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ABSTRACT

Simulating energy systems is vital for energy planning to understand the effects of fluctuating 
renewable energy sources and integration of multiple energy sectors. Capacity expansion is a 
powerful tool for energy analysts and consists of simulating energy systems with the option of 
investing in new energy sources. In this paper, we apply clustering based aggregation techniques 
from the literature to very different real-life sector coupled energy systems. The purpose is to 
provide a robust comparison of methods to complement the literature, in which methods are 
either not compared or compared on very similar energy systems.

We systematically compare the aggregation techniques with respect to solution quality and 
simulation time. Furthermore, we propose two new clustering approaches with promising results. 
We show that the aggregation techniques result in solution time savings between 75% and 90% 
with generally very good solution quality.

To the best of our knowledge, we are the first to analyze and conclude that a weighted rep- 
resentation of clusters is beneficial. Furthermore, to the best of our knowledge, we are the first to 
recommend a clustering technique with good performance across very different energy systems: 
the k-means with Euclidean distance measure, clustering days and with weighted selection, where 
the median, maximum and minimum elements from clusters are selected.

A deeper analysis of the results reveals that the aggregation techniques excel when the investment 
decisions correlate well with the overall behavior of the energy system. We propose future 
research directions to remedy when this is not the case. Finally, we believe that to further 
strengthen the research area, a library of benchmarks instances should be developed.
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1. Introduction

Simulating energy systems is vital for energy planning. 
The green transition demands increasing introduction of 
fluctuating renewable energy sources and integration of 
multiple energy sectors. Simulations are necessary to 
understand the behavior in such sector coupled energy 
systems. Capacity expansion consists of simulating 
energy systems with the option of investing in energy 
sources.

Much work in the literature considers solution meth-
ods for the capacity expansion problem but focuses on 
single methods or specific energy systems, see e.g. 
[1–3]. In this paper, a capacity extension model consists 
of a year in one-hour resolution, i.e. of 8760 hours. The 
underlying energy system may be large and consist of 
many areas (e.g. geographical areas or bidding zones) 
and energy types (e.g. power, district heating, gas). 
Solving the NP-hard capacity expansion problem is thus 
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needs, etc. [2]. A general mathematical model for the 
CEP is summarized as:

min total system costs + investment costs (1)

s.t.  production + import + storage discharge = 
demand + export + storage charge (2)

 physical constraints on production units (3)

 available RES (4)

 storage and electric vehicle constraints (5)

 capacity on interconnection lines (6)

 utilization ≤ investment (7)

  min investment ≤ investment ≤ max 
investment (8)

The objective function (1) ensures that an investment 
takes place when the savings of utilizing the investment 
exceed the investment cost. The total system costs 
include fuel costs, emission costs, import and export 
costs, operation and management costs, startup costs etc.

Balance constraints (2) ensure that supply and demand 
meet in every area and in every hour. Physical con-
straints on production units (3) include efficiency, tech-
nical production limits, production technology 
(condensation, back pressure, etc.) and ramping. 
Constraints (4) consider available RES subject to cur-
tailment options. Storage and electric vehicle constraints 
(5) include capacities, losses, charge and discharge rates. 
Constraints (6) ensure that capacities on interconnection 
lines are satisfied.

“Utilization” in constraints (7) represents how the 
investment is utilized in terms of production (for pro-
duction units and RES), inventory level (for storage 
units) or import and export (for interconnection lines). 
The constraints say that the investment must be large 
enough to facilitate the desired utilization. Finally, 
bounds (8) ensure that investments are within the user 
defined bounds.

The CEP is widely used for optimizing the configura-
tion of future energy systems. Examples of applications 
are non-trivial power systems [5], integration of renew-
able energy [6], large energy systems with sector cou-
pling such as power, gas, transport and heating [1, 7, 8].

Incorporating the UC in the CEP is essential to ana-
lyze the need for flexibility capacities and the integra-
tion of RES [9, 10]. This is particularly the case in 
systems with much RES [11] or when alternative 
 flexibility sources are analyzed [12]. The hourly time 

time consuming and often intractable. Aggregating time 
steps is a common method to reach tractability. The lit-
erature suggests a wide variety of aggregation tech-
niques. Most studies, however, consider specific systems 
[3] and only few contributions compare their results 
with the literature [2].

The novelty of our work lies in analyzing the effect of 
time aggregation methods on the real-life sector coupled 
energy systems. To the best of our knowledge, we are 
the first to apply and compare multiple time aggregation 
methods on significantly different energy systems. This 
provides much insight in the potential of time aggrega-
tion techniques without the risk of overfitting the meth-
ods to specific energy systems.

Furthermore, we propose two new aggregation meth-
ods with promising results. We analyze methods for 
selecting cluster representatives and conclude that 
weighted selection has superior performance. Finally, 
we provide a deeper analysis of the achieved results to 
highlight interesting future research areas in time aggre-
gation techniques. To summarize, the paper addresses 
gaps in the current literature of time aggregation tech-
niques applied to capacity expansion models:

• comparison of methods on very different, real-
life sector coupled energy systems

• analysis of selection strategies in the clustering 
methods

• recommendation on a method with overall good 
performance across very different energy 
systems

The paper is structured as follows. The literature 
review in Section 2 considers work from the literature to 
motivate the contributions of this paper. The imple-
mented aggregation techniques are presented in Section 
3 and the real-life energy systems in Section 4. The 
clustering methods are evaluated on the energy systems 
in Section 5. The evaluation leads to the proposal of two 
new aggregation techniques in Section 5.4. Section 6 
contains future work and conclusions are drawn in 
Section 7.

2. Literature review

The NP-hard Unit Commitment Problem (UC) simulates 
an energy system, where demand must be met every 
hour [4]. The Capacity Expansion Problem (CEP) 
extends the UC with investment decisions. This enables 
analyzes of introduction of new technologies, energy 
mix in case of rapid technology development, flexibility 
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resolution in the UC limits the CEP investments to the 
day ahead market, instead of considering balancing 
needs in an intra day or operational setting, which both 
consist of finer time resolutions.

Recall that the UC is NP-hard. Several studies have 
considered simplified approaches to include the UC in 
the CEP [9, 13], e.g., by only considering a subset of the 
UC constraints [14, 15]. Other approaches to handle the 
complexity are sophisticated solution approaches such 
as Benders decomposition [16, 17] and Dantzig-Wolfe 
decomposition [18]. The resulting problem, however, 
remains very difficult to solve.

A popular approach is time aggregation, where a 
subset of the 8760 hours of the year is solved. This 
reduces the size of the problem to make it more tracta-
ble, but with the cost of losing precision. Several litera-
ture studies apply time aggregation and conclude that 
the quality is satisfying [5, 19, 20]. The next section 
further elaborates time selection methods.

2.1. Time aggregation techniques for the Capacity 
Expansion Problem

Many different time aggregation techniques exist, span-
ning from simple heuristic selections [21] to optimiza-
tion methods [20]. Heuristic approaches may be too 
simple and are at times associated with insufficient 
capture of variability [22] while the optimization 
approaches suffer from high computational efforts [20]. 
A compromise between quality and computational trac-
tability is achieved by using clustering procedures [23]. 
A survey along with a proposed classification and tabu-
lar overview of time aggregation methods can be found 
in [2].

This literature study reviews literature on clustering 
methods, on selecting elements from clusters, and on 
comparing methods. Finally we discuss how this paper 
contributes to closing gaps in the literature.

2.1.1. Clustering techniques
The aim of all clustering approaches is to minimize the 
similarity between clusters while maximizing the simi-
larity within each cluster [24]. Clustering approaches 
differ in how they group elements into clusters and how 
they select elements from each cluster. An example of a 
clustering technique can be found in [25], which clusters 
days according to the hierarchical clustering procedure 
and where the day closest to each cluster centroid is 
chosen. Other popular approaches are k-means [26] and 
fuzzy clustering [27].

Clustering techniques can be categorized into either 
Exclusive (each element is assigned to only one cluster) 
or overlapping cluster techniques (each element is 
assigned to all clusters with a degree of membership) 
[2]. In relation to time aggregation, most clustering 
approaches belong to the Exclusive category, although 
the use of some overlapping clustering techniques, such 
as a fuzzy clustering, also exists [2, 28, 29]. The most 
common Exclusive techniques are the Hierarchical clus-
tering and the k-means clustering; the former builds a 
hierarchy of clusters through a sequence of nested parti-
tions, while the latter initializes a grouping which is then 
iteratively improved [30].

2.1.2. Selecting elements from clusters
Elements must be selected from each cluster to represent 
the full time horizon. [31] provides an overview of 
selection strategies including cluster average, element 
closest to the cluster average and random element selec-
tion. Cluster average is criticized for smoothing the 
profiles [19, 32] which underestimates the need for stor-
age capacity and storage technologies [33]. Random 
selection shows good results in [2] compared to average, 
minimum and maximum element selection. Comparisons 
of element selections are also seen in [25] and [28].

After the selection, the elements are weighted such 
that the aggregation reflects the relative importance of 
the elements in the original problem. Typically, fixed 
weighting is applied, assuming each cluster element to 
be equally important [29]. The weighting could also 
choose only to represent a partition of the clusters [34]. 
To our knowledge, there is no clear conclusion regarding 
the best selection criteria nor the best weighting strategy.

2.1.3. Comparison of aggregation methods
[35] compare clustering procedures selecting days. They 
compare k-means clustering, fuzzy cmean clustering 
and hierarchical clustering with varying linkage criteria. 
Selection strategies are the mean and the median ele-
ment selection. The selected element is weighted 
(repeated) according to the number of elements in its 
cluster. The paper analyzes electricity demand only, and 
it only considers how well the original data is repre-
sented by the clustering - not the quality of the invest-
ment results. They conclude that the k-means clustering 
using median representative outperforms other cluster-
ing procedures, independently of the number of clusters.

[29] also compare different clustering methods select-
ing days. They compare hierarchical clustering with 
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minmax linkage criterion and dynamic time warping; a 
double clustering strategy with k-means clustering and 
the mentioned hierarchical clustering; and a pure 
k-means clustering. The mean element is selected from 
each cluster, and selected elements are weighted 
(repeated) according to the number of elements in the 
clusters. The comparison is based on a single dataset 
covering three regions. The aggregation methods are 
compared on the resulting investments. They conclude 
that the hierarchical clustering and the double clustering 
have best performance.

In [36], five clustering approaches selecting days are 
compared: A k-means and a k-medoids clustering each 
based on a Euclidean distance metric and cluster centers 
as representative elements. A dynamic time warping 
barycenter averaging clustering. A k-shape clustering 
with a shape-based distance metric. A hierarchical clus-
tering with Euclidean distance metric.

The comparison is based on two different mathemat-
ical models representing different types of investments: 
one based on a battery and one based on a gas turbine. 
They conclude that the centroid-based clusterings repli-
cate the operational part well.

In [37], three approaches to selecting days are ana-
lyzed in a sector-coupled energy system with storage. 
All three approaches use clustering to select days and 
weigh (repeat) the selected days to form the full system. 
The three approaches differ in how to maintain storage 
levels across the selected days; from no coupling to full 
detailed coupling. They analyze the approaches on a 
small synthetic energy system and conclude that the 
more coupling and more selected days, the better perfor-
mance but also slower run times.

Different approaches to reducing the problem size are 
analyzed in [38]: down-sampling from hourly time res-
olution to e.g. six-hourly time resolution; clustering 
days; and heuristically selecting days. The approaches 
are tested on a representation of the power system in 
Great Britain with three different settings for renewable 
energy and storages and on 25 climate years. They con-
clude that the best performance is achieved by combin-
ing clustering with heuristic selection of extreme days.

Other contributions compare methods on quite small 
energy systems. [39] applies a mixed integer formula-
tion clustering model on two small energy systems: the 
University of Parma and a single building. They com-
pare their method with k-means and k-medoids cluster-
ing and conclude that their model has better performance. 
In [40] six aggregation methods are compared on an 

energy system representing a single building. The clus-
tering considers demand days and they conclude that 
k-medoids has best performance.

In [2], three clustering procedures are compared to 
four non-clustering aggregation techniques. Also, three 
new aggregation techniques are proposed; one based on 
dynamically blocking days, one based on optimizing the 
statistical representation of selected days; and one based 
on double clustering including correlation as distance 
measure. All methods are compared on three instances 
inspired by the Danish power system. The study con-
cludes that the double clustering has best performance, 
but that several approaches perform almost as well.

2.2. Hypothesis and contribution of this paper
The common approach in the literature is to solve spe-
cific energy systems to perfection, which makes it diffi-
cult to compare the results. [35] conclude that k-means 
has best performance, [29] hierarchical and double clus-
tering, in [36] medoid based selection is best for invest-
ment decisions and [2] show that simple heuristic based 
aggregation approaches perform well. [36] compares 
across different energy systems, but these energy sys-
tems are based on different underlying models which 
makes it difficult to draw conclusions for the CEP.

A similar pattern can be seen for element selection 
strategy. [28] considers median and mean representa-
tives with median as best option, [25] considers selec-
tion of centroid or historical day representation with 
centroid as best option, and [2] considers minimum, 
maximum, mean and random element selections with 
random as best option.

To our knowledge, selecting multiple elements from 
each cluster has not been addressed before. In [28] and 
[29], a cluster representative is weighted by repeating it, 
instead of selecting multiple elements from each cluster.

A different approach is not to solve each problem to 
perfection, but to find a technique, which provides over-
all good performance among different problems [41]. 
This is the approach we investigate in our work.

The main contribution of this paper is a detailed and 
structured comparison of different time aggregation 
approaches on four very different energy systems, based 
on the same mathematical formulation. With the energy 
systems being realistic in size and detail, the conclusions 
are widely applicable.

Since the aggregation technique comparison also 
includes a very simple approach, this paper furthermore 
illuminates the relation between aggregation technique 
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complexity and performance. The paper further contrib-
utes by comparing different selection strategies when 
elements are to be selected from each cluster and by 
considering both single and multiple selections from 
each cluster. Also, to the best of our knowledge, this 
paper is the first to illustrate the benefits of considering 
clustering weightings in the selection.

This paper focuses on the energy system capacity 
expansion model, Sifre. The full mathematical formula-
tion of Sifre is available at [42] and the capacity expan-
sion module of Sifre is available in Appendix A in [43]. 
Investment decisions are supported for production units, 
renewable units, storage, electric vehicles and intercon-
nection lines.

When solving the investment problem, a full year is 
simulated. Sifre LP relaxes the problem to limit the sim-
ulation solution time. The integer variables in the unit 
commitment problem are LP relaxed and investments 
are linear instead of discrete (e.g. invest between 0 and 
500 MW in a production unit, instead of investing in 
zero, one or two production units, each of size 150 
MW). Still, solving the problem may take many hours 
because of the problem instance size.

This paper implements the aggregation techniques as 
part of Sifre, but we still consider the results and ana-
lyzes valid for other capacity expansion models such as 
TIMES, Balmorel, EnergyPLAN and energyPRO [35, 
44–46].

3. Solution methods

Numerous aggregation approaches are suggested in the 
literature. Buchholz et al. [2] survey the many approaches 
and computationally compare aggregation strategies 
from the literature. According to their study, the follow-
ing approaches show superior performance:

• Dummy Selection, where every 13th element is 
selected from the residual load curve

• Statistical Representation, which selects 10000 
random samples and from this select the sample 
that best represents the means and standard 
deviation of the original data

• Optimized Selection, which has same objective 
as Statistical Representation. Instead of investi-
gating 10000 random samples, this approach 
finds the optimal sample with respect to means 
and standard deviation of the original data

• k-means Clustering with squared Euclidean 
distance measurement

• Cluster Clustering which first applies k-means 
clustering with squared Euclidean distances. 
Each resulting cluster is re-clustered using hier-
archical agglomerative clustering with dynamic 
time warp distance measure and complete link-
age criterion (minimizes the maximum distance 
between two elements; one in each cluster)

• Level Correlation Clustering, which first applies 
fuzzy clustering with squared Euclidean dis-
tances. Then it applies hierarchical agglomera-
tive clustering according to element correlations

To scope the work in this paper, we decide to focus on 
the clustering methods (the three last methods). We also 
include Dummy Selection due to its simplicity. As the 
sector coupled energy systems consist of many timeseries 
(and not just the residual load), we select every 13th 
element from each timeseries in Dummy Selection.

3.1. Configuration of the clustering approaches
The survey in [2] shows promising results when cluster-
ing days into 28 clusters. We thus apply this configura-
tion. Both the Cluster Clustering and the Level 
Correlation Clustering generates 7 outer clusters, each 
of which are re-clustered into 4 sub clusters.

The k-means clustering and fuzzy clustering algo-
rithms depend on an initial cluster. We divide the simu-
lation period evenly into the number of desired clusters. 
E.g. consider a year of 365 days, where the number of 
desired clusters is 28 and where days are clustered. Then 
the first 13 days are assigned to the first cluster, the next 
13 days to the next cluster etc.

3.2. Data dimensions
The proposed methods are extended to handle complex 
sector coupled energy systems, by making them con-
sider all fluctuating timeseries data. This means that the 
methods consider demand of all energy types (e.g. 
power, district heating, gas), RES production, import/
export prices, fuel prices and availability profiles for 
production units and interconnection lines.

The clustering approaches consider every fluctuating 
timeseries separately (instead of summing them into e.g. 
a residual load curve) and we also maintain the chrono-
logical order (in contrast to duration curves). Demand is 
negated to make the selection of cluster elements more 
intuitively understandable. The minimum sum element 
in a cluster represents a day with low production and 
high demand. Similarly, the maximum sum element rep-
resents a day with high production and little demand.
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The clustering approaches must calculate the distance 
between two days. This is done for each matching pair 
of timeseries for each hour (e.g. the RES production by 
offshore wind park Horns Rev 1 for each of the two 
days). All differences are summed across hours and 
timeseries to produce the final distance between the two 
cluster days.

3.3. Selecting days from clusters
Two approaches can be considered for deciding the 
number of days to select from each cluster. Either one 
day from each cluster (denoted non-weighted or fixed 
weighted), or a weighted number of days from each 
cluster. The benefit of the latter is that typical days and 
outliers in the full dataset remain (somewhat) typical 
and outlying in the aggregated dataset. The weight is set 
according to the cluster size:

 frequency
totalnumber of days in simulation

number of clusters
=  (9)

 weight = max 1, round 
cluster size

frequency

�

�
�

�
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�

�

�
�

�

�
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The total number of selected days may exceed the 
number of clusters for weighted selection. Weighted 
selection in the literature consists of selecting a single 
element from each cluster and then repeating this ele-
ment a number of times [25, 28, 29]. We propose to 
instead select a weighted number of elements from each 
cluster. The benefit of this is that time chronology is 
maintained, i.e., once selection of elements has finished, 
the original order of the selected elements is applied. 
Also, selecting existing elements instead of generating 
new, should represent the original data better.

Several strategies are investigated for deciding which 
days to select from each cluster: Minimum sum, i.e. the 
day(s) with smallest sum; Maximum sum, i.e. the day(s) 
with largest sum; Median sum, i.e. the day(s) with 
median sum; Closest to Cluster Mean, i.e. the day(s) with 
shortest distance to the cluster mean, and Random i.e. 
randomly chosen day(s). Closest to Cluster Mean is cal-
culated as follows: The mean of a day is calculated for 
every hour. The distance from an element to the mean is 
the total Euclidean distance in the 24-dimensional space.

3.4. Test setup
The time aggregation techniques are compared to the 
optimal solution of each data instance. Since only part of 

the problem is solved by the time aggregation tech-
niques, the objective function values cannot be com-
pared out of the box. It is, however, possible to generate 
two full year simulations with fixed investments: one 
simulation with optimal investments and another simu-
lation with investments from using a time aggregation 
technique.

The objective function values of these two simula-
tions can then be compared. But the objective function 
values will not include investment costs and will thus be 
difficult to understand in relation to investment deci-
sions. Also, the objective function value is of very little 
interest in the analyzes in Energinet, where focus is on 
the energy mix, the flows, etc. For this reason, we decide 
to only compare the investment decisions. The perfor-
mance measure hence becomes:

 i i
aggregated

i
optimal

i i
opti

Investment Investment

Investment

��
mmal�

 (11)

where i is an index for the investments, Investmenti
aggregated  

is the investment decision made by the aggregation tech-
nique and Investmenti

optimal  the investment decision from 
the optimal solution.

4. Test instances

The aggregation techniques are tested on four signifi-
cantly different sector coupled energy systems, all stem-
ming from analyzes in Energinet and where data is 
based on overall assessments. The energy systems are 
different instances of the LP model summarized in 
Section 2. An energy system consists of the following 
components:

• Areas, which represent an energy type and a 
geographical region, possibly attached an energy 
demand

• External areas represent an energy type and a 
geographical region. They only have a price per 
MWh for each hour attached. They can only be 
connected to the rest of the system via an 
interconnection line

• Production units (or Conversion units or 
Generation units) convert energy types; 
examples are CHPs, CCGTs and compressors,

• Renewable units (RES) produce energy based on 
a production profile
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Table 1: Detailed description of test instances

Energy 
system

Areas External 
areas

Production 
units

RES Storages Inter-
connectors

Electric 
vehicles

Demands

DK classic 74 6 294 60 36 8 2 66
DK detailed 211 9 396 88 54 109 16 94
Gas 74 2 70 7 6 11 0 15
PtX 27 8 31 1 16 10 0 3

• Storages are any types of storages, e.g., batteries 
or water tanks. Storages can also be used to 
model line pack in gas systems

• Electric vehicles which must be charged before 
requested driving time, however, the time of 
charging is flexible

The sector coupled energy systems are described in 
Table 1.

The DK classic instance consists of a representation 
of the Danish power and district heating system in 2020, 
see Figure 1. The investment decisions focus on heat 
production and consist of two CHPs, three heat boilers 
and three heat pumps: a total of 8 investments.

The DK detailed instance proposes a Danish power 
and district heating system in 2050, see Figure 2. The 
number of electricity areas are split into eight areas to 
represent possible future grid bottlenecks. Also, the pro-
duction system includes PtX technologies (Power to X 
technologies), hence fuels are represented in greater 
detail than in DK classic and include parts of the trans- 
portation sector. The investment decisions focus on 

seven PtX plants, modelled through fourteen condensing 
power plants, seven heat pumps and one storage: a total 
of 22 investments.

The Gas instance consists of a subpart of the Danish 
gas transmission and distribution systems in 2020, see 
Figure 3. The instance introduces large amounts of 
biogas and investigates investments in two compressors 
from gas distribution systems to the gas transmission 
system and one investment in connecting distribution 
systems directly: a total of 3 investments.

The PtX instance models a Power to X cluster as illus-
trated in Figure 4. The investment possibilities decide 
how to dimension the PtX cluster and consists of 19 
production units, one heat pump and one interconnec-
tion line: a total of 21 investments.

Figure 2: An overview of the DK detailed instance. The 
electricity areas are highlighted. District heating is modelled 

as 59 areas, as for DK Classic.

Figure 1: An overview of the DK classic instance. The red 
circles represent electricity areas, the blue lines interconnection 

lines to neighboring electricity areas. The blue dots show 
district heating areas in Denmark, which are modelled as 

59 district heating areas in the dataset.
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Figure 4: An overview of the PtX instance. The system integrates many energy types.

Figure 3: An overview of the Gas instance. The left figure illustrates the overall system. A total of 10 distribution  
systems are modelled in varying detail. The investments are colored red. The right figure illustrates an example of  

a modelled gas distribution system, where NG is short for natural gas, 40B is 40 bar and 4B is 4 bar.

5. Results

The computational evaluation is conducted on a 10 
core 2,4 GHz machine with 128 GB RAM, using 
Gurobi 8.1 as solver. The following abbreviations are 
used in the remainder of this section: Clustering meth-
ods: k for k-means, cc for Cluster Clustering, and lc for 
Level Correlation clustering. Selection strategies: min 
for minimum sum, max for maximum sum, median for 
median sum, and cmean for closest to cluster mean. 
Finally, we have w for weighted selection, n for non-
weighted (fixed weighted) selection, and 28 to repre-
sent the 28 generated clusters. Run time results are 
seen in Table 2 and solution quality gaps in Table 3. 
Results are analyzed in the following sections. For more 

details and deeper discussions, the interested reader is 
referred to [43].

5.1. Time usage
Time reductions are plotted in Figure 5. Note that the 
solution times also include pre- and postprocessing of 
the data instances and not only time for solving the 
linear program. The time usage savings are consistent 
across the time aggregation techniques. The average 
time saving is 90%, which is very satisfying. The time 
savings are slightly smaller for the DK classic and Gas 
instances, which could indicate that these instances 
spend relatively more time on pre- and postprocessing 
data than the DK detailed and PtX instances.
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Table 2: Run times in minutes.
DK-classic DK-detailed Gas PtX

Full test instance 36,45 536,06 11,71 14,69
Dummy 
Selection

4,38 18,29 1,48 1,47

k,min,w,28 4,21 17,42 1,34 1,54
k,max,w,28 5,83 22,65 1,32 1,45
k,median,w,28 3,99 24,64 1,38 1,49
k,cmean,w,28 4,25 15,42 1,46 1,65
k,random,w,28 4,10 22,32 1,39 1,45
cc,min,w,28 5,74 43,48 1,63 1,07
cc,max,w,28 5,58 25,04 1,66 1,49
cc,median,w,28 6,16 48,25 1,62 1,06
cc,cmean,w,28 6,04 33,26 1,67 1,51
cc,random,w,28 5,66 31,73 1,71 1,21
lc,min,w,28 6,21 35,76 1,54 2,15
lc,max,w,28 8,20 27,42 1,93 1,53
lc,median,w,28 7,01 21,86 1,90 1,68
lc,cmean,w,28 6,70 35,30 1,90 1,07
lc,random,w,28 7,34 34,78 1,91 1,82
k,min,n,28 5,95 10,19 1,26 1,27
k,max,n,28 3,89 16,82 1,25 0,88
k,median,n,28 5,35 16,72 1,24 0,86
k,cmean,n,28 5,72 17,40 1,25 0,86
k,random,n,28 4,21 15,35 1,26 1,17
cc,min,n,28 6,56 21,20 1,36 1,15
cc,max,n,28 6,48 19,24 1,44 1,01
cc,median,n,28 5,08 18,80 1,45 0,86
cc,cmean,n,28 5,19 15,89 1,41 0,76
cc,random,n,28 5,24 25,55 1,40 0,77
lc,min,n,28 7,01 21,67 1,71 1,14
lc,max,n,28 4,83 17,72 1,75 1,05
lc,median,n,28 6,26 24,05 1,72 1,11
lc,cmean,n,28 6,41 35,26 1,74 0,93
lc,random,n,28 6,54 21,10 1,74 1,00

Table 3: Solution quality: the lower percentage, 
the better performance.

DK-classic DK-detailed Gas PtX
Dummy 
Selection

8% 5% 25% 4%

k,min,w,28 101% 3% 47% 2%
k,max,w,28 65% 18% 25% 3%
k,median,w,28 17% 4% 24% 0%
k,cmean,w,28 19% 6% 39% 2%
k,random,w,28 16% 8% 40% 2%
cc,min,w,28 105% 4% 38% 1%
cc,max,w,28 30% 23% 12% 7%
cc,median,w,28 17% 2% 37% 2%
cc,cmean,w,28 13% 5% 35% 1%
cc,random,w,28 17% 5% 28% 2%
lc,min,w,28 23% 4% 61% 1%
lc,max,w,28 90% 23% 17% 5%
lc,median,w,28 31% 6% 32% 1%
lc,cmean,w,28 42% 9% 28% 0%
lc,random,w,28 6% 2% 23% 0%
k,min,n,28 102% 4% 51% 1%
k,max,n,28 66% 7% 40% 6%
k,median,n,28 9% 11% 23% 1%
k,cmean,n,28 13% 4% 41% 3%
k,random,n,28 5% 2% 25% 3%
cc,min,n,28 75% 7% 51% 2%
cc,max,n,28 74% 17% 49% 9%
cc,median,n,28 45% 2% 59% 4%
cc,cmean,n,28 23% 3% 57% 4%
cc,random,n,28 37% 6% 55% 8%
lc,min,n,28 33% 4% 68% 1%
lc,max,n,28 57% 20% 49% 66%
lc,median,n,28 40% 6% 35% 2%
lc,cmean,n,28 47% 8% 29% 2%
lc,random,n,28 49% 7% 33% 3%

Generally, the time savings are slightly smaller for the 
weighted selection algorithms. Recall the weighting 
from Section 3.3; rounding the number of elements to 
select from a cluster may increase the total number of 
selected days. Indeed, the weighted selections result in 
more than 28 selected days, see Table 4.

5.2. Weighted vs. non-weighted selection
Weighted selection has better performance than non-
weighted selection with respect to solution quality in 62% 

of the time aggregated simulations. The results are illus-
trated in Figure 6. In 37 of 60 cases, the investment gap 
decreases with weighted selection. If gaps are averaged 
across instances, the gap decreases with weighted selection 
in 11 out of 15 cases. The average of all gaps is 21% for 
weighted selection and 26% for non-weighted selection.

This confirms that weighted selection better rep-
resents the full dataset and that outliers are balanced well 
against the rest of the dataset. The improved quality may 
partly be due to the increased number of selected days, 
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Figure 6: Quality gap percentages averaged across the four instances.
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Figure 5: Time usage reductions in percent.

Table 4: The number of selected days.

DK classic DK 
detailed

Gas PtX

Dummy 
selection

28 28 28 28

k,n,28 28 28 28 28
cc,n,28 28 28 28 28
lc,n,28 28 28 28 28
k,w,28 31 34 34 36
cc,w,28 37 38 39 39
cc,w,28 38 37 36 38

see Table 4. It is possible to increase the number of 
selected days for the non-weighted algorithms and com-
pare the results. This would, however, require that the 
non-weighted algorithms generate more clusters, which 
again would make comparison more difficult. Instead, 
we continue to compare the algorithms with 28 clusters. 
The interested reader is referred to Appendix B in [43] 
for results for non-weighted selection with more clusters.

5.3. Selection strategy
The strategies for selecting elements in each cluster per-
form differently across the instances. Results averaged 
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across the four instances are illustrated in Figure 7. 
Clearly, the minimum sum and maximum sum selec-
tions have worst performance. Random and median 
selection vary slightly, while closest to cluster mean 
gives consistent results. The same pattern is seen, when 
considering results for weighted selection only, see 
Figure 8. Selecting only the minimum or maximum sum 
elements represents the clusters less well. Random per-
forms well which indicates that always selecting the 
median or closest to cluster mean elements may be too 
strict.

5.4. New approaches to promote diversification in 
selected days

Random selection performs well but due to its random 
nature, results are not consistently good. To eliminate 

45%
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Figure 7: Quality gap percentages averaged across instances and 
weighted and non-weighted selection.

the randomness, we instead seek to mimic differentiated 
selection.

We propose the MedianMaxMin selection. The 
approach is only relevant in weighted selection where 
more than one element may be selected from each clus-
ter. First the median element is selected. If more ele-
ments are to be selected from the cluster, the maximum 
element is selected. Again, if more elements are to be 
selected, the minimum element is selected. If even more 
elements are to be selected from the cluster, the selection 
order repeats.

We also propose the kk-means clustering approach (in 
short kk). The outer clustering is k-means with squared 
Euclidean distances where the initial clusters are gener-
ated as explained in Section 3.1. The inner clustering is 
also a k-means with squared Euclidean distances, but 
this time the initial clusters are formed around the 
median, maximum sum and minimum sum elements (in 
the outer cluster).

The two approaches are tested. Run times are seen in 
Table 5 and solution gaps in Table 6. Run times are 
consistent with the remaining aggregation approaches. 
Solution gaps are illustrated in Figure 9. MedianMaxMin 
selection generally performs better than the other selec-
tions strategies. Good results are especially achieved 
together with k-means, cluster clustering and kk-means. 
Kk-means performs overall well, however, without 
outperforming the other clustering approaches. It gives 
consistent results except for min selection, which gen-
erally performs poorly regardless of clustering 
approach.
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Figure 8: Quality gap percentages averaged across instances for 
weighted selection only.

Table 5: Run times in minutes.
DK-classic DK-detailed Gas PtX

k,MedianMax-
Min, w, 28

5,67 28,39 1,30 1,52

cc,MedianMax-
Min, w, 28

5,45 21,55 1,65 2,26

lc,MedianMax-
Min, w, 28

5,27 27,24 1,57 1,28

kk,min, w, 28 3,86 23,35 1,48 1,20
kk,max, w, 28 7,35 21,78 1,48 1,36
kk,median, w, 28 5,56 13,88 1,50 1,45
kk,cmean, w, 28 5,56 26,14 1,61 1,70
kk,random, w, 28 4,07 24,19 1,54 1,26
kk,MedianMax-
Min, w, 28

6,33 23,10 1,51 1,35
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6. Further analysis

The results reveal different quality across time aggrega-
tion techniques and data instance. The data instances are 
analyzed to better understand the results; specifically, 
we analyze the behavior of the investments in the opti-
mal solution for the full test instances and what this 
means to the clustering approaches. Average gaps for the 
instances are seen in Figure 10.

DK-classic: The investments are mainly utilized in 
the winter period. They are driven by district heating 
demand. Data in the instance, however, also contains 
many other fluctuating timeseries, especially connected 
to the electricity system: demand, RES production, elec-
tricity prices in neighboring countries and capacity 
restrictions on interconnection lines. The clustering 

methods end up generating clusters and selecting days, 
which are not relevant to the investments.

Gas: The investments are utilized in the summer 
period, where demand is low. In these hours, excessive 
biogas is either moved between distribution systems or 
sold to the transmission system. Gas demand is, how-
ever, not the only varying data in the instance. Electricity 
prices (considered by gas-fueled CHPs) vary throughout 
the year. Line pack is modelled as storage space with 
highest value in the spring. Gas demand varies more 
outside the summer period (the higher demand, the 
higher absolute variation). Hence the clustering 
approaches end up generating clusters and selecting 
days from other seasons than the summer and the solu-
tion quality suffers.

DK-detailed: The investments follow RES produc-
tion and electricity demand. Most timeseries in the 
datset are related to RES production and electricity, 
which explains the good solution quality.

PtX: The fluctuation of the timeseries correspond 
well to the entire production system, including the opti-
mal investments. All time aggregation methods thus 
have good performance.

6.1. Overall best aggregation method
Given the analysis in this section and the results in the 
previous, we investigate which aggre gation method 
show most promising results.

Dummy selection performs well but the method is not 
robust towards investments, which are utilized in only 
part(s) of the simulated year. This is the case for the Gas 
instance where Dummy Selection ends up with a 25% 
gap. For this reason, it may not generally be the best 
approach. It, however, benefits from being very simple 
to implement and to understand from the analyst’s point 
of view.
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Figure 10: Average solution gap for each instance across 
the clustering methods.

Table 6: Solution quality: the lower percentage 
the better performance.

DK-classic DK-detailed Gas PtX
k,medianmax-
min, w, 28

4% 4% 15% 1%

cc,medianmax-
min, w, 28

16% 2% 21% 2%

lc,medianmax-
min, w, 28

29% 7% 31% 1%

kk,min,w,28 104% 3% 43% 3%
kk,max,w,28 41% 6% 7% 9%
kk,median,w,28 29% 9% 20% 2%
kk,cmean,w,28 14% 2% 37% 3%
kk,random,w,28 12% 2% 48% 3%
kk,medianmax-
min, w, 28

7% 9% 23% 6%
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Figure 9: Quality gap percentages averaged across instances for 
weighted selection and dummy selection.
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For the clustering approaches, we have already con-
cluded that best performance is achieve with weighted 
selection and with other selection methods than min and 
max. The overall best performing method in our survey 
is k-means clustering with weighted selection and with 
the MedianMinMax selection strategy. The k-means is 
simple to implement and the MedianMinMax strategy 
diversifies selection without introducing the uncertainty 
of randomness.

We recommend this method but are also aware that 
this is a close call. This could indicate that the perfor-
mance bottleneck no longer lies in the clustering or 
selection itself. This is investigated in the next section 
on future work.

Comparing our results to the literature presented in 
Section 2, we lean towards the same conclusions as in 
[35] and in [38] but with a different selection and 
weighting strategy. The benefits of MedianMaxMin 
selection is similar to [38], which supplements cluster-
ing with selecting extreme days to achieve diversifica-
tion in the selected days. The similar performance of the 
clustering methods across very different energy systems, 
indicates why literature studies have concluded on dif-
ferent approaches: The strength of a method may depend 
on the specific energy system. This topic is also dis-
cussed further in the next section on future work.

6.2. Future Work
The clustering methods suffer from generating clusters 
based on data fluctuations irrelevant to the investment 
decision. We have identified four ideas to further dive 
into this.

Future work could focus on methods to better repre-
sent data. One method could be to normalize data to take 
on values between e.g. -1 and 1. This could lead to a 
fairer comparison of data stemming from different 
sources, e.g. comparing capacities with prices. This 
would, however, also erase the absolute amounts and 
thus treat e.g. large demands equally to small demands. 
Fluctuations in small timeseries may cause unimportant 
days to be selected and thus negatively affect the cluster-
ing approach.

Future work could also focus on dimensionality 
reduction, e.g. by considering the subset of data needed 
to represent the statistical behavior of each day, or by 
considering the subset of data which correlates with the 
investment decisions.

Future work could focus on constructing and sharing 
benchmark instances representing challenging and dif-

ferent sector coupled energy systems with more invest-
ment decisions and where the utilization of the investment 
decisions is not correlated. The instances could be 
extended to include seasonal storages to further investi-
gate the methods in [37]. This would allow better com-
parisons of clustering methods and could result in 
clearer recommendations.

Finally, future work could be to use other energy sim-
ulation models to evaluate the clustering approaches, for 
example the TIMES, Balmorel, EnergyPLAN and ener-
gyPRO models [35, 44–46].

7. Conclusion

In this paper, we have investigated the performance of 
clustering techniques across very different energy sys-
tems to give a recommendation of a method with overall 
good performance. This contrasts the current approach 
of developing clustering techniques performing well on 
specific energy systems and thus contributes to closing a 
gap in the research literature.

The clustering techniques all select a subset of days 
from the datasets, which cover a full year. The applied 
methods are k-means, hierarchical clustering and a 
double clustering procedure applying a fuzzy clustering, 
followed by a hierarchical clustering considering ele-
ment correlations. Also, we proposed a new method 
consisting of double k-means clustering.

The methods cluster days and then selects a number 
of days from each cluster. We have tested several selec-
tion strategies from the literature: min, max, median, 
closest to cluster mean and random. We have also pro-
posed a new selection strategy, MedianMaxMin, which 
selects elements in the named order. Finally, we have 
investigated the effect of selecting a single element from 
each cluster or a weighted number of elements from 
each cluster.

All in all, this resulted in a comparison of 41 aggre-
gation techniques, and the results were benchmarked 
against the full datasets. The comparison is evaluated on 
how well the investment decisions are matched. The 
methods were tested on four very different energy sys-
tems to investigate performance consistency and to ana-
lyze if certain energy system aspects are more difficult 
to replicate through aggregation.

The tests showed that all aggregation techniques 
resulted in significant time reductions between 78% and 
97%. The tests also revealed that weighted selection out-
performed selecting exactly one element from each  cluster. 
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To the best of our knowledge, this has not been analyzed 
or concluded previously in the literature.

Selecting minimum or maximum elements from each 
cluster was generally not a good strategy. The new selec-
tion method, MedianMaxMin, and clustering method, 
kk, both performed consistently well. Especially k-means 
with MedianMaxMin selection showed very good per-
formance, and this is also the clustering approach we 
recommend.

We also tested Dummy Selection, which simply 
selects every 13th day. Overall, it performed surpris-
ingly well. Considering its simplicity, it could be a good 
alternative to the more complex clustering methods as it 
is easy to implement and understand.

Future work could focus on how data is considered 
when clustering. In this paper, all timeseries are consid-
ered. A closer analysis of the test instances revealed that 
this may not be the best approach as data irrelevant to 
the investments caused the aggregation techniques to 
select days, which were also irrelevant to the investment 
decisions.

Future work could also focus on constructing a 
library of benchmark instances. This would strengthen 
the research area of time aggregation techniques applied 
to capacity expansion models, as this would better allow 
for systematical comparison of methods.

Combining qualitative methods with quantitative 
methods as proposed in [47] is also an interesting path 
of future work.

References

[1] T. Brown, D. Schlachtberger, A. Kies, S. Schramm and M. 
Greiner, ”Synergies of sector coupling and transmission 
extension in a cost-optimised, highly renewable European 
energy system”. Energy 160, 2018. https://doi.org/10.1016/j.
energy.2018.06.222.

[2] S. Buchholz, M. Gamst and D. Pisinger, ”A Comparative Study 
of Aggregation Techniques in relation to Capacity Expansion 
Energy System Modeling”. TOP 2019, vol. 27, no. 3, pp. 353-
405, 2019. https://doi.org/10.1007/s11750-019-00519-z.

[3] O. M. Babatunde, J. L. Munda and Y. Hamam, ”A comprehensive 
state-of-the-art survey on power generation expansion planning 
with intermittent renewable energy source and energy storage”. 
International Journal of Energy Research, 2019. https://doi.
org/10.1002/er.4388.

[4] C. Baldwin, K. Dale, and R. Dittrich, ”A Study of the Economic 
Shutdown of Generating Units in Daily Dispatch”. Power 
Apparatus and Systems, Part III, Transactions of the American 

Institute of Electrical Engineers 78, pp. 1272-1282, 1960. 
https://doi.org/10.1109/AIEEPAS.1959.4500539.

[5] N. Koltsaklis and M. Georgiadis, ”A multi-period, multi-
regional generation expansion planning model incorporating 
unit commitment constraints”. Applied Energy 158, pp. 310-
331, 2015. https://doi.org/10.1016/j.apenergy.2015.08.054.

[6] V. Oree, S. Z. Sayed Hassen and P. Fleming, ”Generation 
expansion planning optimisation with renewable energy 
integration: A review”. Renewable and Sustainable Energy 
Reviews 69, pp. 790-803, 2017. https://doi.org/10.1016/j.
rser.2016.11.120.

[7] J.C. Osorio-Aravena, A. Aghahosseini, D.B.U. Caldera, E. 
Munoz-CerΌn, and C. Breyer. Transition toward a fully 
renewable-based energy system in chile by 2050 across power, 
heat, transport and desalination sectors. International Journal 

of Sustainable Energy Planning and Management, 25:77–94, 
2020. https://doi.org/10.5278/ijsepm.3385.

[8] M.G. Prina, D. Moser, R. Vaccaro, and W. Sparber. EPLANopt 
optimization model based on energyplan applied at regional 
level: the future competition on excess electricity production 
from renewables. International Journal of Sustainable Energy 

Planning and Management, 27:35–50, 2020. https://doi.
org/10.5278/ijsepm.3504.

[9] B. Hua, R. Baldick and J. Wang, ”Representing Operational 
Flexibility in Generation Expansion Planning Through Convex 
Relaxation of Unit Commitment”. IEEE Transactions on Power 
Systems 33, pp. 2272-2281, 2017. https://doi.org/10.1109/
TPWRS.2017.2735026.

[10] J. P. Deane, A. Chiodi, M. Gargiulo and B. O’Gallachoir, ”Soft-
linking of a power systems model to an energy systems model”. 
Energy 42, pp. 303-312, 2012. https://doi.org/10.1016/j.
energy.2012.03.052.

[11] B. Palmintier and M. Webster, ”Impact of Operational 
Flexibility on Electricity Generation Planning With Renewable 
and Carbon Targets”. IEEE Transactions on Sustainable Energy, 
2015. https://doi.org/10.1109/TSTE.2015.2498640.

[12] K. Poncelet, E. Delarue, and W. D’haeseleer, ”Unit commitment 
constraints in long-term planning models: Relevance, pitfalls 
and the role of assumptions on flexibility”. Applied Energy 
258, 113843, 2019. https://doi.org/10.1016/j.apenergy.2019. 
113843.

[13] A. Viana and J. P. Pedroso, ”A new MILP-based approach for 
unit commitment in power production planning”. International 
Journal of Electrical Power & Energy Systems Volume44 (1), 
pp. 997-1005, 2013. https://doi.org/10.1016/j.ijepes.2012.08.046.

[14] M. Welsch, P. Deane, M. Howells, B. O’GallachΌir, F. Rogan, 
M. Bazilian and H. Rogner, ”Incorporating flexibility 
requirements into long-term energy system models – A case 
study on high levels of renewable electricity penetration in 

˜

https://doi.org/10.1016/j.apenergy.2019.113843
https://doi.org/10.1016/j.apenergy.2019.113843
https://doi.org/10.1016/j.ijepes.2012.08.046


International Journal of Sustainable Energy Planning and Management Vol. 32 2021  93

Mette Gamst, Stefanie Buchholz, David Pisinger

Ireland”. Applied Energy 135, pp. 600-615, 2014. https://doi.
org/10.1016/j.apenergy.2014.08.072.

[15] H. K. Ringkjøb, P. Haugan, and I. Solbrekke, ”A review of 
modelling tools for energy and electricity systems with large 
shares of variable renewables”. Renewable and Sustainable 
Energy Reviews 96, pp. 440-459, 2018. https://doi.
org/10.1016/j.rser.2018.08.002.

[16] A. Schwele, J. Kazempour and P. Pinson, ”Do unit commitment 
constraints affect generation expansion planning? A scalable 
stochastic model”. Energy Systems 2018. https://doi.
org/10.1007/s12667-018-00321-z

[17] C. L. Lara, D. S. Mallapragada, D. J. Papageorgiou, A. 
Venkatesh and I. E. Grossmann, ”Deterministic electric power 
infrastructure planning: Mixed-integer programming model 
and nested decomposition algorithm”. European Journal of 
Operational Research 271(3), pp. 1037-1054, 2018 https://doi.
org/10.1016/j.ejor.2018.05.039.

[18] A. Flores-Quiroz, R. Palma-Behnke, G. Zakeri and R Moreno, 
”A column generation approach for solving generation 
expansion planning problems with high renewable energy 
penetration”. Electric Power Systems Research 136, pp. 232-
241, 2016. https://doi.org/10.1016/j.epsr.2016.02.011

[19] K. Poncelet, E. Delarue, D. Six, J. Dueinck and W. D’haeseleer, 
”Impact of the level of temporal and operational detail in energy-
system planning models”. Applied Energy, vol. 162, no. 58, pp. 
631-643, 2016. https://doi.org/10.1016/j.apenergy.2015.10.100.

[20] K. Poncelet, H. Hoschle, E. Delarue, A. Virag and W. 
D’haeseleer, ”Selecting representative days for capturing the 
implications of integrating intermittent renewables in genera- 
tion expansion problems”. IEEE Transactions on Power 
Systems, 2016. https://doi.org/10.1109/TPWRS.2016.2596803.

[21] M. Fripp, ”Switch: A Planning Tool for Power Systems with 
Large Shares of Intermittent Renewable Energy”. Environmental 
Science & Technology 46, pp. 6371–6378, 2012, https://doi.
org/10.1021/es204645c.

[22] J. H. Merrick, ”On representation of temporal variability in 
electricity capacity planning models”. Energy Economics 59, 
pp. 261-274, 2016. https://doi.org/10.1016/j.eneco.2016.08.001.

[23] L. Kotzur, P. Markewitz, M. Robinius and D. Stolten, ”Impact 
of different time series aggregation methods on optimal energy 
system design”. Renewable Energy 117, 2017. https://doi.
org/10.1016/j.renene.2017.10.017.

[24] W. Fisher, ”On Grouping for Maximum Homogeneity”. Journal 
of The American Statistical Association 53, pp. 789-798, 1958. 
https://doi.org/10.1080/01621459.1958.10501479.

[25] P. Nahmmacher, E. Schmid, L. Hirth and B. Knopf, ”Carpe 
Diem: A Novel Approach to Select Representative Days for 
Long-Term Power System Models with High Shares of 

Renewable Energy Sources”. Energy, vol. 112, pp. 430-442, 
2016. https://doi.org/10.1016/j.energy.2016.06.081.

[26] J. B. MacQueen, ”Some Methods for classification and Analysis 
of Multivariate Observations”. Proceedings of 5th Berkeley 
Symposium on Mathematical Statistics and Probability 1, 
pp. 281–297, 1967.

[27] J. C. Dunn, ”A Fuzzy Relative of the ISODATA Process and Its 
Use in Detecting Compact Well-Separated Clusters”. Journal of 
Cybernetics, 3, pp. 32–57, 1973. https://doi.org/10.1080/ 
01969727308546046.

[28] M. ElNozahy, M. Salama and R. Seethapathy, ”A probabilistic 
load modelling approach using clustering algorithms”. IEEE 
Power and Energy Society General Meeting, pp. 1-5, 2016. 
https://doi.org/10.1109/PESMG.2013.6672073.

[29] Y. Liu, R. Sioshansi and A. J. Conejo, ”Hierarchical clustering 
to find representative operating periods for capacity-expansion 
modeling”. IEEE Transactions on Power Systems, vol. 33, no. 
3, pp. 3029-3039, 2017.

[30] J. Han, M. Kamper and J. Pei, ”10 – Cluster Analysis: Basic 
Concepts and Methods”. in Data Mining (Third Edition), 
Morgan Kaufmann, 2012, pp. 443 - 495.

[31] R. Green, I. Staffell and N. Vasilakos, ”Divide and Conquer? 
K-means Clustering of Demand Data Allows Rapid and 
Accurate Simulations of the British Electricity System”. IEEE 
Transactions on engineerring management, vol. 61, no. 2, pp. 
251-260, 2014. https://doi.org/10.1109/TEM.2013.2284386.

[32] M. Nicolos, A. Mills and R. Wiser, ”The importance of high 
temporal resolution in modeling renewable energy penetration 
scenarios”. 9th Conference on Applied Infrastructure Research, 
2011.

[33] IRENA (2017), ”Planning for the Renewable Future: Long-
term modelling and tools to expand variable renewable power 
in emerging economies”. International Renewable Energy 
Agency, Abu Dhabit, 2017.

[34] D. Rogers, R. Plante, R. Wong and J. Evans, ”Aggregation and 
disaggregation Techniques and Methodology in Optimization”. 
Operations Research, vol. 39, no. 4, pp. 553-582, 1991. https://
doi.org/10.1287/opre.39.4.553.

[35] F. Wiese, R. Bramstoft, H. Koduvere, A. Alonso, O. Balyk, J. 
Kirkerud, Å. Tveten, T. Bolkesjø, M. Münster and H. Ravn, 
”Balmorel open source energy system model”. Energy Strategy 
Reviews, Vol. 20, pp. 26-34, 2018. https://doi.org/10.1016/j.
esr.2018.01.003.

[36] H. Teichgraeber and A. Brandt, ”Clustering methods to find 
representative periods for the optimization of energy systems: 
An initial framework and comparison”. Applied Energy, vol. 
239, pp. 1283-1293, 2019. https://doi.org/10.1016/j.
apenergy.2019.02.012.

https://doi.org/10.1016/j.apenergy.2014.08.072
https://doi.org/10.1016/j.apenergy.2014.08.072
https://doi.org/10.1016/j.rser.2018.08.002
https://doi.org/10.1016/j.rser.2018.08.002
https://doi.org/10.1007/s12667-018-00321-z
https://doi.org/10.1007/s12667-018-00321-z
https://doi.org/10.1016/j.ejor.2018.05.039
https://doi.org/10.1016/j.ejor.2018.05.039
https://doi.org/10.1016/j.apenergy.2015.10.100
https://doi.org/10.1109/TPWRS.2016.2596803
https://doi.org/10.1021/es204645c
https://doi.org/10.1021/es204645c
https://doi.org/10.1016/j.renene.2017.10.017
https://doi.org/10.1016/j.renene.2017.10.017
https://doi.org/10.1080/01969727308546046
https://doi.org/10.1080/01969727308546046
https://doi.org/10.1016/j.esr.2018.01.003
https://doi.org/10.1016/j.esr.2018.01.003
https://doi.org/10.1016/j.apenergy.2019.02.012
https://doi.org/10.1016/j.apenergy.2019.02.012


94 International Journal of Sustainable Energy Planning and Management Vol. 32 2021

Time Aggregation Techniques Applied to a Capacity Expansion Model for Real-Life Sector Coupled Energy Systems

[37] P. Gabrielli, M. Gazzani, E. Martelli and M. Mazzotti, ”Optimal 
design of multienergy systems with seasonal storage”. Applied 
Energy 219, pp. 408-424, 2018. https://doi.org/10.1016/j.
apenergy.2017.07.142

[38] S. Pfenninger, ”Dealing with multiple decades of hourly wind 
and PV time series in energy models: A comparison of methods 
to reduce time resolution and the planning implications of inter-
annual variability”. Applied Energy 197, pp. 1-13, 2017. 
https://doi.org/10.1016/j.apenergy.2017.03.051.

[39] M. Zatti, M. Gabba, M. Freschini, M. Rossi, A. Gambarotta, M. 
Morini and E. Martelli. ”k-MILP: A novel clustering approach 
to select typical and extreme days for multi-energy systems 
design optimization”. Energy 181, pp 1051-1063, 2019. https://
doi.org/10.1016/j.energy.2019.05.044.

[40] T. Schütz, M. H. Schraven, M. Fuchs, P. Remmen and D. 
Müller, ”Comparison of clustering algorithms for the selection 
of typical demand days for energy system synthesis”. Renewable 
Energy 129 Part A, pp. 570-582, 2018. https://doi.org/10.1016/j.
renene.2018.06.028.

[41] R. Anand, D. Aggarwal and V. Chahar, ”A Comparative 
Analysis of Optimization Solvers”. Journal of Statistics and 
Management Systems 20, 2017. https://doi.org/10.1080/ 
09720510.2017.1395182.

[42] ”Sifre – Simulation of Flexible and Renewable Energy 
Systems”. [Online]. Available: https://energinet.dk/-/
media/0C7AA9C78EBE428580CAB85E120129CB.pdf.

[43] M. Gamst, S. Buchholz and D. Pisinger, ”Time Aggregation 
Techniques Applied to a Capacity Expansion Model for Real-
Life Sector Coupled Energy Systems”. arXiv, 2020. 
arXiv:2012.10244.

[44] R. Loulou, U. Remne, A. Kanudia, A. Lehtila and G. Goldstein, 
”Documentation for the MARKAL Family of Models – PART 
1”. [Online]. Available: https://iea-etsap.org/MrklDoc-I_
StdMARKAL.pdf.

[45] H. Lund, J. Z. Thellufsen, P. A. Østergaard, P. Sorknæs, I. R. 
Skov, and B. V. Mathiesen, ”EnergyPLAN – Advanced analysis 
of smart energy systems”. Smart Energy, Vol. 1, 2021, https://
doi.org/10.1016/j.segy.2021.100007

[46] A. N. Andersen and S. Frandsen, ”Development of a computer-
based tool energyPRO, for simulation and optimisation of 
operational strategy for CHP biomass - fired plants”. [Online]. 
Available: https://www.osti.gov/etdeweb/biblio/20235617

[47] P.F. Borowski ”New Technologies and Innovative Solutions in 
the Development Strategies of Energy Enterprises”. HighTech 
and innovation Journal, vol. 1, 2020, 39-58.

https://doi.org/10.1080/09720510.2017.1395182
https://doi.org/10.1080/09720510.2017.1395182
https://iea-etsap.org/MrklDoc-I_StdMARKAL.pdf
https://iea-etsap.org/MrklDoc-I_StdMARKAL.pdf
http://www.osti.gov/etdeweb/biblio/20235617
http://www.osti.gov/etdeweb/biblio/20235617

