
1. Introduction

Energy systems worldwide have experienced a great
degree of change due to the unprecedented deployment
of renewables over the last years. In particular, the
Danish energy system has almost become a symbol for
this pursuit of sustainability as the penetration of wind
power has been pushed beyond the record level of 30%
in 2013 [5]. However, sustainability does not come free
of challenges.

Renewable sources such as wind and solar are
characterized by two features that distinguish them
from conventional sources of electricity: they are
intermittent and only partly predictable. At a power
system level, the intermittency of these sources implies
that other units in the system must be able to ramp up
their production to meet the load at periods when wind
and/or solar power are not available, or to ramp down
when wind or solar irradiation pick up. Similarly, power
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production must be planned in advance so that sufficient
flexible units are on in order to be able to cope with the
partly unpredictable future trajectory of wind and solar
power production.

Among the solutions proposed to alleviate the
challenges introduced by renewables in power systems,
the integration of the latter with the heat system is a low
hanging fruit that is believed to have great potential in
Denmark [12]. As roughly 60% of the Danish houses is
connected to urban district heating networks, the heat
system can add a significant level of flexibility if
managed smartly with the power system. For example,
electricity-fueled units (heat pumps, electric immersion
boilers) can turn wind power in excess of the demand
of electricity into heat that eventually can be stored into
hot-water tanks for future use. Similarly, the larger
inertia of the heat system can be employed to
counterbalance the fluctuations of renewable
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to problems of optimization under uncertainty in energy markets is presented. This formulation
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features of this mathematical formulation are duly interpreted with a view to the energy
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results shows the viability and appropriateness of the presented stochastic optimization
approaches for managing energy systems under uncertainty.
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production, thereby providing balancing services to the
electricity system.

To a large extent, the trade of heat and electricity
takes place in short-term markets arranged in the time
span between the day preceding the delivery of the
commodity and real-time. For example, 70% of the
electricity trade in the Nordic region takes place in the
day-ahead market, Elspot, which closes at noon on the
day before delivery [15]. Similarly, the bulk of heat
production in the Copenhagen area, i.e., 34 500 TJ per
year, corresponding to 20% of the total district heating
load in Denmark, is settled on a day-ahead basis [17]. At
the time of closure of these markets, producers must
have made a decision on their trades, while market
operators must run market clearing procedures to
determine the dispatch of the units as well as the prices.
Obviously, these decisions must be based on the
information available at the day-ahead stage, which for
uncertain parameters like wind power production or heat
demand is a forecast of their future evolution.

The aforementioned trends in future energy systems,
i.e., increasing uncertainty due to renewables and higher
level of integration across systems and markets for
different commodities, have implications for the
decision-making problems that both utilities and market
operators have to face. Firstly, decision-making models
have to span across different commodities rather than
consider them separately. Only in this way can the
benefits of energy systems integration be reaped.
Secondly, these optimization models should account for
the stochasticity affecting the decisions to be made,
since larger shares of renewables introduce greater
degrees of uncertainty in the energy system.

The research project ENSYMORA produced a
number of contributions to the state-of-the-art in
decision support models for the energy industry,
particularly tailored to the case of Denmark. This paper
discusses and summarizes five of them. The first
contribution is a model to optimize the trading strategy
for a large wind power producer that, owing to its size,
impacts the market as a price-maker [18]. The second
contribution aims to support the day-ahead trading and
dispatch processes of utilities managing Combined Heat
& Power (CHP) plants [20]. Related to this topic is [14],
where a day-ahead scheduling model is used for
evaluating the economic value of heat pumps and
electric boilers in the Danish energy system.
Furthermore, [8] studies the possibility of operating
CHP units and wind farms as a portfolio to reduce their

joint balancing cost. Finally, [19] considers the market
strategy for a retailer operating in a real-time pricing
environment.

The red thread behind these contributions is the
increasing role of optimization under uncertainty due to
the real-time uncertainty in forecasts of wind power
generation, prices, load, etc., in the management of
sustainable energy systems. In particular, three methods
to deal with uncertainties in optimization are employed.
In [8], we consider the use of a deterministic
optimization model within a rolling-horizon framework.
Furthermore, stochastic programming [3] is used in [18,
14, 19]. Finally, [20] employs robust optimization [1].

In Section 2 of this paper, we introduce the general
formulation of a problem of optimization under
uncertainty and describe how it can be tackled with a
deterministic model in a rolling-horizon framework,
using stochastic programming or robust optimization.
The various types of forecasts needed as input for each
of the aforementioned frameworks are described in
Section 3. Then, Section 4 discusses the results obtained
in some applications of these techniques to energy
markets. Finally, conclusions are drawn in Section 5.

2. Mathematical Framework for Economic
Problems in Energy

The classical model for optimization under uncertainty
in energy markets can be written as

(1a)

(1b)

(1c)

The subscript ω indicates that the linear cost
coefficient q in Eq. (1a) and the right-hand-side h in Eq.
(1c) are stochastic, i.e., functions of the realization of a
random variable ω ∈ Ω. We assume in the following that
an appropriate probability space (Ω, F, P) is defined.

In optimization problems within the energy market
domain, the objective is often aligned with the
minimization of cost (possibly minus a term
representing revenues) subject to the fulfillment of
balance constraints that enforce that supply and demand
for a commodity be equal. With this in mind, the
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stochasticity in the cost coefficient qω reflects the
uncertainty in the future realization of market prices.
Furthermore, the uncertainty in the future demand for a
commodity (heat or power) or in production (e.g., from
a wind farm) results in stochastic right-hand side hω for
the balance constraints.

The variable vector x indicates the so-called first-stage
variables. Because of the time structure of the decision-
making problem, the decision on the value of these
variables is to be made in advance and, thus, in the face of
uncertainty. Indeed, only a statistical description (forecast)
of the probability distribution of the stochastic parameters
qω and hω is available at this stage, but not their true
realization. Typically, in energy problems this type of
variables include day-ahead offers and decisions on the
on/off status of slow units, which cannot be changed in
real-time, or nominal values (pre-dispatch) for the power
and/or heat output of units. On the contrary, decisions yω
can be adjusted when the uncertainty in the problem
unfolds. These variables are referred to as recourse
variables. In energy-related problems, they typically
represent the real-time redispatch of flexible units or the
purchase or sale of electricity in the balancing market.

Under the definitions above, the product q�
ωyω indicates

the cost of recourse decisions. As this cost is a function of
the uncertainty, ω, it is stochastic itself. It is up to the
modeler to decide which operator Mω{.} related to the
random variable ω is to be included in the objective
function. Typical choices are the expectation or an
appropriate risk measure [13].

The vector x can be a collection [x�
1 ... x�

M]� of M first-
stage decision variables. As energy markets often require
producers, retailers and operators to make day-ahead
decisions for each hour of the following day, optimization
problems typically span multiple time periods. This implies
that each decision variable xm is itself a vector including a
decision for each time period [xm1 xm2 . . . xmT]�. Similarly,
let us assume there are N types of recourse decisions to be
made for each of the T time periods. According to these
definitions, model (1) is well defined if:

(2a)

(2b)

(2c)T W∈ ∈ Ω →× ×R R RL MT L NT L2 2 2, , : .h
ω

A ∈ ∈×R RL MT L1 1, ,b

c x, , , : ,∈ Ω →R RMT NTq y
ω ω

Unless further assumptions on the cardinality of Ω are
made, Eq. (1c) might involve an infinite number of
constraints. Similarly, the applications of the operator
Mω{.} on the recourse cost in Eq. (1a) might involve an
infinite number of function evaluations. In the
remainder of this section, we review strategies for
approximating the solution to this (otherwise
intractable) problem and describe some of their
applications to energy market problems.

2.1. Deterministic Optimization Within Rolling-
Horizon Scheme

A deterministic solution to the problem of optimization
under uncertainty (1) can be found by simply replacing
the uncertain variables with a deterministic quantity
related to the uncertainty, e.g., a point forecast. Finding
the deterministic solution is perhaps the easiest, though
roughest, approximation to a stochastic optimization
problem. Typically, the conditional forecast expectation,
see Section 3.1, is the chosen point prediction [4]:

(3a)

(3b)

(3c)

Note that the recourse variables lose their adaptive
nature in this formulation, as yω is replaced by y� ∈ �ΝΤ,
which represents the response of the system when the
realization of the uncertainty is equal to its deterministic
counterpart (which in this case is the expectation).

As a trade-off for the simplicity of deterministic
problem (3), there is in general no guaranteed bound on
the degree of suboptimality introduced by using the
deterministic solution instead of the “true“ solution to
(1). In fact, even the feasibility of the deterministic
solution under all the realizations of the uncertainty with
a non-negligible probability cannot be guaranteed. In
energy markets, the risk of infeasibility may be not that
problematic, as a deficit in electricity or heat production
can be covered by a purchase in a real-time market, the
start-up of an expensive backup unit or as, a last resort,
the curtailment of load. However, these “emergency“
decisions involve high costs (either monetary or in terms
of corporate image) that quickly degrade the overall
performance of the deterministic decision.

T Wyx h+ ≥ { }� E
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An approach to reduce the suboptimality of the
deterministic decision consists in solving a sequence of
deterministic problems (3) in a rolling horizon fashion.
When the first problem in the sequence is solved, only
the part of the solution corresponding to the first time
period in the horizon, i.e., xm1, m and y�n1, n is
implemented in practice. The horizon is then rolled one
step forward by updating the variables x and y as well as
the coefficients c, �ω {qω} and �ω {hω}, before solving a
new version of optimization problem (3). Note that
rolling one step forward includes an update of the point
forecasts used for the stochastic variables qω and hω.

The described rolling-horizon approach falls within
the domain of deterministic Model Predictive Control
[10]. It is better suited to problems of control of the
output of a system in real-time than for market
operation, as the former requires frequent updates (e.g.,
hourly) of the control strategy, while market offering or
clearing problems are faced on a daily basis and do not
allow for an update of the chosen strategy within the
same trading floor. In [8], we determine the real-time
production strategy for a portfolio consisting of a wind
farm and a Combined Heat and Power (CHP) plant
using the approach described in this section.

2.2. Stochastic Programming
The stochastic programming approach to (1) is based
on a discretization of the uncertainty space Ω. By
doing that, we approximate the probability
distribution with a discrete number of scenarios ω1, . .
. , ωS, see Section 3.3, with associated probability pω1

,
. . . , pωs

,. The optimization problem resulting from
this discretization is:

(4a)

(4b)

(4c)

Two important differences with respect to model (1)
render its stochastic programming version (4) tractable.
The first one is the fact that the recourse decision yω
need to be determined only at a finite number (S) of
points ωs . The second difference is that constraint (4c)
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ωs

s Sh
sω
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need to hold for a finite number of realizations of the
uncertainty ω. In contrast, observe that model (1)
requires the determination of the whole recourse
functions : yω : Ω → �NT and includes an infinite
number of instances of constraint (1c).

Moreover, observe that in (4) we implicitly made the
assumption that the modeler wishes to include the
expected value of the recourse cost in place of the
operator Mω{ }, which in the case of discrete uncertainty
boils down to a sum weighted by the scenario
probability. However, this is not the only description of
the uncertainty allowed in stochastic programming. For
example, the use of Conditional Value at Risk (CVaR)
[16] would also result in tractable optimization
problems, see [13].

While the deterministic formulation (3) has MT +
NT variables and L1 + L2 constraints, the size of
stochastic programming model (4) is (MT + SNT) ×
(L1 + SL2). Despite being tractable, (4) can quickly
grow too large if an excessive number of scenarios, S, is
chosen.

2.3. Robust Optimization with Linear Decision Rules
In this section, we consider a special case of robust
optimization, i.e., where the recourse decision yω is an
affine function of the uncertainty. We make the
following assumptions:
A1 The uncertain parameters qω, hω depend linearly on

the random variable, i.e., qω = Qω, hω = Hω.
A2 We require Eq. (1c) be valid ω ∈ U, where U is a

bounded polyhedral set described by the set of
R linear inequalities Dω ≥ d. Note that U is a subset
of Ω that is chosen by the modeler depending on the
desired level of conservativeness of the solution.

A3 The recourse decision yω is restricted to be an affine
function of the uncertainty, i.e., yω= Yω.

Note that A1 implies no loss of generality, as one
could simply redefine the probability space on the new
variables (qω, hω). Then, uncertain parameters and
random variables would coincide, hence the linear
dependence between them would be trivial. Assumption
A2 is a modeling assumption needed for tractability.
Note that the modeler can freely choose the polyhedral
set U. Typically, the larger U, the more conservative the
solution, as feasibility must be ensured for a larger set of
realizations of the uncertainty. Different types of closed
convex sets, e.g., elliptical, can be chosen without
destroying tractability; we refer the interested reader to
[1]. Finally, A3 is also needed for tractability.

∀
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Under the assumptions above, model (1) can be
reformulated in a robust optimization framework as
follows:

(5a)

(5b)

(5c)

Note that constraint (5c) can be reinterpreted in the
following equivalent reformulations: 

(6)

where the min operator in the latter inequality works row-
wise. Replacing the inequality on the right side of Eq. (6)
into (5), after some reformulations we can obtain:

(7a)

(7b)

(7c)

(7d)

(7e)

where Σω is the variance-covariance matrix of ω. In
order to get Eq. (7a) from (5a), we performed the
following substitutions:

(8)
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where we exploited respectively: the fact that a 1 × 1
matrix is equal to its trace, the invariance of the trace
operator to cyclic permutations of the arguments, the
linearity of expectation and the definition of variance-
covariance matrix. Constraints (7c)-(7e) are equivalent
representations of the right-hand side of Eq. (6) based on
linear duality [9]. We refer to [20] for further details on
the latter transformation, whose derivation is rather
lengthy. 

2.4. Bilevel Programming
Bilevel programming can be employed to model
different decision-making problems in energy markets
[7]. In particular, we review here its applications to the
offering problem of a price-maker wind power
producer [18] and to model the Stackelberg game
between retailers and residential consumers in a
dynamic-price environment [19]. As both problems are
subject to uncertainty, they can be cast in the
framework (1).

In view of its large capacity, a price-maker agent can
exercise a significant impact on the market price through
its offering strategy. Hence, the market-clearing process
conducted by the market operator has to be included
within the optimization model to determine the optimal
offer. Similarly, the real-time signal set by a retailer
impacts the consumption plan from price-responsive
consumers. The determination of the latter is an
optimization problem in itself that has to be included
within the retailer pricing problem.

In their most minimal formulation, the market-
clearing problem for a market operator or the schedule
determination for a consumer can be casted as linear
programming problems

(9a)

(9b)

In a market-clearing problem, u represents the
quantities to be dispatched, i.e., production and
consumption for each market player, and cL the marginal
cost or benefit indicated in the offer or bid submitted by
the corresponding agent. Constraints (9b) include a
number of physical limits of the system (e.g.,
transmission capacity), market limits (e.g., dispatch
limits specified in the offers), and balance between

s t. . : .A
L L
u b≥ μ

Min
u

.c u
L
�
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supply and demand at each node. Constraints of the
latter type are particularly important, as the associated
dual variables, indicated in (11) with μ, can be
interpreted as the electricity price at the corresponding
location of the grid. We refer the reader to [13] for a
more detailed description of the electricity market-
clearing process.

In the consumer problem with dynamic pricing, u
represents the consumption along with some states of
the system (e.g., temperature in the case of a heating
system). The cost coefficient cL includes the price
sequence sent by the retailer (multiplying consumption
in the objective function) and possibly a penalty for
states exceeding a comfort zone. Constraints (9b)
include dynamic equations linking consumption and
states as well as physical restrictions. 

Since problem (9) is linear, the following Karush-
Kuhn-Tucker (KKT) conditions are necessary and
sufficient for optimality [9]:

(10a)

(10b)

Note that KKT conditions are non-linear, as the ⊥
operator implies that either the left or the right-hand-side
are equal to zero. Hence, the ⊥ condition in Eq. (10a)
could be replaced by μ° (ALu−bL) = 0, where ° is the
pairwise product between corresponding vector
elements. A reformulation that allows to linearize the ⊥
condition is proposed in [6]. The result is a
reformulation of Eqs. (10) as a set of linear inequalities
involving additional binary variables.

As a result of the observations above, we cast the
trading problem of a price-maker wind power producer
as a bilevel programming problem. In general terms, it
can be formulated as follows:

(11a)

(11b)

(11c)Tx Wy+ ≥ ∀ ∈ω ω ωh , ,Ω

s t. .Ax ≥ b,

Min q
yx u q

c x y
, , ,

.
ω ω ω

ω ω ω
� �M+ { }

A
L L

c�μ = .

0 0≤ − ≥μ ⊥ A u b
LL

,

(11d)

(11e)

Note that the optimality conditions for the balancing-
market clearing, Eqs. (11d)-(11e) control how the offer
in the balancing market (included in the recourse vector
yω) affects the balancing market price qω. Indeed, such
constraints link yω and qω. The primal constraints for the
balancing-market clearing, i.e., the conditions on the
right of the ⊥ operator in Eq. (11d), are slightly different
from the one in Eq. (10a). The presence of the yω
variable in Eq. (11d) captures the effect of the offer of
the wind power producer at the balancing market stage
on the clearing of the same market. Thus, (11) models
the price-maker behavior of the wind power producer on
the balancing market. Note that the balancing market
offer of the wind power producer is in turn influenced by
its day-ahead offer x through Eq. (11c). Optimization
model (11) is nonlinear, due to the multiplication
between decision variables qω and yω in Eq. (11a) Some
additional reformulations allow us to transform it into a
Mixed-Integer Linear Problem (MILP). We refer to [18]
for the details on this linearization.

Similarly, the problem of determining the optimal
market and pricing strategy for a retailer in a dynamic
pricing environment [19] can be cast as the following
bilevel programming problem:

(12a)

(12b)

(12c)

(12d)

(12e)

The retailer (upper-level problem) influences the
consumers (lower-level) by deciding the price signal πω.

A
L
�q

ω ω
π= ∀ ∈, .ω Ω

0 0≤ − ≥ ∀ ∈q u b
Lω ω

⊥ A
L

, ,ω Ω

Tx Wy+ + ≥ ∀ ∈
ω ω ω

Vu h , ,ω Ω

s t. .Ax ≥ b,

Min u
yx

c x y
, ,ω ω

ω ω ω ω ω
π

π

� � �M+ −{ }q

A
L
�q c

Lω
= ∀ ∈, .ω Ω

0 0≤ − −( ) ≥ ∀ ∈q b B y
L L wω ω

ω⊥ A
L
u , ,Ω
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In turn, the consumers decide their consumption plan
uω, which enters the upper-level constraints (12c).
Among other restrictions, Eq. (12c) include a balance
condition between the electricity purchased in the day-
ahead market, x, and in the balancing market, yω.
Additional reformulations are needed, see [19], to get rid
of the nonlinearity given by the revenue obtained for

sales to consumers, in the objective function in
Eq. (12a).

3. Forecasting

In this section, we review the different types of forecasts
needed in the formulations of optimization under
uncertainty described in Section 2.

3.1. Point Forecast
Point forecasts are the simplest type of prediction, as
they aim at forecasting a single value describing a
certain characteristic of the probability density function
of a random variable.

Arguably, the most widely used point prediction is
the conditional forecast expectation. Let us assume that,
at time t, we are interested in the forecast of the
expectation of random variable hωt + k, i.e., we are
forecasting k-steps ahead or with lead-time k. We define
this forecast as: 

(13)

Such a forecast is conditional on the information γt
available at time t, which is in turn used to identify a
suitable mathematical model g for the stochastic process
hω and to determine an estimate Θ� of the parameters of
this model. Given the assumptions on model and
parameters, h�t+k|t is a k-step ahead prediction (issued at
time t) of the expected value of random variable hω, t + k .

An example of conditional forecast expectation of the
production of a wind farm with lead- times in the range
between 1 and 24 hours is shown in Figure 1. Hourly
forecast expectations are plotted along with the
corresponding observations (i.e., the values measured in
reality). As one can see, the forecast expectation
overestimates wind power production during the first
part of the day (roughly until hour 10), while it mostly
underestimates it during the second part of the day.

Another type of point forecast is the conditional
quantile forecast. Such a forecast aims at predicting a
specific quantile of the distribution of a random

h h g
t k t t k t

� �
+ +

= { }| , ,
| ,E

ω ω
γ Θ

π
ω ω
�u ,

variable. Assuming the same issue-time and target of the
expected-value forecast in Eq. (13), we can define the
forecast α-quantile, h�α

t+k |t’ by requiring that the
following condition be met:

(14)

According to this condition, the probability that hω, t+k
is not larger than h�α

t+k|t ’ given model g and the estimated
parameter set Θ� , is equal to α. Note that this coincides
with the definition of quantile for a continuous
probability distribution. An important case of quantile
forecast is the conditional median forecast, which is
defined by setting α = 0.5 in Eq. (14). 

Despite providing a rather limited picture of the
distribution of a random variable, point forecasts are
widely used in decision-making as a result of their
relative simplicity. For instance, the deterministic
optimization framework introduced in Section 2.1 is
based on the use of point forecasts such as the
conditional forecast mean or median.

3.2. Probabilistic Forecast
Decision-makers may need more information on the
distribution of a random variable than the single value
provided by a point forecast. For example, they might be
interested not only in knowing the expected value of an
uncertain parameter at a point in time, but also on the
uncertainty associated with such a point forecast. Interval
and density forecasts provide this type of information. 

An interval forecast with confidence β provides the
decision-maker with a range where the random variable
is forecast to take values in with probability β. Interval

P h h g a
t k t k t

a
tω ω

γ
, |

, , .
+ +

≤{ } =� �Θ
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Figure 1: Example of day-ahead conditional forecast expectation

along with the realized trajectory of wind power production.



forecasts can be obtained by pairing quantile forecasts,
defined by Eq. (14), in the following manner:

(15)

Note that there are multiple definitions for an interval
forecast with a given confidence. For example, an
interval forecast with confidence β = 0.9 could span
both the quantile ranges 0–0.9 as well as 0.05–0.95. In
the latter case, the interval is centered about the median,
i.e., there is an equal probability of the random variable
falling short or long of the median. The definition in Eq.
(15) is for intervals centered about the median. Interval
forecasts often find an application in robust optimization
models, see Section 2.3. Indeed, the definition of the
uncertainty set U may include (among others)
constraints enforcing that uncertain parameters be
included within an interval with large confidence β.

Density forecasts give a full picture of the probability
density function of a random variable. Essentially, they
consist of a collection of interval forecasts issued with
different confidence levels. Naturally, the finer the
resolution in terms of confidence level, the more precise
the information on the probability density function. In
Figure 2, the example of forecast of wind power
production in the previous section is enriched with the
density forecast for the whole forecast horizon.

Probabilistic forecasts provide information on the
uncertainty of a point forecast. They can be seen as a
snapshot of a random process at a specific point in time
in the future. Indeed, they model the probability density
function of a random process at a given point in time,
but they provide no information on the time-dependence
structure of the forecast error. Scenarios fill in this last
piece of information.

3.3. Scenarios
Many uncertain parameters in optimization problems are
actually stochastic processes with non-negligible
dynamic properties. For example, the forecast errors
(i.e., the deviation between observation and the
conditional forecast expectation) for wind power
production at consecutive time periods have a
significant positive correlation. This implies that, if
production at time t+k falls short of the forecast, there
is a higher chance that it will also fall short of the
forecast at time t+k+1. Scenarios provide a framework
for modeling the dynamics of a random process.

Considering the random process hω,t , we define a
scenario as a plausible trajectory of this variable during
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the time horizon of interest to the decision-maker.
Considering a range of lead-times between 1 and K, we
can define a set of S scenarios as:

(16)

If a sufficiently large number of scenarios is drawn,
the (discrete) probability distribution of the S scenario
values, h�s

t+k |t ’ for any given lead-time k can
approximate reasonably well the (continuous)
probability density function predicted for the same lead-
time by the density forecast described in Section 3.2.
Furthermore, the dynamics of the scenarios should com-
ply with the estimated time-dependence structure
(autocorrelation) of the random process hω,t.

Figure 3 illustrates 10 scenarios simulating wind
power production during the next 24 hours, along with
the conditional forecast expectation and the
observations already shown in Figure 1. Notably, the
forecast errors for each scenario show positive
autocorrelation, as scenarios that fall long of the forecast
expectation at a given time tend to fall long also at
neighboring time periods (and scenarios falling short
tend to remain short).

Scenarios are extensively used within multi-stage
stochastic programming models of the type introduced
in Section 2.2. Typically, problems of this type are
characterized by multiple sources of uncertainty, e.g.,
the cost qω and the right-hand side hω in model (4).
Appropriate scenarios for these random variables should
be issued so as to account not only for the
autocorrelation for each random process, but also for
their mutual correlation. We refer the interested reader
to [13] for an introduction on the topic.
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4. Applications

In this section, we review some applications of the
methods described above. Section 4.1 deals with the
determination of the optimal trading strategy for a price-
maker wind power producer. Then, the management of
heat and power systems is considered in Section 4.2.
Finally, Section 4.3 focuses on market strategies for an
electricity retailer participating in a real-time pricing
environment.

4.1.Trading Wind Power as a Price-Maker
The problem of trading wind power is addressed in [18].
That work considers a producer whose size is
sufficiently large to impact the balancing market prices
as a result of its trading strategy. The problem is
particularly relevant in Denmark, where wind power
penetration has already surpassed 30% [5] and few large
producers dominate the market. However, its relevance
extends to other markets as the installed production
capacity from wind (or solar, which could be addressed
in a similar fashion) is constantly growing.

The stochastic programming approach described in
Section 2.2 is employed in [18]. Realistic scenarios of
day-ahead price, wind power production and system
demand are used as input to the optimization problem.
In turn, the latter outputs an offering curve specifying a
given number of volume-price pairs. Note that the latter
is the specific form in which producers are required to
submit their day-ahead market offer to Nord Pool [15].

As described in Section 2.4, the price-maker nature of
a market participant can be accounted for by casting the
trading problem as a bilevel programming model. In this
case, the lower-level problem represents the clearing
process of the balancing market. Equilibrium conditions
of the type of Eqs. (11d)–(11e) model how the offer
submitted at the day-ahead market, the actual wind
power production and the deviation of the other market
players affect the balancing market price. Since the
lower-level problem involves stochastic parameters
(wind power production and deviation from other
market participants), there is an instance of such
equilibrium conditions per scenario.

Table 1 summarizes the structure of the optimization
problem. For each stage, it lists the variables
representing the decisions to be made and the
uncertainty that is revealed after making those decisions.

Figure 4 illustrates the optimization model with a
diagram. Forecast scenarios of day-ahead prices, wind
power production and system deviation are inputs. The
output of the model are the quantity offers to be submitted
at the day-ahead and balancing markets. The feedback
line from the balancing market represents that the
determination of the clearing prices for this market is
endogenous in the optimization model, so that the price-
maker behavior of the producer can be taken into account.

Financial results obtained with the strategic offering
model described above are reported and compared to the
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Table 1: Stages, decisions and uncertainty in the optimization problem modeling the trading problem for a price-maker wind power

producer [18].

Stage Decision variables Uncertainty revealed after stage

1) Day-ahead price-offer pairs • day-ahead price
• wind power production
• aggregate deviation from other

players
2) Balancing • volume purchased/sold (upper

level problem)
• balancing market dispatch

(lower level problem)
• balancing market price (lower

level problem)



ones obtained with simpler deterministic offers in [18].
Three price-inelastic strategies, where a certain quantity
is offered at any price level, are chosen as benchmarks.
In the first one, the day-ahead offer is the conditional
mean forecast of wind power production. This implies
that the difference between the actual production from
the wind farm and the day-ahead conditional mean
forecast is to be sold (or purchased, if the production is
smaller than the forecast) in the balancing market. Note
that balancing market prices are in general different from
day-ahead prices, so this strategy is not necessarily
optimal. The second strategy consists in offering the
conditional median forecast in the day-ahead market, and
then settling the difference from the actual production in
the balancing market. The last strategy consists in selling
all the production at the balancing stage (i.e., submitting
a zero offer in the day-ahead market).

A base case is considered first where the wind power
producer‘s penetration in the balancing market is 20%
and there is a small positive correlation between wind
power production and the deviation from the other wind
power producers. Results show that the strategic
offering model outperforms the benchmarks by roughly
1.5% (zero offer) and 3% (mean and median offers).

Furthermore, the degree of improvement provided by
the strategic offer is analyzed at different levels of
penetration of the wind power producer. Figure 5 is
constructed from simulation results published in [18]. It
illustrates the percentage improvement in profits
obtained when switching from the simpler trading
strategies described in the fourth paragraph of this
section to the proposed price-maker trading strategy. It

shows that offering no electricity at the day-ahead
market is nearly optimal as long as the producer is small.
However, the performance of this strategy deteriorates
as the size of the producer increases. On the contrary,
the degree of suboptimality of the strategies where
forecast mean and median production are offered at the
day-ahead market tends to drop as the size of the
producer gets larger.

The impact of correlation between wind power
production and the aggregate net system deviation is
also assessed in [18]. Figure 6 illustrates results from the
same paper. It emphasizes that the suboptimality of the
zero-offer is a decreasing function of this correlation.
On the contrary, the mean and median offers perform
comparatively better when this correlation is negative.
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4.2. Managing Heat and Power Systems
Owners of heat and power producing units typically have
to come up with production plans with a certain advance
in time to the actual delivery of these commodities into
the respective grids. This is partly caused by the fact that
the preferred floor in which electricity is traded is the
day-ahead market. In this section, we review some
applications of stochastic optimization to the
management of heat and power systems. 

4.2.1. Unit Commitment and Dispatch for Heat and
Power Systems

Because of the time structure of electricity and heat
markets, heat and power production units have to be pre-
dispatched on a day-ahead basis. Furthermore, these
units may need some time to turn on and off. At the time
of making the dispatch decision, important parameters
like the actual heat demand or power prices are
unknown. Hence, this optimization problem calls for a
stochastic approach. 

A robust optimization approach with the use of linear
decision rules along the lines of Section 2.3 is proposed in

[20]. In this approach, redispatch decisions are made affine
functions of the uncertain heat demand. A suitable budget
uncertainty set [2] specifies intervals for the maximum
deviation of heat demand at each time period, as well as a
limit for the total deviation over the optimization horizon.
The conditional expectation of the power price is also
given as input to the optimization model, along with its
correlation with heat demand. The optimization model
outputs the plan for the on/off status of the units as well as
for heat and power production. Table 2 sketches the
structure of the optimization problem.

Figure 7 illustrates the optimization model with a
diagram. Point forecast of day-ahead power prices, heat
demand as well as uncertainty set for the latter and their
correlation are inputs to the model. The output of the
model are the unit-commitment and heat dispatch for
day-ahead scheduling of the heat network, as well as
offers to the day-ahead and balancing power markets.

The work in [20] establishes the viability of the
robust optimization approach with linear decision rules
for this type of problems by showing tractability in a
representative instance of the problem, including two
CHP units, an expensive heat-only unit as backup and a
heat storage. The presence of storage renders the
approach especially interesting, as it allows to consider
a large number of stages (24 hourly periods in the case
of [20]) without having to give up on the non-
anticipativity of the solution, on the contrary of
stochastic programming.

In the illustrative example in [20], the storage appears
to be the unit that is used the most to guarantee the
instantaneous heat balance. Since this is not a
production unit, the CHP plants contribute by filling up
the storage after deviations have taken place.
Furthermore, the example shows that extraction CHP
units may increase heat imbalance when the correlation
between heat demand and power price is positive. This
occurs because when a unit of this type is running at its
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Table 2: Stages, decisions and uncertainty in the model optimizing the unit commitment and dispatch for a heat and 

power system [20].

Stage Decision variables Uncertainty revealed after stage

1) Day-ahead • unit commitment heat consumption
• heat production pre-dispatch
• power production pre-dispatch

2) Balancing • heat production redispatch electricity price
• power production redispatch



maximum total production level, an increase in the
power output can only be obtained by a proportional
drop in heat production. Hence, this unit may decrease
its heat production when power price and heat demand
increase simultaneously. Figure 8 shows the ratio
between heat output and heat-demand increase for the
extraction CHP unit according to the linear decision
rules in the example in [20]. The negative values
indicate decreasing heat output when heat demand
increases to allow for a larger power output. As a result,
other production or storage units in the system must
ramp-up to guarantee heat balance in these cases.

4.2.2 Assessment of the Economic Value of Heat
Pumps and Electrical Boilers

A setup similar to the one in the previous section is
considered in [14]. The focus on that paper is to assess
the potential for the instalment of heat pumps and
electric immersion boilers into the heating system
serving the Greater Copenhagen area. In order to do that,
realistic technical data for the units included in the CHP
plant Amagervaerket are employed along with actual
realizations of heat and electricity prices.

The economic value of heat pumps and electric
boilers is assessed by simulating the day-to-day market
operation of a heat and power system. This includes
decisions on unit commitment, pre-dispatch of heat and
day-ahead trade of electricity, and the heat redispatch in
real-time. This operational model is built along the
principles of stochastic programming described in
Section 2.2. Table 3 sketches the structure of the
optimization model. Scenarios modeling the stochastic
parameters (power prices, heat demand) are generated
using time series models [11]. The simulation of the

system operation spans four representative weeks, from
which yearly financial results are extrapolated.

Figure 9 illustrates the optimization model with a
diagram. Scenarios of day-ahead power prices and heat
demand are inputs to the model. The output of the model
are the unit commitment and heat dispatch for day-ahead
scheduling of the heat network, offers to the day-ahead
power markets, and the updated unit-commitment and
redispatch to cope with the real-time need for heat.

The simulations performed in [14] show that the
financial improvement obtained by the use of a
stochastic model instead of a deterministic one, i.e., the
value of the stochastic solution, varies between around
0.5% up to above 17%, depending on time of year. The
highest improvement is obtained during summer, where
the dispatch of the system is less flexible as the heat
pump and electrical boiler are both turned off. Fall and
spring trail with an improvement of about 1.5%, while
the smallest figure is obtained during winter. Another
interesting result is that the value of the stochastic
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solution is highly influenced by the installed capacity of
these units. Indeed, as these units provide flexibility,
they render the deterministic solution less and less
suboptimal. Hence, the authors argue for the importance
of stochastic models when making investment decisions.

Moreover, [14] shows that additional benefits
between €3 m and € 4.5 m can be obtained by
installing a heat pump and electric boiler of reasonable
size. However, the yearly benefits from these units could
increase by as much as €7.3 m in a future scenario with
lower electricity prices (with an average decrease of
€6.7/MWh with respect to the current price level),
which would imply cheaper operation for these units. 

4.2.3 Portfolio Strategies for Jointly Balancing Wind
Power and CHP Plants

A portfolio consisting of a wind farm and a heat-and-
power system is considered in [8]. In that paper, the
operation of the portfolio in the balancing market is
optimized so as to minimize the cost of its total
imbalance, i.e., the deviation between actual production
and the day-ahead offer for these units. The problem is
of particular relevance to Northern Europe and
specifically to Denmark, where cogeneration is believed

to have large flexibility potential to support the
integration of wind power [12]. 

The model in [8] represents the operation of the
portfolio in the balancing market only. Hence, the
results (dispatch) of the day-ahead electricity market is
considered as an input. The optimization problem is
built on the deterministic equivalent and is simulated
with a rolling-horizon strategy as described in Section
2.1. Point forecasts (expected conditional mean values)
are used for the uncertain parameters, which include
heat demand, wind power production and balancing
penalties (i.e., the differences between up-/down-
regulation prices and the day-ahead price). Forecasts are
issued with a horizon spanning from 1 to 23 hours
ahead, since the time horizon for the optimization model
includes 24 hourly time periods. The realization of heat
demand and wind power production during the hour of
operation is assumed to be known. 

Figure 10 illustrates the optimization model with a
diagram. Point forecasts of heat demand, balancing
market penalties and wind power are inputs to the model
along with the dispatch resulting from the day-ahead
power market. The output of the model are the updated
unit-commitment, the redispatch to cope with the real-
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Table 3: Stages, decisions and uncertainty in the model to assess the value of heat pumps and electric boilers in a heat and power

system [14].

Stage Decision variables Uncertainty revealed after stage

1) Day-ahead • preliminary unit status • day-ahead price
• heat production pre-dispatch • heat demand
• day-ahead power offer

2) Balancing • final unit status
• heat production redispatch
• power production redispatch
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Figure 9: Diagram of the optimization model used in the assessment of the economic value of heat pumps and electrical boilers in [14]. 



time need for heat and the corresponding balancing
market electricity offer. 

The model described above is run over a period
spanning 10 months in 2012 within a fully operational
framework, i.e., with state-of-the-art forecasts of
uncertain parameters and actual Nord Pool market data
[15]. The joint management of the heat and power
system and the wind farm is compared to the
independent operation of these assets. From a financial
perspective, operating the system as a portfolio provides
an average revenue increase of 0.55% over the
simulation period. Furthermore, it brings about a
reduction of 16.32% in the total volume of imbalances,
i.e., involuntary deviations from the day-ahead schedule
that are to be settled in the balancing market. Note that
the latter is an important figure, as it signals that
producers prefer to balance their portfolios internally,
rather than through the market. Those results refer to the
case where the operational objective is the maximization
of revenues with no account for imbalances. By further
imposing that the total imbalance of the portfolio be no
larger than the one of the wind farm alone, financial
improvement drops to 0.19%. However, imbalances in
this case are reduced by 41.31% compared to the
independent operation.

4.3 Market Strategy for a Retailer under Dynamic
Pricing

The case of a retailer operating in a demand-response
environment with dynamic pricing is considered in [19]. In
that paper, it is assumed that a retailer purchases all the

electricity necessary to supply a group of residential
consumers in the wholesale markets. In turn, the consumers
purchase electricity from the retailer paying a real-time
price chosen by the latter. Consumers are assumed to be
flexible in their load for heating purposes (e.g., if they are
equipped with a heat pump) as long as the temperature in
the dwelling is within a given comfort band.

The model developed in [19] is a three-stage
stochastic programming model with two levels. The
upper-level problem consists in the profit maximization
for a retailer, while the lower-level ones aims at
maximizing the benefit (minus the costs) for the
residential consumers. Table 4 summarizes the decision
variables and the uncertainty unfolding at each stage.
The model outputs the market strategy for the retailer in
terms of purchase of electricity in the different market
floors and of dynamic price signal to be sent to the
consumers. 

Figure 11 illustrates the optimization model with a
diagram. Scenarios of day-ahead and balancing market
prices, temperature and inflexible consumption are
inputs to the model. The output of the model are the
power purchase at the day-ahead market, 
the purchase/sale at the balancing power market and the
price for the flexible consumers. The feedback arrow
from the flexible consumers indicates that the power
consumption is modeled endogenously through the
lower level problem in the optimization model.

The illustrative example in [19], among other results,
is used to compare the financial performance of the real-
time pricing model with deterministic approaches. The
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first benchmark is the case where the consumer price for
electricity is flat, while the second one is a time-of-use
pricing scheme where the price is higher when
consumption peaks and lower at valley periods. The
reported profit improvement ranges from 4.96% against
the fixed pricing scheme to 8.93% against the time-of-
use one. Such an improvement is boosted by an increase
in revenues from consumers (2.47% and 5.68%,
respectively) and a reduction in market cost for
electricity procurement (−2.75% and −0.97%,
respectively). In particular, balancing costs for
deviations of total consumption from the electricity
purchase in the day-ahead market drop by 13.54% and
5.68%, respectively.

5. Conclusion

This paper reviews a number of contributions to decision-
making under uncertainty in energy markets resulting
from the project ENSYMORA. From a methodological
point of view, the red thread unifying these studies is the
use of techniques of optimization under uncertainty and
of probabilistic forecasting within decision-making and
optimization. The common focus is on problems of
interest to future energy systems, including the large-scale
deployment of renewables, integration across different
energy systems and smart grids.

We first give a general formulation that is directly
applicable to problems of decision-making under
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Table 4: Stages, decisions and uncertainty in the model to determine the optimal market strategy for a retailer in a dynamic price

environment [19].

Stage Decision variables Uncertainty revealed after stage

1) Day-ahead • day-ahead electricity purchase • day-ahead electricity price
• weather-related uncertainty

2) Balancing • real-time price charged to end- • up-/down-regulation price
consumers (upper level problem) • consumption from inflexible load

• energy purchased by the con-
sumer (lower level problem) 
temperature of consumer building
(lower level problem)

3) Ex-post • purchase/sale at balancing market
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Figure 11: Diagram of the optimization model to determine the market strategy for a retailer under dynamic pricing [19].



uncertainty in energy markets. From this general
formulation, we show how to derive a deterministic
version of a problem of optimization under uncertainty
(which can be easily implemented within a rolling-
horizon framework in control problems) as well as how
to apply stochastic programming and robust
optimization. In parallel, we show how various elements
in these formulations can be interpreted in different
energy-market applications and we introduce the types
of forecasts needed to account for uncertainty within
these models.

The applications reviewed in this paper span the
perspectives of a broad range of actors involved in
energy markets. The case of a wind power producer
trading in two electricity market floors (day-ahead and
balancing) is considered in [18]. Furthermore, we
review decision-making problems on different time-
scales for owners of Combined Heat and Power (CHP)
plants. The considered applications include investment
analysis [14], optimal day-ahead unit-commitment and
dispatch [20] as well as operation in the balancing
market [8] as a portfolio with a wind farm. Finally, the
perspective of an electricity retailer operating in a
dynamic-price environment is considered in [19].

A selection of results from the case-studies included
in the reviewed papers is presented. These results
confirm the viability of different techniques of
optimization under uncertainty for decision-making in
energy markets with a large fraction of stochastic, and
hence partly unpredictable, renewable power
production. Comparisons with deterministic solutions
for these problems show that stochastic methods can
bring average financial improvement of a few
percentage points in the considered problems. 

Besides being a review-paper, this article can be
considered as an introduction to the topics of
optimization under uncertainty as well as of modeling
and forecasting of stochastic processes. Indeed, it
includes the basic formulation of an economic
optimization problem, and guides the reader through the
main solutions to account for uncertainty in the
parameters, namely deterministic optimization with
rolling-horizon, stochastic programming and robust
optimization. The main forecasting concepts and
products to be used within these optimization models are
also briefly but rigorously reviewed. Finally, the reader
is presented example results that show the potential of
the optimization strategies within decision-making in

energy markets. The reader interested in a more
complete treatment of these topics is referred to state-of-
the-art textbooks throughout this paper.
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