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Abstract

A “biomarker” is any measurable characteristic that indicates the presence or absence of disease or the biological 
response to a stimulus, typically an exposure or intervention. The FDA-NIH Biomarker Working Group has produced 
a document called Biomarkers, EndpointS and other Tools (BEST), which defines 7 categories of biomarkers according 
to their clinical usage: susceptibility and risk, diagnostic, monitoring, prognostic, predictive, pharmacodynamic and 
treatment response, and safety. We approach the classification of biomarkers in 2 additional ways: their bodily source 
and their measurement type. In the context of their use in genitourinary malignancy, we also consider factors that 
influence their use and reliability in clinical and research applications.

Introduction

A “biomarker” is any measurable characteristic that indicates the presence or absence of disease or the biological 
response to a stimulus, typically an exposure or intervention. The FDA-NIH Biomarker Working Group has defined 7 
categories of biomarkers according to their clinical usage: susceptibility and risk, diagnostic, monitoring, prognostic, 
predictive, pharmacodynamic and treatment response, and safety. We approach the classification of biomarkers 
in 2 additional ways: their bodily source and their measurement type. In the context of their use in genitourinary 
malignancy, we also consider factors that influence their use and reliability in clinical and research applications.

Biomarkers by Source
Blood
Blood and its various components represent a valuable source for a wide variety of molecular biomarkers. Although 
direct sampling of cells in solid tumours of urologic oncology is not accomplished with peripheral blood draws, 
circulating tumour cells, as well as cell-free circulating DNA, can be used for genomic biomarkers [1,2]. Proteomics, 
lipidomics, and metabolomics in oncology are growing fields that can also be applied to blood samples for additional 
biomarker evaluation [3].

The means used to obtain blood are less invasive than those used to obtain tissue and some biofluids, and many 
patients with urologic malignancies are likely to undergo blood draws for standard care. Blood is largely composed 
of water but also contains erythrocytes, leukocytes, platelets, fibrinogen and other clotting factors, proteins including 
albumins and globulins, glucose, and electrolytes. Importantly, these components may limit the assessment of a given 
analyte if the blood is not processed appropriately [4,5]. It is also challenging to control the variation of individual 
components that make up blood that can occur in disease states such as dehydration, infection, or malignancy [3,4,6]. 

To prevent degradation, blood and blood fractions have traditionally been cryopreserved in aliquots to limit the 
damage to target analytes caused by thawing and re-freezing within the specimen. A major critique of this approach 
is that the cost associated with cryopreservation can be significant [7,8]. Alternative methods of storage that aim to 
decrease costs tied to cryopreservation  include drying with newer methods such as lyophilization and isothermal 
vitrification; however, these methods are not yet standardized [9,10]. For low molecular-weight protein, drying on silica 
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chips is feasible but does not protect specimens at higher 
temperatures. Dried blood spots using a paper system 
to evaporate water and contain blood components are 
useful in settings where access to cooling is limited 
for initial specimen handling. However, DBS requires 
controlled storage conditions, and certain analytes are 
more susceptible to oxidative damage. Novel techniques 
for safeguarding blood components remain an area of 
exploration [10].

Serum and plasma
Although whole blood has many uses for biomarker 
assessment, certain measurement modalities require 
sample refinement to optimize detection of a particular 
analyte. To this end, separating the cellular fraction out 
from the liquid portion of blood facilitates spectroscopy-
based analysis with less interference from blood cells. 
The liquid fraction of blood can be isolated as either 
serum or plasma. Plasma is stored in a way that prevents 
coagulation and clot formation. Various clotting factors, 
fibrinogen, and platelets are maintained in suspension 
in plasma. Serum, on the other hand, is allowed to clot 
over 30 minutes before use and can give a cleaner sample 
when interference from platelets and other contaminants 
is undesirable. There are trade-offs of the 2 forms [4,11], 
and the liquid fraction used should be individualized to 
the analyte of interest [12].

Cellular fractions
Cellular components of blood are also used in a variety 
of biomarkers. For example, a high neutrophil to 
lymphocyte ratio has been found to be a poor prognostic 
marker of systemic inflammation and to correspond 
to worse outcomes in a variety of malignancies [13,14], 
while anemia and thrombocytopenia are used in 
risk stratification for renal cell carcinoma [15] and 
may broadly correlate with late stage tumours [16]. 
Isolation of cellular fractions may be achieved by 
centrifugation and separation by size or using advanced 
spectroscopy [17,18]. Cellular fractions are less subject 
to coagulation when blood is stored as plasma. 
Reassessment of cellular biomarkers from blood samples 
may be facilitated with such specimens, although the 
anticoagulant or freezing technique used may affect 
the viability of cells [19,20]. Flow cytometry and other 
immunological techniques can be used to characterize 

the cellular components of blood to a high degree of 
precision using fluorescent antibody labelling [21].

Urine
Among the least invasive liquid biomarkers to 
obtain, urine also has the advantage of a simpler 
constituent matrix than other biofluids. Urine is more 
thermodynamically stable than other biof luids and 
generally requires less processing for preservation. 
Also, in the case of urinary tract facing malignancies, 
an opportunity exists to capture tumour cells and their 
biochemical by-products. Urinary extracellular vesicles 
containing a wide variety of molecular biomarker 
classes have also been discovered. A vast majority of the 
molecular biomarker classes are identifiable in urine. 
Not all patients are able to supply urine for analysis, 
depending on their renal function or disease state. 
When urine can be provided, it is subject to variations 
in composition and pH, which can have varying effects 
on any given class of biomarker. Uniquely, urine is also 
subject to contamination by the urinary microbiome, 
which can make interpretation of the source of 
particular analytes challenging [22-25].

Ejaculate and Prostatic Secretions
Of particular relevance to prostate cancer are prostatic 
biof luids, which capture analytes more effectively 
than other sources [26]. Of course, an intact prostate 
and ejaculatory pathway is required for procuring 
these specimens. The post-prostatic massage urine is 
a proxy for capturing prostatic secretions, and so this 
particular biofluid is also subject to the constraints of 
urinary specimens noted above. There are different 
social acceptability thresholds for semen and prostatic 
secretions, compared to other biofluids, making these 
secretions more procedurally intensive to collect. 
Recent efforts have shown the ability to collect RNA, 
DNA, proteins, and other molecular biomarkers from 
these biof luids [26–30]. Few data exist on storage 
considerations of prostatic secretions, although 
cryopreservation of seminal ejaculate is a standard 
practice in fertility scenarios [2,27,30].

Tissue
Arguably, tissue is the most invasive specimen type 
to obtain, and using tissue has additional costs for 
procurement, processing, and storage. In urologic 
oncology, though, tissue samples are often already 
obtained during routine clinical practice and may 
be used to identify biomarkers that guide treatment 
or provide prognostic information [31,32]. The full 
range of molecular biomarkers can be obtained from 
tissue samples, including more direct measurement of 
immune parameters at the tumour site (eg, tumour-
infiltrating leukocytes), which influences endogenous 
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immune response to tumour as well as chemotherapy 
and immunotherapy efficacy [33,34].

A major advantage of tissue specimens is the 
inherent ease with which the signal-to-noise ratio can 
be optimized in evaluating molecular biomarkers 
derived from tumours or tumour microenvironments. 
Depending on the biomarker of interest, a sample 
may be “enriched” to exclude normal tissue and 
prioritize tumour tissue for analysis (eg, laser capture 
microdissection). Recently, efforts have been made 
to standardize the manner in which tissue samples 
for various types of tumours, are delineated from 
surrounding stroma on histopathologic analysis with 
the intent of decreasing inter-observer variability of 
certain biomarker assessments [35].

Like other sources of biomarkers, t issue-
based biomarkers are subject to degradation and 
contamination. This is particularly true in fresh 
frozen tissue samples, in which tissue will be subject 
to predictable ischemic changes in the ex vivo state, 
such as apoptosis and in situ coagulation until freezing 
occurs. The timeliness of such processing would affect 
the accuracy and quality of biomarker analysis across a 
range of analytes, including more sensitive proteins [36].

Formalin-fixed, paraffin-embedded (FFPE) samples 
increase the longevity of the specimen regardless of 
storage temperature. However, residual paraffin (even 
after appropriate treatment) can contaminate the 
analysis of such a preserved sample [36]. There are trade-
offs of additional processing considerations for FFPE 
samples obtained for clinical evaluation. These may be 
associated with different contaminants or constraints in 
methodology for evaluation, and are discussed in more 
detail below [37,38].

Biomarkers by Type
Genomic biomarkers
The European Medicines Agency, in concert with the 
International Council for Harmonisation of Technical 
Requirements for Pharmaceuticals for Human Use, 
has defined a genomic biomarker as “a measurable 
DNA and/or RNA characteristic that is an indicator of 
normal biologic processes, pathogenic processes, and/or 
response to therapeutic or other interventions”[39].

Factors affecting genomic biomarkers 
Although DNA and RNA are generally reliable 
biomarkers, there are some commonly encountered 
situations in biospecimen collection that occur in 
clinical medicine that can affect nucleic acid quantity 
and quality and impact their accuracy as biomarkers. A 
few of these conditions are described here.

Pre-fixation time: Pre-fixation time is the duration of 
time between obtaining the biopsy or surgical specimen 
and its preservation. As the tissue samples removed 
are ischemic during this interval, several important 
biologic processes occur in the tissue that can affect 
nucleic acids. RNA, in particular, is susceptible to the 
effects of this “cold” (ie, <37 °C) ischemia. Changes 
that are seen during cold ischemia include increased 
expression (quantity) of RNA molecules from hypoxia 
response genes (eg, hypoxia-inducible factor 1α [HIF-
1α]); digestion and loss of RNA molecules with short 
half-lives; and broad RNA degradation and reduction 
in quality, starting at about 5 to 6 hours at room 
temperature [40]. In general, the shorter the time from 
patient to preservation (preservative or freezing), the 
better. 

Formalin: Formalin fixation is a common method 
used to preserve biological tissue samples that have 
been obtained surgically or by biopsy, and subsequent 
paraffin-embedding allows for the cutting of thin 
slices for histological examination. FFPE samples 
are abundant and represent the standard method of 
clinical tissue preservation in most hospitals. Formalin 
has several effects on DNA that affect DNA quality, 
including DNA denaturation and cross-linking with 
cytosine residues [41]. As a result of these and other 
effects on DNA, formalin induces artificial mutations 
at a rate of approximately 1 mutation per 500 base 
pairs. RNA shares these formalin effects, but it is also 
affected by formalin in other ways which impede reverse 
transcription [41, 42]. Factors that increase the formalin-
induced artificial mutation rate include increasing 
formaldehyde concentration, increasing temperature, 
increasing duration of fixation, and decreasing pH [41].

Tissue nucleases: Deoxyribonucleases (DNases) and 
ribonucleases (RNases) are tissue nucleases that digest 
DNA and RNA, respectively. RNA molecules are 
particularly susceptible to degradation by RNases, and 
for this reason, RNase inhibition is part of most RNA 
extraction protocols. DNase is felt to be an important 
contributor to DNA degradation in FFPE tissue samples 
[43].

Storage conditions: The age of the FFPE sample and 
storage temperature can have an impact on nucleic acid 
quality [44]. In general, storage at −20°C is better than 
room temperature, and shorter duration of storage is 
better. 

DNA
DNA has many attributes that make it an excellent 
biomarker. First, DNA tends to be a very stable 
molecule—a biological requirement, as it directs the 
replication of all human cells—and is consequently 
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affected less by environmental conditions than many 
other molecules. Second, many characteristics are 
measurable in DNA, including single-nucleotide 
variants (formerly single-nucleotide polymorphisms), 
variabi l ity of short repeated segments (eg, 
microsatellites), epigenetic modif ications (eg, 
methylation), haplotypes, deletion mutations, insertion 
mutations, copy number variations, and cytogenetic 
variations (eg, translocations, duplications, deletions, or 
inversions).

One important distinction with DNA is the difference 
between germline changes and somatic changes. 
Germline DNA is the complement of genes that an 
individual is born with and can pass on to future 
progeny. Generally, blood leukocytes are used as the 
source for germline DNA, but there are scenarios (eg, 
leukemia) where this is not ideal, and buccal swabs, 
saliva, or other normal tissue are used. Most evidence 
suggests that buccal swabs and saliva yield similar DNA 
quality to blood leukocytes, although quantity is usually 
less [45,46]. Germline DNA alterations can inform the 
presence of an inherited tumour syndrome (eg, von 
Hippel-Lindau disease), a susceptibility to exposures 
(eg, glutathione-S-transferase [GSTM1] null and 
N-acetyltransferase 2 [NAT2] slow acetylator increase 
the risk for bladder cancer), an ability to metabolize 
drugs, and a susceptibility to developing certain diseases 
or adverse events associated with treatment.

Somatic DNA refers to DNA collected from 
an affected tissue or organ, usually a tumour, and 
ref lects a change that occurred in the DNA after 
conception. Somatic alterations are not passed on to 
children. Somatic alterations are useful for predicting 
responsiveness to treatment (eg, microsatellite instability 
and programmed death 1 ligand 1 [PD-L1] response), 
determining prognosis, and diagnosing the presence or 
absence of disease.  

RNA
RNA is the transmitter of genetic information coded 
in the DNA and is therefore a significantly more 
dynamic molecule than DNA. RNA quantity and 
composition change significantly from tissue to tissue 
under normal physiologic conditions. Characteristics 
that are measured in RNA include sequences, splicing, 
expression levels, and subtype (eg, miRNA). As alluded 
to above, while RNA is a more responsive molecule and, 
perhaps, a better reflector of genetic activity within a 
particular tissue, it is also substantially less stable and is 
affected by a larger number of environmental conditions 
than DNA. 

There are numerous types of RNA molecules and 
they are generally classified as the following: (a) those 

involved in protein synthesis, (b) those involved in RNA 
modification, and (c) those whose function is mainly 
regulatory [47]. A non-exhaustive summary of the main 
types of RNA is shown in Table 1.

Protein
Proteins are the workhorses of the cell and are often 
highly dysregulated in disease states. Proteins can be 
isolated from nearly all biofluids but, like all analytes, 
they are also subject to degradation and alteration. 
Human blood and urine contain proteases that cleave 
proteins into smaller peptides, which can be cleaved by 
peptidases into even smaller pieces [48]. Interestingly, 
the pattern of cleavage can be used as a signature to 
identify certain cancers [49]. Adding protease inhibitors 
to biospecimens can help reduce artifactual changes in 
proteins caused by enzymatic degradation, although 
these additions can also affect downstream applications. 

Urine can be a particularly challenging source for 
protein biomarkers because of dramatic changes in pH 
(ranges from 4 to 8), the influence of hydration status 
on protein concentration, and proteolysis that occurs 
during storage in the bladder [50]. About 30% of urinary 
proteins are derived from glomerular filtration and 70% 
from the renal tubules and urothelium, so the urine 
protein pool is a mix of systemic and local–regional 
sources [51].

Protein-based biomarkers have generally been 
focused on the quantification of a particular protein 
or isoform. However, assessment of post-translational 
modifications is also important. Post-translational 
modifications that can important to biomarkers 
include phosphorylation, methylation, glycosylation, 
ubiquitination, acetylation, and lipidation [52].

Glycans
The attachment of carbohydrates to molecules, such as 
proteins and lipids—a process known as glycosylation—
is common, occurring in > 50% of human proteins [53]. 
Several important glycoproteins have been found to be 
good biomarkers in urology, including α-fetoprotein, 
prostate-specific antigen, and human chorionic 
gonadotropin. There are different forms of protein 
glycosylation, including N-linked (glycan attached to the 
nitrogen of asparagine) and O-linked (glycan attached 
to the oxygen of threonine and serine). Tumours 
may show differences in the amount, size, and type of 
glycosylation when compared with normal tissue. For 
example, N-linked glycans tend to become larger and 
more branched, whereas O-linked glycans tend to be 
truncated and expose underlying peptide epitopes. 
Other glycans can be important biomarkers, too. For 
example, glycolipids (glycans bound to lipid molecules) 
and glycosaminoglycans (mucopolysaccharides) have 
been studied as biomarkers. 
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TABLE 1.

Main Types of RNA

Protein Synthesis

Type Function

Messenger (mRNA)
 • Transcription of the information contained in DNA exons (recipe for a protein)
 • Subject to alternative splicing, which creates different protein isoforms

Ribosomal (rRNA)
 • Primary constituent of the ribosomes, where mRNA is translated into protein
 • Most abundant RNA in cells (about 80%)

Transfer (tRNA)  • Carries an amino acid matching the mRNA to the ribosome, required for translation

RNA modification

Type Function

Small nuclear (snRNA)  • Processing and splicing of mRNA in the nuclear spliceosome

Small nucleolar 
(snoRNA)

 • Involved in methylation and pseudouridylation of rRNA and tRNA

Ribonuclease P  • Riboenzyme (enzyme made of RNA) that cleaves RNA

Ribonuclease MRP  • Riboenzyme that processes rRNA in the nucleus

Regulatory

Type Function

Micro (miRNA)  • Single stranded RNA, 22 bp length, interferes with other RNAs

Small interfering 
(siRNA)

 • Double stranded RNA, 20–25 bp length, interferes with other RNAs

Long non-coding 
(lncRNA)

 • Single stranded RNA, >200 bp length, interferes with other RNAs

Short hairpin (shRNA)  • Artificial RNA molecule designed to inhibit other RNAs, has a tight hairpin turn structure

Antisense (asRNA)  • Single stranded RNA complementary to a mRNA to which it binds and inhibits

Lipids
Lipids are key molecules in cellular metabolism and 
are a critical structural component in the biological 
membranes that wrap all human cells. Lipids are 
different from other biomolecules in that they are soluble 
in organic solvents, which is an important processing 
step in lipid analysis and characterization [54]. Lipids are 
subdivided into 8 classes, each of which has had some 
biological role described in cancer biology: fatty acyls, 
glycerophospholipids, glycerolipids, sphingolipids, sterol 
lipids, prenol lipids, saccharolipids, and polyketides [55]. 
Mass spectroscopy and related techniques are the main 
tools used for profiling biological lipids.

Imaging
Although it may not seem intuitive, imaging can 
also serve as a biomarker [56,57]. Examples of widely 

available imaging-based biomarkers include basic 
radiological lesion characteristics (eg, size, shape, 
location), lesion density (computed tomography), 
lesion echogenicity (ultrasound), lesion signal 
intensity (magnetic resonance imaging), and contrast 
enhancement. The Response Evaluation Criteria In 
Solid Tumors (RECIST) criteria for evaluating tumour 
response to therapy is a radiological biomarker that is 
commonly used in clinical trials [58,59]. Functional 
molecular imaging has been further developed, whereby 
specific molecular features are studied using novel 
radiological ligands. For example, in positron emission 
tomography (PET) imaging, functional biomarkers 
are being explored to improve the detection of cancer, 
including, 18F-fluorodeoxyglucose (18F-FDG), carbon 
11 choline (11C-choline), 68Gallium prostate-specific 
membrane antigen (68Ga-PSMA), and numerous others. 

12 SIUJ  •  Volume 1, Number 1  •  October 2020 SIUJ.ORG

MOLECULAR BIOMARKERS IN UROLOGIC ONCOLOGY: ICUD-WUOF CONSULTATION

http://www.siuj.org


In other cases, theranostic imaging is being pursued 
whereby a molecular target is imaged in a patient in vivo 
before the administration of a targeted agent against that 
molecular target [60].

Pathology
The histological evaluation of tissue samples (or blood 
smears) is not only a routine clinical component of 
cancer care but also an important source of clinical 
biomarkers. Many standard descriptors of tissue 
morphology can be quantified and used as biomarkers. 
Common examples in genitourinary oncology include 
tumour grade, presence of lymphovascular invasion, 
presence of mitoses, and histological tumour type and 
subtype. More recently, digital imaging has allowed 
for a new era of digital pathology, in which pattern 
recognition and artificial intelligence software tools can 

be used to characterize tissue sections with increasingly 
precise and reproducible methods [61,62]. It is highly 
likely that in the future digital pathology tools will form 
the backbone of the analysis of most tissue sections.

Conclusions
Biomarkers can be obtained and characterized from a 
highly diverse set of biological sources of measurement. 
There is no clear optimal biomarker, and each has 
inherent strengths and f laws. The future will likely 
consist of a collation of large networks of biomarkers 
that are merged computationally to provide a consensus 
picture of the pathological process that is occurring 
in the patient. This will undoubtedly require new 
informatic and artificial intelligence tools but will also 
lead to a new era of precision medicine.
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