But in order
to check the validity of our initial assumption of three
clusters, we also use internal and relative validity
criteria provided in the “NbClust” package [7] [see 8,

for a more detailed description of the validation
criteria]. We evaluated the optimal number of clusters
based on 28 different criteria. Given the distribution of
the 28 validation criteria over the number of optimal
cluster, the centre of the distribution and the highest
frequency (9 out of 28) occurs at an optimal number of
three clusters.9 As three clusters fit well with our
initial external validation criterion, we follow the
suggestion despite the fact that, given the size of our
dataset, the classification into only three clusters is
rather coarse.

In order to identify the three performance groups, e.g.,
clustering generator units whose productivity
development shows comparable profiles over time, we
base the cluster analysis entirely on the productivity
development profiles of the three performance measures
and do not include time-invariant characteristics of
generator units. By following this approach, we ensure
that the group formation is only based on the productivity
development profiles, while we in the second stage of our
analysis (see section 5.3) look at the performance
patterns across generator unit groups that are formed on
the base of time-invariant characteristics. 

Figure 4 illustrates, using boxplot diagrams, the
development over time of all three components of the
environmental energy conversion productivity measure,
e.g., BCPR, CE, and CSE, for each of the three
clusters, where the red line marks the smoothed
development of the median over time. Although there is
a considerable overlap between the full ranges of the
three different clusters, the median development over
time and the median levels of the productivity measures
(with the exception of the CSE of clusters 2 and 3) are
surprisingly distinct. This is especially the case for CE.

Hence, we can conclude that for each productivity
measure there is a moderate to strong consistency in the
ranking of the clusters over time. Furthermore, our
findings suggest that there is no consistently high
performing group over all three productivity measures,
e.g., the ranking of the levels of the clusters changes
between the three productivity measures. In section 5.3,
we take a more detailed look at different producer
groups to confirm this finding.
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8 A more detailed version of Figure 3(d) can be found in the appendix (Figure A.1).
9 These criteria are not solid statistical tests and should only be used as indicators. Given the ambiguous results of the different validation criteria, the final

decision regarding the number of clusters remains with the analysts.
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Figure 5 gives an overview of the composition of the
three clusters. Although, as mentioned before, the
classification into three clusters is rather rough, we see a
pattern emerge in that, on the one hand, the larger and
newer CHPs and the large electricity producers group
together (cluster 1, blue), while on the other hand, the
smaller district heating and small electricity producers
form a cluster (cluster 3, green). The middle group
(cluster 2, orange) is a conglomerate of medium-sized
district heating and decentralised CHP and heat
producers.

In order to identify the generator unit specific
variables that drive the classification into the different
clusters, we run a multinomial logit regression on the five
characteristics, input capacity (size), age (age), sectoral
embeddedness (emb), generator technology (tech), and
production type (pType), as well as on the median of the
utilised input capacity (util) and the median of the share
of renewables in the fuel composition (renewRatio). The
results are displayed in Table 4.

We test several model specifications by means of a
likelihood ratio test and find no significant effect for
size and renewRatio, so we drop these variables from
the regression analysis. Furthermore, we find that
pType and tech correlate to a degree that including both
variables leads to extremely large standard errors.
Therefore, we also remove pType from the regression
analysis. Given the descriptive results in Figure 5, it is
surprising that size has no explanatory value. A very
likely reason is that size is correlated with other
explanatory variables and at the same time, the
separation between the clusters is not sufficiently
distinct (see the wide and overlapping ranges the size of
the three clusters in Figure 5(d)). The same applies to

age which, although relevant in the model context, is
itself not statistically significant. This counter-intuitive
finding might follow from the fact that our data set only
contains information on the age of the unit but not on the
age of the technology actually in use. Therefore, the
estimate of the effect of our variable age may not be an
accurate measure of the real effect of the age of the
technology.

Not surprisingly, utilised capacity, util, is a large
driver of group membership. An increase in util by ten
percentage points increases the probability of being
included in cluster 1 (blue) by 3.1 percentage points and
decreases the probability of being included in cluster 3
(green) by 6.4 percentage points. As the variables tech
and emb are categorical variables, their marginal effects
must be seen in relation to the basic level, which is
‘boiler technology’ in the case of tech and ‘centralised
plant’ in the case of emb. Hence, the probability of being
included in cluster 1 is 26 percentage points higher for a
gas turbine than it is for a generator unit with boiler
technology. By and large, the marginal effects of emb
and tech reflect the results displayed in the radar plots
5(a) and 5(b), respectively.

5.3. Grouping of generator units by type
Table 5 summarises our findings on a more detailed
level. We form groups for all combinations of the
embeddedness type, technology, production type, age
and size. The characteristics “age” and “size” are
divided into three age classes and three size classes,
respectively (see Table 6). Groups which include less
than five generator units are not included in Table 5. We
calculate the respective group median values for all
productivity measures, EECP, CE, BCPR, and CSE,
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Table 4: Results of the multinomial logit estimation

me1 β2 se(β2) me2 β3 se(β3) me3

(intercept) 9.70 16.48 2.10 17.05
util 0.31 −2.51*** 0.34 0.21 −5.18*** 0.44 -0.64
age 0.00 −0.00 0.01 −0.00 0.00 0.01 0.00
tech: steam turbine 0.26 −2.77*** 0.54 −0.24 −2.28*** 0.57 -0.01
tech: gas turbine 0.26 −2.66*** 0.53 −0.17 −2.59*** 0.61 -0.06
tech: combustion engine 0.27 −2.60*** 0.25 −0.07 −3.34*** 0.31 -0.21
tech: other technology 0.24 −2.82*** 0.62 −0.34 −1.70*** 0.55 0.11
emb: district heating −0.15 2.09*** 0.75 0.39 0.53 0.60 -0.21
emb: decentralised −0.05 1.20* 0.71 0.40 −0.71 0.54 -0.32
emb: industrial −0.13 1.89*** 0.71 0.36 0.46 0.55 -0.20
emb: other plant −0.34 3.74*** 0.73 0.37 2.73*** 0.59 -0.05

Note: βj are the estimated coefficients that correspond to cluster j, where the coefficients of cluster 1 are normalised to zero; se(βj) are the standard errors of βj ;
mej are the median marginal effects on the probability of belonging to cluster j.
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Table 6: Abbreviations and colours used in Table 5

Column explanation

the first five columns define groups of generator units
emb embeddedness type of the plant: central = centralised plant, decentral = decentralised plant, distr heat = district heating plant,

industry = industrial plant, local = local plant
age age of the generator unit: new = built 1998 or later, med = built between 1983 and 1997, old = built 1982 or earlier
tech technology of the generator unit: boiler = boiler, combi = combined generator unit, combust = combustion engine, gas = gas

turbine, steam = steam turbine
pType type of production: CHP = combined heat and power generation, elec = electricity production only, heat = heat production

only
size the size of the generator unit: large = 20 MW or more input capacity, med = 2 MW or more but less than 20 MW input capacity,

small = less than 2 MW input capacity

the remaining columns provide information on the groups of generator units

nObs number of observations in our data set that belong to the group of generator units
nGU number of generator units in our data set that belong to the group of generator units; only groups with at least five generator

units are shown in Table 5
cl1 percentage of observations in the group of generator that are in cluster 1
cl2 percentage of observations in the group of generator that are in cluster 2
cl3 percentage of observations in the group of generator that are in cluster 3
util median value of the capacity utilisation of the observation in the group of generator units in percent
EECP, median values of the environmental energy conversion productivity, the conversion efficiency, the best conversion
CE, practice ratio, and the conversion scale efficiency as defined in equations (4), (6), (7), and (8), respectively, of
BCPR, all observations in the group of generator units; values above the median value in this column are highlighted
CSE by a green background colour, while values below the median value in this column are highlighted by an orange background

colour, where the intensity of the colour increases with the difference to the median; as the median value of the column of the
median conversion scale efficiencies is virtually one, we used the threshold 0.98 instead of the median for colouring the
column with the conversion scale efficiencies

dEECP, median value of the change of the environmental energy conversion productivity, the change in conversion
dCE, efficiency, the change in the best conversion practice ratio, and the change in the conversion scale efficiency
dBCPR, as defined in equations (10), (11), (12), and (13), respectively, of all observations in the group of generator
dCSE units; a one has been subtracted from these values in order to improve readability; values above zero indicate increasing

productivities and are highlighted by a green background colour, while values below zero indicate decreasing productivities
and are highlighted by an orange background colour, where the intensity of the colour increases with the difference from zero

as well as their changes, dEECP, dCE, dBCPR, and
dCSE, where an orange background indicates poor
performance, a white background indicates moderate
performance, and a green background indicates a good
performance (for details see Table 6).

EECP & dEECP. All CHPs with combustion
engines show high and consistent levels of
environmental energy conversion productivity, while
not surprisingly we find the lowest environmental
energy conversion productivity levels amongst
electricity-only generator units. A more concerning
finding is that nearly all electricity-only generator units
show high rates of productivity decline over the
observation period. Another concerning result is that the
majority of the groups do not experience any progress in
their environmental energy conversion productivity over

time. However, this seems not to be the case for several
groups of industrial plants that considerably improve
their environmental energy conversion productivity over
time.

CE & dCE. Concerning environmental energy
conversion efficiency, the CHP units are again superior
to units which only produce electricity or heat.
Regarding technologies, most groups of combustion
engines and steam turbines exhibit high levels of
environmental energy conversion efficiency. A positive
result is that a number of groups experienced increases
in environmental energy conversion efficiency over the
observation period, which means that poorly performing
generator units in particular improved their performance
during the sampling period. This is especially the case
for groups of combustion engines and boiler



technologies. However, new electricity-only units stand
out as they not only have a low median level, but also
some of the highest regression rates in environmental
energy conversion efficiency.

BCPR & dBCPR. While the change of the best
conversion practice ratio over time indicates change of
the best practice conversion technology, the median (or
average) value of the BCPR over the entire sampling
period is of minor relevance. A low median value of
BCPR indicates that there were large changes to the
technology over time, e.g., strong technical progress or
strong technical regress. Therefore, we only look at the
median values of the changes in the best conversion
practice ratio (dBCPR). All groups of electricity-only
producers and most groups of combustion engines (CHP
and electricity-only) experience a declining best
conversion practice ratio. This does not necessarily
mean that there is in fact technical regress, but it means
that the most productive generator units that define the
technology frontier become less productive over time.
Two groups of new small combustion engines (CHP)
and most groups of steam turbines (CHP) experience
significant technical progress. Boiler technologies in
general experience technical stagnation.

CSE & dCSE. Most groups of large CHP generator
units and some groups of medium-sized generator units
are conversion scale inefficient due to decreasing returns
to scale at these size classes. This finding implies that
they are oversized. At first glance, this does not seem to
apply to boiler technologies, but a closer look reveals
that all groups of large boilers have very low levels of
capacity utilisation. Hence, we cannot assess the
conversion scale efficiency of large-scale production
with boiler technologies. On the other hand, all groups
of small generator units are virtually fully energy
conversion scale efficient. This result indicates that
there are no significantly increasing returns to scale even
for the smallest generator units, meaning that small
generator units do not reduce the sectoral environmental
productivity while large generator units may do so (this
finding coincides with the results of the cluster analysis,
see the bottom row of graphs in Figure 4).

Table 5 confirms that there is no overall best
performance group of generator units, but that the
performance of each group differs between productivity
measures. On the one hand, most groups of steam
turbines and combustion engines for CHP perform quite
well in most productivity measures. On the other hand,
combustion engines that only produce electricity are

clearly low performers because they have extremely low
environmental energy conversion efficiencies and
virtually all their productivity measures decline over
time. The industrial units among them are operated as
peaking units as illustrated by the low utilisation.
Therefore, they do not constitute a major environmental
concern. In contrast, the decentralised and local units
exhibit utilisation rates of up to 43.5%. This point
illustrates that they have their own operational patterns
and are not used as peaking units as may be expected for
electricity-only generators in a system with high shares
of fluctuating renewable generation. With the increasing
amount of small generators, this issue should be
addressed by improved system integration and
economic signals that prevent island operation.

6. Conclusion

Based on a data set of virtually all fuel-fired electricity
and heat producing generator units in Denmark, we have
analysed the development of their environmental energy
conversion productivity by an extended Farrell input
distance function that takes CO2 emissions into account.
We have decomposed the environmental energy
conversion productivity measure into its three
subcomponents: conversion efficiency, best conversion
practice ratio, and conversion scale efficiency.

Our results show that the ranking of the performance
groups is constant over time, but clearly differs between
the different productivity measures. Steam turbines and
combustion engines for CHP tend to have a high
performance according to most productivity measures, as
is demonstrated by the cluster with predominantly new
CHP units performing best. Opposing this aspect,
combustion engines that only produce electricity clearly
belong to the poorest performance group. It is striking
that they are predominantly newer units with many hours
of operation. Their lack of conversion efficiency
indicates that their economic benefits come from an
island operation mode to cover e.g., predominantly
industrial demand. 

Our results support the argument about the high
environmental energy conversion efficiencies of CHP
units by another dimension: their conversion scale
efficiency is suboptimal for almost all groups above 
2 MW. However, we do not expect that this effect
outweighs the environmental gains due to co-generation.

All in all, our findings reveal that despite a
comprehensive climate policy portfolio in Denmark, the
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sectoral improvement of CO2-based environmental
energy conversion productivity is depressingly low and
it seems that the transition of the energy system is being
mainly driven by the inclusion of new technologies like
wind power or solar panels and only to a lesser extent by
the realisation of conversion efficiency gains. On the
one hand, for the time period analysed, this may have
been a rather costly path to follow. On the other hand,
the study shows that a complex, CHP-dominated
conventional electricity generation system can adapt to a
changing environment in times of increasing fluctuation
of electricity generation. As the energy sector is one of
the main contributors to Denmark’s CO2 emissions, a
more thorough and comprehensive understanding of the
effects of climate policies on the development of
environmental productivity at the sectoral level as well
at the firm level is absolutely essential.
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Appendix A. Additional tables and figures

Table A.1: CO2 emissions of different fuel types

Fuel type CO2 [kg/TJ]

coal 95
petro coke 92
orimulsion 80
fuel oil 78
waste oil 78
gas oil 74
refinery gas 56.9
LPG 65
natural gas 56.74
waste 32.5
electricity 140.27
biogas 0
straw 0
wood chips 0
wood and biomass waste 0
wood pellets 0
bio oil 0
fuel free 0

Source: [11, p. 59]
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Figure A.1: Detailed view of Figure 3(d) (yearly mean values of

environmental energy conversion productivity)

Table A.2: Cluster characteristics

cluster centralised district decentralised industrial other boiler steam gas combustion other heat electricity combined
plant turb turb tech

1 36 54 391 181 83 102 67 25 531 22 103 17 627
2 7 411 252 140 152 650 13 7 292 6 650 11 307
3 16 433 159 57 104 615 13 6 117 18 619 26 124
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Table A.3: Summary statistics over cluster performance

measure cluster mean(BPCR) se(BPCR) slope(BPCR) mean(CE) se(CE) slope(CE) mean(CSE) se(CSE) slope(CSE) size age

mean 1 0.9324 0.0296 0.0003 0.8569 0.0480 −0.0001 0.9680 0.0099 0.0009 501 1995
mean 2 0.9469 0.0299 0.0024 0.8133 0.0595 −0.0018 0.9959 0.0050 -0.0001 45 1991
mean 3 0.9545 0.0254 0.0020 0.7076 0.0843 −0.0009 0.9942 0.0039 -0.0009 31 1988
sd 1 0.0279 0.0161 0.0119 0.1172 0.0361 0.0195 0.0386 0.0127 0.0080 2246 8
sd 2 0.0170 0.0165 0.0147 0.0376 0.0379 0.0253 0.0107 0.0147 0.0069 291 13
sd 3 0.0249 0.0133 0.0123 0.0718 0.0657 0.0621 0.0471 0.0201 0.0264 265 16
median 1 0.9394 0.0274 −0.0012 0.8827 0.0375 0.0011 0.9775 0.0071 0.0003 57 1995
median 2 0.9485 0.0289 0.0027 0.8094 0.0495 −0.0012 0.9999 0.0002 0.0000 12 1994
median 3 0.9599 0.0250 0.0025 0.7261 0.0677 −0.0014 0.9997 0.0003 0.0000 2 1993
mad 1 0.0108 0.0058 0.0020 0.0352 0.0108 0.0045 0.0197 0.0050 0.0009 43 3
mad 2 0.0088 0.0053 0.0023 0.0257 0.0183 0.0056 0.0001 0.0002 0.0000 11 6
mad 3 0.0060 0.0051 0.0012 0.0270 0.0322 0.0080 0.0003 0.0003 0.0000 2 9
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